Academic literature on the topic 'Almost complex manifold'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Almost complex manifold.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Almost complex manifold"

1

KIM, JIN HONG. "EXAMPLES OF COMPACT NEGATIVELY CURVED ALMOST COMPLEX, BUT NOT COMPLEX, MANIFOLDS." International Journal of Geometric Methods in Modern Physics 09, no. 07 (September 7, 2012): 1220012. http://dx.doi.org/10.1142/s0219887812200125.

Full text
Abstract:
In this paper, we provide infinitely many examples of compact negatively curved almost complex, but not complex, manifolds of complex dimension 2n + 1 or 2n + 2 by using strongly pseudoconvex homogeneous domains in an almost complex manifold. Unlike the Kodaira–Thurston manifold which is the flat case, the first Betti number of the constructed manifolds is even, and their first homology group is, in fact, isomorphic to ℤ4n+2 or ℤ4n+4.
APA, Harvard, Vancouver, ISO, and other styles
2

ANGELLA, DANIELE, and ADRIANO TOMASSINI. "ON THE COHOMOLOGY OF ALMOST-COMPLEX MANIFOLDS." International Journal of Mathematics 23, no. 02 (February 2012): 1250019. http://dx.doi.org/10.1142/s0129167x11007604.

Full text
Abstract:
Following [T.-J. Li and W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. Geom.17(4) (2009) 651–683], we continue to study the link between the cohomology of an almost-complex manifold and its almost-complex structure. In particular, we apply the same argument in [T.-J. Li and W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. Geom.17(4) (2009) 651–683] and the results obtained by [D. Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math.36(1) (1976) 225–255] to study the cone of semi-Kähler structures on a compact semi-Kähler manifold.
APA, Harvard, Vancouver, ISO, and other styles
3

Manev, Mancho. "On canonical-type connections on almost contact complex Riemannian manifolds." Filomat 29, no. 3 (2015): 411–25. http://dx.doi.org/10.2298/fil1503411m.

Full text
Abstract:
We consider a pair of smooth manifolds, which are the counterparts in the even-dimensional and odd-dimensional cases. They are separately an almost complex manifold with Norden metric and an almost contact manifolds with B-metric, respectively. They can be combined as the so-called almost contact complex Riemannian manifold. This paper is a survey with additions of results on differential geometry of canonical-type connections (i.e. metric connections with torsion satisfying a certain algebraic identity) on the considered manifolds.
APA, Harvard, Vancouver, ISO, and other styles
4

Kumar, Rakesh, Garima Gupta, and Rachna Rani. "Adapted connections on Kaehler–Norden Golden manifolds and harmonicity." International Journal of Geometric Methods in Modern Physics 17, no. 02 (February 2020): 2050027. http://dx.doi.org/10.1142/s0219887820500279.

Full text
Abstract:
We study almost complex Norden Golden manifolds and Kaehler–Norden Golden manifolds. We derive connections adapted to almost complex Norden Golden structure of an almost complex Norden Golden manifold and of a Kaehler–Norden Golden manifold. We also set up a necessary and sufficient condition for the integrability of almost complex Norden Golden structure. We define twin Norden Golden Hessian metric for a Kaehler–Norden Golden Hessian manifold. Finally, we prove that a complex Norden Golden map between Kaehler–Norden Golden manifolds is a harmonic map.
APA, Harvard, Vancouver, ISO, and other styles
5

Cirici, Joana, and Scott O. Wilson. "Almost Hermitian Identities." Mathematics 8, no. 8 (August 13, 2020): 1357. http://dx.doi.org/10.3390/math8081357.

Full text
Abstract:
We study the local commutation relation between the Lefschetz operator and the exterior differential on an almost complex manifold with a compatible metric. The identity that we obtain generalizes the backbone of the local Kähler identities to the setting of almost Hermitian manifolds, allowing for new global results for such manifolds.
APA, Harvard, Vancouver, ISO, and other styles
6

KUMAR, PRADIP. "ALMOST COMPLEX STRUCTURE ON PATH SPACE." International Journal of Geometric Methods in Modern Physics 10, no. 03 (January 10, 2013): 1220034. http://dx.doi.org/10.1142/s0219887812200344.

Full text
Abstract:
Let M be a complex manifold and let PM ≔ C∞([0, 1], M) be space of smooth paths over M. We prove that the induced almost complex structure on PM is weak integrable by extending the result of Indranil Biswas and Saikat Chatterjee of [Geometric structures on path spaces, Int. J. Geom. Meth. Mod. Phys.8(7) (2011) 1553–1569]. Further we prove that if M is smooth manifold with corner and N is any complex manifold then induced almost complex structure 𝔍 on Fréchet manifold C∞(M, N) is weak integrable.
APA, Harvard, Vancouver, ISO, and other styles
7

Bejan, Cornelia-Livia, and Galia Nakova. "Almost Complex and Hypercomplex Norden Structures Induced by Natural Riemann Extensions." Mathematics 10, no. 15 (July 27, 2022): 2625. http://dx.doi.org/10.3390/math10152625.

Full text
Abstract:
The Riemann extension, introduced by E. K. Patterson and A. G. Walker, is a semi-Riemannian metric with a neutral signature on the cotangent bundle T∗M of a smooth manifold M, induced by a symmetric linear connection ∇ on M. In this paper we deal with a natural Riemann extension g¯, which is a generalization (due to M. Sekizawa and O. Kowalski) of the Riemann extension. We construct an almost complex structure J¯ on the cotangent bundle T∗M of an almost complex manifold (M,J,∇) with a symmetric linear connection ∇ such that (T∗M,J¯,g¯) is an almost complex manifold, where the natural Riemann extension g¯ is a Norden metric. We obtain necessary and sufficient conditions for (T∗M,J¯,g¯) to belong to the main classes of the Ganchev–Borisov classification of the almost complex manifolds with Norden metric. We also examine the cases when the base manifold is an almost complex manifold with Norden metric or it is a complex manifold (M,J,∇′) endowed with an almost complex connection ∇′ (∇′J=0). We investigate the harmonicity with respect to g¯ of the almost complex structure J¯, according to the type of the base manifold. Moreover, we define an almost hypercomplex structure (J¯1,J¯2,J¯3) on the cotangent bundle T∗M4n of an almost hypercomplex manifold (M4n,J1,J2,J3,∇) with a symmetric linear connection ∇. The natural Riemann extension g¯ is a Hermitian metric with respect to J¯1 and a Norden metric with respect to J¯2 and J¯3.
APA, Harvard, Vancouver, ISO, and other styles
8

Merker, Jochen. "On Almost Hyper-Para-Kähler Manifolds." ISRN Geometry 2012 (March 8, 2012): 1–13. http://dx.doi.org/10.5402/2012/535101.

Full text
Abstract:
In this paper it is shown that a -dimensional almost symplectic manifold can be endowed with an almost paracomplex structure , , and an almost complex structure , , satisfying for , for and , if and only if the structure group of can be reduced from (or ) to . In the symplectic case such a manifold is called an almost hyper-para-Kähler manifold. Topological and metric properties of almost hyper-para-Kähler manifolds as well as integrability of are discussed. It is especially shown that the Pontrjagin classes of the eigenbundles of to the eigenvalues depend only on the symplectic structure and not on the choice of .
APA, Harvard, Vancouver, ISO, and other styles
9

Sukhov, Alexandre Borisovich. "Discs and boundary uniqueness for psh functions on almost complex manifold." Ufimskii Matematicheskii Zhurnal 10, no. 4 (2018): 129–36. http://dx.doi.org/10.13108/2018-10-4-129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Manev, Mancho. "Almost Riemann Solitons with Vertical Potential on Conformal Cosymplectic Contact Complex Riemannian Manifolds." Symmetry 15, no. 1 (December 30, 2022): 104. http://dx.doi.org/10.3390/sym15010104.

Full text
Abstract:
Almost-Riemann solitons are introduced and studied on an almost contact complex Riemannian manifold, i.e., an almost-contact B-metric manifold, which is obtained from a cosymplectic manifold of the considered type by means of a contact conformal transformation of the Reeb vector field, its dual contact 1-form, the B-metric, and its associated B-metric. The potential of the studied soliton is assumed to be in the vertical distribution, i.e., it is collinear to the Reeb vector field. In this way, manifolds from the four main classes of the studied manifolds are obtained. The curvature properties of the resulting manifolds are derived. An explicit example of dimension five is constructed. The Bochner curvature tensor is used (for a dimension of at least seven) as a conformal invariant to obtain these properties and to construct an explicit example in relation to the obtained results.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Almost complex manifold"

1

BOZZETTI, CRISTINA. "Absolute parallelisms on almost complex manifolds." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/88468.

Full text
Abstract:
Nelle varietà quasi complesse (M4, J) di dimensione reale 4 risulta interessante studiare quando sia possibile costruire un parallelismo assoluto, ossia quando la varietà (M4, J) ammette una {e}-struttura. Nonostante in genere questo non accada, nelle varietà quasi complesse nelle quali l'immagine del tensore di Nijenhuis fornisca un fibrato, detto di torsione, che risulti non integrabile, esiste un doppio parallelismo assoluto. Come conseguenza risulta che il gruppo degli automorfismi Aut(M4, J) di (M4, J) è un gruppo di Lie di dimensione minore o uguale a 4, e il suo sottogruppo di isotropia ha al più due elementi. Inoltre è possibile definire una metrica naturale su (M4, J). Quando (M4, J) è localmente omogenea, l'algebra di Lie generata dai campi che determinano il doppio parallelismo assoluto permette di classificare tali varietà quasi complesse. In particolare, viene introdotta la classificazione nel caso in cui l'algebra di Lie sia non risolubile, mentre vengono mostrati diversi esempi su come eseguire la classificazione nel caso in cui l'algebra sia risolubile.
In almost complex manifolds (M⁴,J) of real dimension 4 it is interesting to study when it is possible to construct an absolute parallelism, namely when (M⁴,J) admits an {e}-structure. Although in general this is not true, on almost complex manifolds in which the image of the Nijenhuis forms a bundle, called fiber bundle, which is not integrable, there exists a double absolute parallelism. As a consequence, it results that the group of the automorphisms Aut(M⁴,J) of (M⁴,J) is a Lie group of dimension less or equal to 4, and its isotropy subgroup has at most two elements. Moreover it is possible to define a natural metric on (M⁴,J). When (M⁴,J) is locally homogeneous, the Lie algebra generated by the fields that determinate the double absolute parallelism allows us to classify these almost complex manifolds. In particular, the classification in the case when the Lie algebra is not solvable is introduced, while several examples are shown to explain how to make the classification when the algebra is solvable.
APA, Harvard, Vancouver, ISO, and other styles
2

Rubio, Roberto. "Generalized geometry of type Bn." Thesis, University of Oxford, 2014. https://ora.ox.ac.uk/objects/uuid:e0e48bb4-ea5c-4686-8b91-fcec432eb89a.

Full text
Abstract:
Generalized geometry of type Bn is the study of geometric structures in T+T*+1, the sum of the tangent and cotangent bundles of a manifold and a trivial rank 1 bundle. The symmetries of this theory include, apart from B-fields, the novel A-fields. The relation between Bn-geometry and usual generalized geometry is stated via generalized reduction. We show that it is possible to twist T+T*+1 by choosing a closed 2-form F and a 3-form H such that dH+F2=0. This motivates the definition of an odd exact Courant algebroid. When twisting, the differential on forms gets twisted by d+Fτ+H. We compute the cohomology of this differential, give some examples, and state its relation with T-duality when F is integral. We define Bn-generalized complex structures (Bn-gcs), which exist both in even and odd dimensional manifolds. We show that complex, symplectic, cosymplectic and normal almost contact structures are examples of Bn-gcs. A Bn-gcs is equivalent to a decomposition (T+T*+1)= L + L + U. We show that there is a differential operator on the exterior bundle of L+U, which turns L+U into a Lie algebroid by considering the derived bracket. We state and prove the Maurer-Cartan equation for a Bn-gcs. We then work on surfaces. By the irreducibility of the spinor representations for signature (n+1,n), there is no distinction between even and odd Bn-gcs, so the type change phenomenon already occurs on surfaces. We deal with normal forms and L+U-cohomology. We finish by defining G22-structures on 3-manifolds, a structure with no analogue in usual generalized geometry. We prove an analogue of the Moser argument and describe the cone of G22-structures in cohomology.
APA, Harvard, Vancouver, ISO, and other styles
3

Brown, James Ryan. "Complex and almost-complex structures on six dimensional manifolds." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4466.

Full text
Abstract:
Thesis (Ph.D.)--University of Missouri-Columbia, 2006.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (February 26, 2007) Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
4

Gérard, Maxime. "Méthodes de sélection de structures presque complexes dans le cadre symplectique." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0051/document.

Full text
Abstract:
Étant donné une variété symplectique $(M,\omega)$, il existe toujours des structures presque complexes $\omega$-compatibles positives. La question qui nous intéresse est de trouver des méthodes de sélection de certaines de ces structures. Des réponses ont déjà été données par V. Apostolov et T.Draghici, J.G. Evans, et J. Keller et M. Lejmi. Nous nous intéressons ici principalement à des méthodes de sélection définies en termes du tenseur de Nijenhuis. De manière très générale, lorsqu'on veut sélectionner certaines données géométriques, on peut aborder le problème de différentes manières. L’une d’entre elles consiste à regarder la décomposition en composantes irréductibles de certains tenseurs naturellement associés à la structure considérée et poser des conditions sur certaines composantes. Nous avons montré que le tenseur de Nijenhuis est irréductible sous l'action du groupe unitaire. Cette irréductibilité ne nous permet pas d'imposer d'autre condition linéaire à ce tenseur que son annulation, qui correspond aux variétés de Kähler. Une autre méthode possible de sélection est d’imposer des conditions à certaines distributions liées au problème. Nous avons étudié des distributions liées au tenseur de Nijenhuis. Nous nous sommes intéressés ici aux dimensions et propriétés d’involutivité possibles de ces distributions. Nous donnons des exemples invariants sous l’action d’un groupe, construits sur des groupes symplectiques ou sur des fibrés de twisteurs sur une variété riemannienne. La dernière méthode envisagée dans ce travail est la considération de fonctionnelles définies à partir des données. Pour construire une fonctionnelle la plus simple possible en termes du tenseur de Nijenhuis, nous intégrons une fonction polynomiale du second degré en les composantes du tenseur de Nijenhuis. On montre qu’un tel polynôme est toujours un multiple de la norme au carré de ce tenseur. La fonctionnelle obtenue est celle étudiée par Evans. Elle est a priori peu intéressante pour notre problème de sélection car il a prouvé qu’on peut trouver des exemples de variétés symplectiques n’admettant aucune structure kählérienne mais telle que l’infimum de la fonctionnelle soit nul
Given a symplectic manifold $(M,\omega)$, there always exist almost complex $\omega,$-compatible positive structures. The problem studied in this thesis is to find methods to select some of these structures. Answers have already been suggested by V. Apostolov and T.Draghici, J. G. Evans, and J. Keller and M. Lejmi. We are mainly interested here in selection methods defined in terms of the Nijenhuis tensor. The problem of selecting geometric objects can be tackled in various ways. One of them is to decompose into irreducible components some tensors naturally associated with the structure, and to impose conditions on some of those components. We prove that the Nijenhuis tensor is irreducible under the action of the unitary group. This irreducibility does not allow to impose any linear condition on the Nijenhuis tensor, except the vanishing of it, which corresponds to Kähler manifolds. Another possible method of selection is to impose conditions on distributions related to the problem. We study distributions defined by the Nijenhuis tensor. Our results concern the possible dimensions and properties of involutivity of these distributions. We give examples which are invariant under the action of a group, on some symplectic groups and on twisted bundles over some Riemannian manifolds. The last method considered in this work consists in looking for extremals of functionals defined from the data. To construct the simplest functional defined in terms of the Nijenhuis tensor, we integrate a polynomial function of the second degree into the components of this tensor. All such polynomials are multiple of the square of the norm of this tensor. This functional is the one studied by Evans; the drawback for our selection problem is that there exist examples of compact symplectic manifolds which do not admit any K\"ahler structure but such that the infimum of the functional is zero
APA, Harvard, Vancouver, ISO, and other styles
5

Peyron, Marianne. "Quelques problèmes d'analyse géométrique dans les variétés presque complexes à bord." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00989815.

Full text
Abstract:
Nous étudions d'abord l'analyticité des applications CR entre deux hypersurfaces dans des variétés presque complexes. Nous démontrons l'analyticité d'une telle application dans deux cas distincts : premièrement dans le cas où les hypersurfaces de départ et d'arrivée sont le bord d'un domaine modèle et la structure presque complexe est une structure modèle, deuxièmement dans le cas où la structure presque complexe d'arrivée est une déformation d'une structure modèle et lorsque les hypersurfaces sont des petites perturbations de l'hypersurface $partialh$ définie par $partial h={zinC^n,RE(z_n)+|z'|^2=0}$. La preuve utilise la méthode de prolongation des systèmes d'équations aux dérivées partielles ainsi que la théorie des systèmes complets. Nous appliquons ensuite ces résultats pour généraliser le Théorème de Poincaré-Alexander au cas presque complexe. Le Théorème de Poincaré-Alexander stipule qu'une application holomorphe définie sur un ouvert de la boule unité de $C^n$ peut, sous certaines conditions, être prolongée en un biholomorphisme de la boule unité. Dans le cadre presque complexe, la boule unité n'est plus, à biholomorphisme près, le seul domaine strictement pseudoconvexe et homogène. Un domaine strictement pseudoconvexe et homogène est biholomorphe à un domaine modèle. Nous donnons ainsi une genéralisation du Théorème de Poincaré-Alexander pour les domaines modèles. Enfin, nous définissons les applications $J$-quasiconformes et démontrons que les ouverts et les sous variétés totalement réelles incluses dans le bord du domaine constituent des ensembles d'unicité pour les applications $J$-quasiconformes. Nous démontrons aussi qu'une application $J$-quasiconforme qui admet des limites nulles en tout point d'une sous-variété totatemement réelle incluse dans le bord du domaine est identiquement nulle.
APA, Harvard, Vancouver, ISO, and other styles
6

Chakrabarti, Debraj. "Approximation of maps with values in a complex or almost complex manifold." 2006. http://www.library.wisc.edu/databases/connect/dissertations.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rahm, Alexander. "Characteristic classes of vector bundles with extra structure." Thesis, 2007. http://hdl.handle.net/11858/00-1735-0000-000D-F285-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Herrera, Andrea Cecilia. "Estructuras Killing-Yano invariantes en variedades homogéneas." Bachelor's thesis, 2018. http://hdl.handle.net/11086/6554.

Full text
Abstract:
Tesis (Doctor en Matemática)--Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación, 2018.
Estudiamos 2-formas de Killing-Yano invariantes a izquierda sobre grupos de Lie, o equivalentemente, sobre álgebras de Lie. Más particularmente, clasificamos las álgebras de Lie de dimensión 4 que admitan tales estructuras, y para cada una de tales álgebras, listamos todas las posibles estructuras de Killing-Yano (salvo equivalencia). Realizando extensiones centrales de estas álgebras obtenemos ejemplos de 2-formas de Killing-Yano Conformes en dimensión 5. Las álgebras de Lie obtenidas resultan ser aquellas álgebras de Lie sasakianas (de dimensión 5) con centro no trivial. Analizamos tensores de Killing-Yano invariantes para variedades homogéneas G/K que admitan una métrica G-invariante. Más específicamente estudiamos la ecuación de Killing-Yano en variedades bandera generalizadas y damos ejemplos concretos en variedades bandera maximales de dimensiones 6, 8 y 12.
We study left invariant Killing-Yano 2-forms on Lie groups. This is equivalent to work at the Lie algebra level. In particular, we classify four dimensional Lie algebras that admit such structures, and for each of them we list all the possibles Killing-Yano structures (up to equivalence). Doing central extensions on the obtained Lie algebras, we find examples of Conformal Killing-Yano tensors in dimension five. Further, the obtained central extensions are Sasakian Lie algebras of dimension five with no trivial center. We analyse G-invariant Killing-Yano tensors on homogeneous spaces G/K that admits a G-invariant metric. As an application we study the Killing-Yano equation on Generalized flag manifolds and we find examples of invariant Killing Yano tensors on full flag manifolds of dimension six, eight and twelve.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Almost complex manifold"

1

Almost complex and complex structures. Singapore: World Scientific, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

The heat kernel Lefschetz fixed point formula for the spin-c dirac operator. Boston: Birkhauser, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

service), SpringerLink (Online, ed. The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator. Boston, MA: Springer Science+Business Media, LLC, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

McDuff, Dusa, and Dietmar Salamon. Almost complex structures. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198794899.003.0005.

Full text
Abstract:
The chapter begins with a general discussion of almost complex structures on symplectic manifolds and then addresses the problem of integrability. Subsequent sections discuss a variety of examples of Kähler manifolds, in particular those of complex dimension two, and show how to compute the Chern classes and Betti numbers of hypersurfaces in complex projective space. The last section is a brief introduction to the theory of J-holomorphic curves.
APA, Harvard, Vancouver, ISO, and other styles
5

Braid foliations in low-dimensional topology. Springer, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems. American Mathematical Society, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Almost complex manifold"

1

Audin, Michèle. "Symplectic and almost complex manifolds." In Holomorphic Curves in Symplectic Geometry, 41–74. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8508-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Angella, Daniele. "Preliminaries on (Almost-)Complex Manifolds." In Cohomological Aspects in Complex Non-Kähler Geometry, 1–63. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Angella, Daniele. "Cohomology of Almost-Complex Manifolds." In Cohomological Aspects in Complex Non-Kähler Geometry, 151–232. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huckleberry, Alan. "Subvarieties of homogeneous and almost homogeneous manifolds." In Contributions to Complex Analysis and Analytic Geometry / Analyse Complexe et Géométrie Analytique, 189–232. Wiesbaden: Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-663-14196-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bădescu, Lucian, Mauro C. Beltrametti, and Paltin Ionescu. "Almost-lines and quasi-lines on projective manifolds." In Complex Analysis and Algebraic Geometry, edited by Thomas Peternell and Frank-Olaf Schreyer, 1–28. Berlin, Boston: De Gruyter, 2000. http://dx.doi.org/10.1515/9783110806090-001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Bang-Yen, Bogdan D. Suceavǎ, and Mohammad Hasan Shahid. "Slant Geometry of Riemannian Submersions from Almost Hermitian Manifolds." In Complex Geometry of Slant Submanifolds, 101–27. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-0021-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mihai, Ion, Aliya Naaz Siddiqui, and Mohammad Hasan Shahid. "Geometry of Pointwise Slant Immersions in Almost Hermitian Manifolds." In Complex Geometry of Slant Submanifolds, 281–325. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-0021-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Behrndt, Tapio. "Generalized Lagrangian mean curvature flow in Kähler manifolds that are almost Einstein." In Complex and Differential Geometry, 65–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20300-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sikorav, Jean-Claude. "Some properties of holomorphic curves in almost complex manifolds." In Progress in Mathematics, 165–89. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8508-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Martin, Daniel. "Complex linear algebra, Almost complex manifolds." In Manifold Theory, 349–74. Elsevier, 2002. http://dx.doi.org/10.1533/9780857099631.349.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Almost complex manifold"

1

Petwal, Kailash Chandra, Vineet Bhatt, Sunil Kumar, and Anand Chauhan. "A remark on almost complex manifold with linear connections." In INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE “TECHNOLOGY IN AGRICULTURE, ENERGY AND ECOLOGY” (TAEE2022). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0105026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

TEOFILOVA, MARTA. "ALMOST COMPLEX CONNECTIONS ON ALMOST COMPLEX MANIFOLDS WITH NORDEN METRIC." In Proceedings of 9th International Workshop on Complex Structures, Integrability and Vector Fields. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814277723_0026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

APOSTOLOVA, L. N. "REAL ANALYTIC ALMOST COMPLEX MANIFOLDS." In Proceedings of the 6th International Workshop on Complex Structures and Vector Fields. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704191_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

YAMADA, AKIRA. "ON INTEGRABILITY OF ALMOST QUATERNIONIC MANIFOLDS." In Proceedings of the 6th International Workshop on Complex Structures and Vector Fields. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704191_0022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

YAMADA, AKIRA. "ON 4-DIMENSIONAL ALMOST HYPERHERMITIAN MANIFOLDS." In Proceedings of the 7th International Workshop on Complex Structures and Vector Fields. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701763_0027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fino, Anna, Adriano Tomassini, Manuel Asorey, Jesús Clemente-Gallardo, Eduardo Martínez, and José F. Cariñena. "On the Cohomology of Almost Complex Manifolds." In XVIII INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS. AIP, 2010. http://dx.doi.org/10.1063/1.3479316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

ANH, KHU QUOC, and DO DUC THAI. "ON KOBAYASHI HYPERBOLICITY OF ALMOST COMPLEX MANIFOLDS." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702548_0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

APOSTOLOVA, ŁILIA N. "REAL ANALYTICITY OF THE ALMOST KÄHLER MANIFOLDS." In Proceedings of the 7th International Workshop on Complex Structures and Vector Fields. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701763_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kruglikov, Boris S. "Characteristic distributions on 4-dimensional almost complex manifolds." In Geometry and Topology of Caustics – Caustics '02. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc62-0-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MANEV, MANCHO, and KOUEI SEKIGAWA. "SOME FOUR-DIMENSIONAL ALMOST HYPERCOMPLEX PSEUDO-HERMITIAN MANIFOLDS." In Proceedings of the 7th International Workshop on Complex Structures and Vector Fields. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701763_0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography