Academic literature on the topic 'Alpha-stable random walks'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Alpha-stable random walks.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Alpha-stable random walks"

1

Wanliss, James. "Efficiency of Price Movements in Futures Markets." Indian Economic Journal 68, no. 2 (2020): 193–206. http://dx.doi.org/10.1177/0019466220966599.

Full text
Abstract:
We study behaviour in the E-mini S&P (ES) commodity futures data market to test for violation of the efficient market hypothesis (EMH), and test for market inefficiency. We demonstrate that, on long timescales, a single scaling determines dynamics. ES returns behave in a more general manner than random walks. We find that deviations from the EMH, and the associated heavy-tailed distributions, are more common than expected, and price returns can be fitted with an alpha-stable Lévy distribution. Our results indicate that while the ES futures market operates close to the state predicted by the EMH, the observed transient deviations from this state fail to have a statistical origin consistent with a purely random geometric Brownian motion, and are better described by the fractal market hypothesis.
APA, Harvard, Vancouver, ISO, and other styles
2

Mallein, Bastien, and Bastien Mallein. "$N$-Branching random walk with $\alpha$-stable spine." Teoriya Veroyatnostei i ee Primeneniya 62, no. 2 (2017): 365–92. http://dx.doi.org/10.4213/tvp5117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mallein, B. "$N$-Branching Random Walk with $\alpha$-Stable Spine." Theory of Probability & Its Applications 62, no. 2 (2018): 295–318. http://dx.doi.org/10.1137/s0040585x97t988611.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Alpha-stable random walks"

1

Souza, Wagner Barreto de. "Passeios aleatórios estáveis em Z com taxas não-homogêneas e os processos quase-estáveis." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-19022013-151640/.

Full text
Abstract:
Seja $\\mathcal X=\\{\\mathcal X_t:\\, t\\geq0,\\, \\mathcal X_0=0\\}$ um passeio aleatório $\\beta$-estável em $\\mathbb Z$ com média zero e com taxas de saltos não-homogêneas $\\{\\tau_i^: i\\in\\mathbb Z\\}$, com $\\beta\\in(1,2]$ e $\\{\\tau_i: i\\in\\mathbb Z\\}$ sendo uma família de variáveis aleatórias independentes com distribuição marginal comum na bacia de atração de uma lei $\\alpha$-estável, com $\\alpha\\in(0,2]$. Nesta tese, obtemos resultados sobre o comportamento do processo $\\mathcal X_t$ para tempos longos, em particular, obtemos seu limite de escala. Quando $\\alpha\\in(0,1)$, o limite de escala é um processo $\\beta$-estável mudado de tempo pela inversa de um outro processo, o qual envolve o tempo local do processo $\\beta$-estável e um independente subordinador $\\alpha$-estável; chamamos o processo resultante de processo quase-estável. Para o caso $\\alpha\\in[1,2]$, o limite de escala é um ordinário processo $\\beta$-estável. Para $\\beta=2$ e $\\alpha\\in(0,1)$, o limite de escala é uma quase-difusão com medida de velocidade aleatória estudada por Fontes, Isopi e Newman (2002). Outros resultados sobre o comportamento de $\\mathcal X$ para tempos longos são envelhecimento e localização. Nós obtemos resultados de envelhecimento integrado e não-integrado para $\\mathcal X$ quando $\\alpha\\in(0,1)$. Relacionado à esses resultados, e possivelmente de interesse independente, consideramos o processo de armadilha definido por $\\{\\tau_{\\mathcal X_t}: t\\geq0\\}$, e obtemos seu limite de escala. Concluímos a tese com resultados sobre localização de $\\mathcal X$. Mostramos que ele pode ser localizado quando $\\alpha\\in(0,1)$, e que não pode ser localizado quando $\\alpha\\in(1,2]$, assim estendendo os resultados de Fontes, Isopi e Newman (1999) para o caso de passeios simples simétricos.<br>Let $\\mathcal X=\\{\\mathcal X_t:\\, t\\geq0,\\, \\mathcal X_0=0\\}$ be a mean zero $\\beta$-stable random walk on $\\mathbb Z$ with inhomogeneous jump rates $\\{\\tau_i^: i\\in\\mathbb Z\\}$, with $\\beta\\in(1,2]$ and $\\{\\tau_i: i\\in\\mathbb Z\\}$ is a family of independent random variables with common marginal distribution in the basin of attraction of an $\\alpha$-stable law with $\\alpha\\in(0,2]$. In this thesis we derive results about the long time behavior of this process, in particular its scaling limit. When $\\alpha\\in(0,1)$, the scaling limit is a $\\beta$-stable process time-changed by the inverse of another process, involving the local time of the $\\beta$-stable process and an independent $\\alpha$-stable subordinator; the resulting process may be called a quasistable process. For the case $\\alpha\\in[1,2]$, the scaling limit is an ordinary $\\beta$-stable process. For $\\beta=2$ and $\\alpha\\in(0,1)$, the scaling limit is a quasidiffusion with random speed measure studied by Fontes, Isopi and Newman (2002). Other results about the long time behavior of $\\mathcal X$ concern aging and localization. We obtain integrated and non integrated aging results for $\\mathcal X$ when $\\alpha\\in(0,1)$. Related to these results, and possibly of independent interest, we consider the trap process defined as $\\{\\tau_{\\mathcal X_t}: t\\geq0\\}$, and derive its scaling limit. We conclude the thesis with results about localization of $\\mathcal X$. We show that it localizes when $\\alpha\\in(0,1)$, and does not localize when $\\alpha\\in(1,2]$, extending results of Fontes, Isopi and Newman (1999) for the simple symmetric case.
APA, Harvard, Vancouver, ISO, and other styles
2

Laurent, Clément. "Grandes déviations pour les temps locaux d'auto-intersections de marches aléatoires." Phd thesis, Université de Provence - Aix-Marseille I, 2011. http://tel.archives-ouvertes.fr/tel-00645783.

Full text
Abstract:
Dans cette thèse on s'intéresse au temps local d'auto-intersections de marches aléatoires. Cette quantité est définie comme la norme-$p$ à la puissance $p$ du temps local de la marche. Elle regarde dans quelle mesure la trajectoire de la marche aléatoire s'intersecte. Le temps local d'auto-intersections est lié à différents modèles physiques comme les modèles de polymères ou les problèmes d'écoulements de flux en milieux stratifiés mais aussi au modèle mathématiques des marches aléatoires en paysages aléatoires. Nous nous sommes pour notre part intéressés en particulier aux grandes déviations du temps local d'auto-intersections, c'est à dire que nous regardons la probabilité que la quantité d'intersections de la marche aléatoire soit plus grande que sa moyenne. Cette question qui a été très étudiée au cours des années 2000 fait apparaitre trois cas distincts, le cas sous-critique, le cas critique et le cas sur-critique. Nous améliorons la connaissance sur cette question au travers de deux résultats complets et d'un résultat partiel. D'abord nous prouvons un principe de grandes déviations dans les cas critique et sur-critique des marches $\alpha$-stables, puis nous améliorons les échelles de déviations au cas sous-critique tout entier de la marche simple, enfin nous sommes en train d'étendre ce dernier résultat aux marches $\alpha$-stables. Par ailleurs les trois preuves sont basées sur l'utilisation d'une version due à Eisenbaum d'un théorème d'isomorphisme de Dynkin. Cette méthode d'abord introduite par Castell dans le cas critique est donc ici étendue aux autres cas. Nous avons donc réussi à unifier les différentes méthodes de preuves au travers ce théorème d'isomorphisme.
APA, Harvard, Vancouver, ISO, and other styles
3

Navarrete, Hurtado Hugo Ariel. "Electromagnetic models for ultrasound image processing." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/398235.

Full text
Abstract:
Speckle noise appears when coherent illumination is employed, as for example Laser, Synthetic Aperture Radar (SAR), Sonar, Magnetic Resonance, X-ray and Ultrasound imagery. Backscattered echoes from the randomly distributed scatterers in the microscopic structure of the medium are the origin of speckle phenomenon, which characterizes coherent imaging with a granular appearance. It can be shown that speckle noise is of multiplicative nature, strongly correlated and more importantly, with non-Gaussian statistics. These characteristics differ greatly from the traditional assumption of white additive Gaussian noise, often taken in image segmentation, filtering, and in general, image processing; which leads to reduction of the methods effectiveness for final image information extraction; therefore, this kind of noise severely impairs human and machine ability to image interpretation. Statistical modeling is of particular relevance when dealing with speckled data in order to obtain efficient image processing algorithms; but, additionally, clinical ultrasound imaging systems employ nonlinear signal processing to reduce the dynamic range of the input echo signal to match the smaller dynamic range of the display device and to emphasize objects with weak backscatter. This reduction in dynamic range is normally achieved through a logarithmic amplifier i.e. logarithmic compression, which selectively compresses large input signals. This kind of nonlinear compression totally changes the statistics of the input envelope signal; and, a closed form expression for the density function of the logarithmic transformed data is usually hard to derive. This thesis is concerned with the statistical distributions of the Log-compressed amplitude signal in coherent imagery, and its main objective is to develop a general statistical model for log-compressed ultrasound B-scan images. The developed model is adapted, making the pertinent physical analogies, from the multiplicative model in Synthetic Aperture Radar (SAR) context. It is shown that the proposed model can successfully describe log-compressed data generated from different models proposed in the specialized ultrasound image processing literature. Also, the model is successfully applied to model in-vivo echo-cardiographic (ultrasound) B-scan images. Necessary theorems are established to account for a rigorous mathematical proof of the validity and generality of the model. Additionally, a physical interpretation of the parameters is given, and the connections between the generalized central limit theorems, the multiplicative model and the compound representations approaches for the different models proposed up-to-date, are established. It is shown that the log-amplifier parameters are included as model parameters and all the model parameters are estimated using moments and maximum likelihood methods. Finally, three applications are developed: speckle noise identification and filtering; segmentation of in vivo echo-cardiographic (ultrasound) B-scan images and a novel approach for heart ejection fraction evaluation<br>El ruido Speckle aparece cuando se utilizan sistemas de iluminación coherente, como por ejemplo Láser, Radar de Apertura Sintética (SAR), Sonar, Resonancia Magnética, rayos X y ultrasonidos. Los ecos dispersados por los centros dispersores distribuidos al azar en la estructura microscópica del medio son el origen de este fenómeno, que caracteriza las imágenes coherentes con un aspecto granular. Se puede demostrar que el ruido Speckle es de carácter multiplicativo, fuertemente correlacionados y lo más importante, con estadística no Gaussiana. Estas características son muy diferentes de la suposición tradicional de ruido aditivo gaussiano blanco, a menudo asumida en la segmentación de imágenes, filtrado, y en general, en el procesamiento de imágenes; lo cual se traduce en la reducción de la eficacia de los métodos para la extracción de información de la imagen final. La modelización estadística es de particular relevancia cuando se trata con datos Speckle, a fin de obtener algoritmos de procesamiento de imágenes eficientes. Además, el procesamiento no lineal de señales empleado en sistemas clínicos de imágenes por ultrasonido para reducir el rango dinámico de la señal de eco de entrada de manera que coincida con el rango dinámico más pequeño del dispositivo de visualización y resaltar así los objetos con dispersión más débil, modifica radicalmente la estadística de los datos. Esta reducción en el rango dinámico se logra normalmente a través de un amplificador logarítmico es decir, la compresión logarítmica, que comprime selectivamente las señales de entrada y una forma analítica para la expresión de la función de densidad de los datos transformados logarítmicamente es por lo general difícil de derivar. Esta tesis se centra en las distribuciones estadísticas de la amplitud de la señal comprimida logarítmicamente en las imágenes coherentes, y su principal objetivo es el desarrollo de un modelo estadístico general para las imágenes por ultrasonido comprimidas logarítmicamente en modo-B. El modelo desarrollado se adaptó, realizando las analogías físicas relevantes, del modelo multiplicativo en radares de apertura sintética (SAR). El Modelo propuesto puede describir correctamente los datos comprimidos logarítmicamente a partir datos generados con los diferentes modelos propuestos en la literatura especializada en procesamiento de imágenes por ultrasonido. Además, el modelo se aplica con éxito para modelar ecocardiografías en vivo. Se enuncian y demuestran los teoremas necesarios para dar cuenta de una demostración matemática rigurosa de la validez y generalidad del modelo. Además, se da una interpretación física de los parámetros y se establecen las conexiones entre el teorema central del límite generalizado, el modelo multiplicativo y la composición de distribuciones para los diferentes modelos propuestos hasta a la fecha. Se demuestra además que los parámetros del amplificador logarítmico se incluyen dentro de los parámetros del modelo y se estiman usando los métodos estándar de momentos y máxima verosimilitud. Por último, tres aplicaciones se desarrollan: filtrado de ruido Speckle, segmentación de ecocardiografías y un nuevo enfoque para la evaluación de la fracción de eyección cardiaca.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography