Academic literature on the topic 'Alpheran'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Alpheran.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Alpheran"

1

BABICS, J., V. S. KONONENKO, and A. SALDAITIS. "New genus and three new species of the subfamily Xyleninae (Lepidoptera, Noctuidae)." Zootaxa 3509, no. 1 (October 8, 2012): 55. http://dx.doi.org/10.11646/zootaxa.3509.1.3.

Full text
Abstract:
A new Xyleninae (Lepidoptera, Noctuidae) genus Parvispinia gen. n. (Type-species Ammoconia parvispina Tschetverikov, 1904) and three new species Parvispinia barkama sp. n., P. geminus sp. n. and P. parilis sp. n. from China are described. Atrachea parvispina (Tschetverikov, 1904), A. cortex (Alpheraky, 1887) and A. caelestina Gyulai & Ronkay, 2001 are transferred from the genus Atrachea Warren, 1911 (Xyleninae, Apameini) to Parvispinia (Xyleninae, Xylenini); three new combinations Parvispinia parvispina (Tschetverikov, 1904) comb. n., P. cortex (Alpheraky, 1887), comb. n. and P. caelestina (Gyulai & Ronkay, 2001), comb. n. are introduced. The lectotypes for Parvispinia parvispina and P. cortex are designated. Generic checklists for Parvispinia and Atrachea are presented.
APA, Harvard, Vancouver, ISO, and other styles
2

van Alphen, S. P. J. (Bas), and R. C. (Richard) Oude Voshaar. "Screening of autism spectrum disorders in the elderly: a contribution to a psychometric approach." International Psychogeriatrics 24, no. 7 (February 20, 2012): 1187–88. http://dx.doi.org/10.1017/s1041610212000166.

Full text
Abstract:
Autism spectrum disorders (ASDs) in older adults have been neglected for a long time. As far as we know only five papers have been published. No empirical research in this area was found. Four papers were case studies of men diagnosed with an ASD (James et al., 2006; Naidu et al., 2006; van Alphen and Heijnen-Kohl, 2009; van Niekerk et al., 2011), and the fifth one was an opinion paper concerning the diagnosis of ASD in the elderly and the difficulties arising in this (Heijnen-Kohl and van Alphen, 2009).
APA, Harvard, Vancouver, ISO, and other styles
3

Marateck, Samuel L. "Alpher, Bethe, Gamow." Physics Today 61, no. 9 (September 2008): 11–12. http://dx.doi.org/10.1063/1.2982103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Harwit, Martin. "Ralph Asher Alpher." Physics Today 60, no. 12 (December 2007): 67–68. http://dx.doi.org/10.1063/1.2825079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Романов, В. В., В. А. Кожевников, C. T. Tracey, and Н. Т. Баграев. "Осцилляции де Гааза--ван Альфена в кремниевой наноструктуре в слабых магнитных полях при комнатной температуре." Физика и техника полупроводников 53, no. 12 (2019): 1647. http://dx.doi.org/10.21883/ftp.2019.12.48620.9241.

Full text
Abstract:
AbstractThe field dependence of magnetization of a silicon nanosandwich measured at room temperature in weak magnetic fields manifests de Haas–van Alphen oscillations, the behavior of which is explained under the condition of the dependence of the effective carrier mass on the external magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
6

Романов, В. В., В. А. Кожевников, and Н. Т. Баграев. "Термодинамическое описание осцилляций намагниченности кремниевой наноструктуры в слабых полях при комнатной температуре. Плотность состояний." Физика и техника полупроводников 53, no. 12 (2019): 1651. http://dx.doi.org/10.21883/ftp.2019.12.48621.9242.

Full text
Abstract:
AbstractThe observation of de Haas–van Alphen oscillations when studying the silicon nanostructure at room temperature in weak magnetic fields enables the use of thermodynamic relations to calculate the density of states at the Fermi level at critical values of external magnetic-field strengths for integer filling factors.
APA, Harvard, Vancouver, ISO, and other styles
7

WALCERZ, STANISLAW. "A METHOD OF DESCRIPTION OF MAGNETIC OSCILLATIONS IN MESOSCOPIC SYSTEMS." Modern Physics Letters B 10, no. 27 (November 20, 1996): 1333–38. http://dx.doi.org/10.1142/s0217984996001504.

Full text
Abstract:
A model for calculation of magnetic properties of small planar systems is proposed. The model combines the Onsager theory of de Haas-van Alphen oscillations with the magnetic translation group approach. The proposed model suggests a method for both theoretical and experimental investigation of magnetic properties of mesoscale systems.
APA, Harvard, Vancouver, ISO, and other styles
8

Gulyamov, G., U. I. Erkaboev, and N. Yu. Sharibaev. "The De Haas–Van Alphen effect at high temperatures and in low magnetic fields in semiconductors." Modern Physics Letters B 30, no. 07 (March 20, 2016): 1650077. http://dx.doi.org/10.1142/s0217984916500779.

Full text
Abstract:
We developed the method of calculation of the temperature dependence of the magnetic susceptibility. We considered the de Haas–van Alphen (dHvA) effect in semiconductors at high temperatures and low magnetic fields. The effect of temperature on dHvA effect is explained with respect to the temperature dependence of the thermodynamic density of states in a magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
9

Aoki, Dai, Yoshiya Homma, Yoshinobu Shiokawa, Etsuji Yamamoto, Akio Nakamura, Yoshinori Haga, Rikio Settai, and Yoshichika Ōnuki. "de Haas–van Alphen effect in." Physica B: Condensed Matter 359-361 (April 2005): 1084–86. http://dx.doi.org/10.1016/j.physb.2005.01.293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shishido, H., R. Settai, T. Kawai, H. Harima, and Y. Ōnuki. "de Haas–van Alphen effect of." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): 303–4. http://dx.doi.org/10.1016/j.jmmm.2006.10.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Alpheran"

1

Carrier, Isabelle. "Le système de valeurs d'un notaire aixois à la fin du XVIe siècle." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0005/MQ43792.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bergk, Beate. "De-Haas-van-Alphen-Untersuchungen nichtmagnetischer Borkarbidsupraleiter." Doctoral thesis, Berlin Logos-Verl, 2010. http://d-nb.info/1002009383/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bergk, Beate. "de Haas-van Alphen Untersuchungen nichtmagnetischer Borkarbidsupraleiter." Doctoral thesis, Technische Universität Dresden, 2009. https://tud.qucosa.de/id/qucosa%3A25240.

Full text
Abstract:
Im Rahmen dieser Doktorarbeit werden de Haas-van Alphen-Untersuchungen an den nichtmagnetischen Borkarbidsupraleitern LuNi2B2C und YNi2B2C präsentiert. Aus den Quantenoszillationen in der normalleitenden Phase in Kombination mit Bandstrukturrechnungen konnten Informationen über die verzweigte Fermiflächenarchitektur und über die Elektron-Phonon-Kopplung der Borkarbide gewonnen werden. Die Kopplung ist stark anisotrop und fermiflächenabhängig. Dies spricht für einen Mehrbandmechanismus der Supraleitung in der Materialklasse. Zusätzlich konnten de Haas-van-Alphen-Oszillationen mehrerer Fermiflächen unterhalb von Bc2 tief in der Shubnikov-Phase beobachtet werden. Das Verhalten dieser Oszillationen lässt sich nicht mit bisher bekannten Theorien beschreiben. Allerdings weist das Bestehen der Oszillationen weit unterhalb von Bc2 auf ein Bestehen von elektronischen Zuständen in der Shubnikov-Phase hin.
APA, Harvard, Vancouver, ISO, and other styles
4

BOUFELFEL, ALI. "DE HAAS - VAN ALPHEN EFFECT IN QUENCHED PLATINUM CRYSTALS." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184187.

Full text
Abstract:
The oscillatory de Haas-van Alphen (DHVA) magnetization has been studied in Pt crystals containing more than 100 ppm vacancies. Magnetic fields as high as 75 kG were used. The oscillations were observed at temperatures as low as 0.45 k, and found to be strongly attenuated by the vacancies in this concentration range. The emphasis of this work is on the measurement of this attenuation for the purpose of studying conduction electron scattering due to single vacancies. Dingle (scattering) temperatures due to vacancies are reported for four cyclotron orbits with the field in a (110) plane, along with a new measurement of the cyclotron effective mass (m* = 2.31 ± 0.03) for the electron orbit 33° away from <100>. Vacancies were generated by quenching Pt single crystals from temperatures as high as 1730 °C in air, using a technique which minimizes the induced strain. The vacancy contribution to the electron scattering rate was separated by measuring the Dingle temperature in both quenched and annealed specimens which had been subjected to the same quenching process. The results suggest that there is only a moderate variation in this scattering rate over the s-p-like electron sheet of the Fermi surface. However, the scattering rate for the d-like open hole sheet, which contacts the Brillouin zone, is about 49% larger than that for the electron sheet. This anisotropy is attributed mainly to the lattice distortion around a vacancy and to the difference between the hole and electron wave-function symmetries.
APA, Harvard, Vancouver, ISO, and other styles
5

Miller, Paul. "De Haas - van Alphen oscillation in the vortex state." Thesis, University of Bristol, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goh, S. K. "Probing Mott delocalisation using the de Haas-van Alphen effect." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599463.

Full text
Abstract:
The physics of Mott delocalisation is investigated from the perspective of Fermiology through a series of high resolution de Haas-van Alphen experiments. Two systems in which some or all electrons can be forced to Mott localise by an experimental tuning parameter were chosen. The first system is CeRh1-xCoxIn5 where the 4f electron of CeRhIn5 can be driven into a delocalised state by Co substitution. The Fermi surface of CeRh1-xCoxIn5 was studied for six different values of x. By measuring the angular dependence of de Haas-van Alphen frequencies, a Fermi surface sheet with f-electron character was observed to undergo an abrupt change in topology as x is varied. This reconstruction does not occur at the quantum critical concentration xc, where antiferromagnetism is suppressed to T = 0. Instead this sudden change occurs well below xc, deep inside the antiferromagnetic state. Across all concentrations, the quasiparticle effective mass of this sheet does not diverge, suggesting this critical behaviour is not exhibited equally on all parts of the Fermi surface. The second system of interest is the Mott insulator Ca2RuO4, which can be metallised at 0.6 GPa. A completely new setup, utilising a 10-turn signal pick-up coil in an anvil cell for field modulation measurements, was developed for performing de Haas-van Alphen experiments under pressure. This novel setup thus has the potential to reach much higher pressures than the existing piston-cylinder type setup, opening up a much bigger phase space for future exploration in materials physics. The newly developed method was tested using Sr2RuO4 and the results are in excellent agreement with a broad body of literature. Subsequently, the method was applied to study the metallic state of Ca2RuO4. De Haas-van Alphen signals were successfully recorded at high pressure using both the cryomagnetic system in Cambridge up to 18 T and a resistive magnet in National High Magnetic Field Laboratory in Tallahassee up to 31 T. Comparisons to band structure calculations were made.
APA, Harvard, Vancouver, ISO, and other styles
7

Bintley, D. "Unconventional superconductivity studied by the de Haas van Alphen effect." Thesis, University of Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Haworth, Christopher. "The de Haas-van Alphen effect and the superconducting state." Thesis, University of Bristol, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Corcoran, Robin. "The de Haas van Alphen effect in type II superconductors." Thesis, University of Bristol, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fletcher, Jonathon David. "Penetration depth and de Haas - Van Alphen studies of magnesium diboride." Thesis, University of Bristol, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.495614.

Full text
Abstract:
The recently discovered superconductor MgB2 has the highest critical-temperature (Tc) of any non-cuprate superconductor. It is also the first clear example of two gap superconductor. In this material, the presence of significant gap anisotropy, combined with Fermi surface sheets of different anisotropy leads to many unusual properties in the superconducting state. This thesis includes a study of the anisotropy in the London penetration depth, and that of Hc2 in MgB2. Unusually, these are both temperature dependent due to multi-gap effects.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Alpheran"

1

Frits, Gierstberg, ed. Oscar van Alphen. Haarlem: Focus Publishing, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sondhelm, Sonia A. The de Haas-van Alphen effect in Gadolinium. Birmingham: University of Birmingham, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Duin, Menno van. Lessen in crisisbeheersing.: Dilemma's uit het schietdrama in Alphen aan den Rijn. Den Haag: Boom Lemma, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tasman, Ron. The Earthenware and Faience Factory Rijnland and the Tile House, two potteries in Alphen on the Rhine. [Rotterdam]: Optima Publishers, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Winsen, G. H. Van. Solar Heated Swimming Pool De Thermen' at Alphen Aan Den Rijn. European Communities, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Deruelle, Nathalie, and Jean-Philippe Uzan. The Lambda-CDM model of the hot Big Bang. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0059.

Full text
Abstract:
This chapter introduces the Lambda-CDM (cold dark matter) model. In 1948, under the impetus of George Gamow, Robert Hermann, Ralph Alpher, and Hans Bethe in particular, relativistic cosmology entered the second phase of its history. In this phase, physical processes, in particular, nuclear and atomic processes, are taken into account. This provides two observational tests of the model: primordial nucleosynthesis, which explains the origin of light nuclei, and the existence of the cosmic microwave background, and it establishes the fact that the universe has a thermal history. Study of the large-scale structure of the universe then indicates the existence of dark matter and a nonzero cosmological constant. This model, known as the Λ‎CDM model, is the standard model of contemporary cosmology.
APA, Harvard, Vancouver, ISO, and other styles
7

Kragh, Helge. Physics and Cosmology. Edited by Jed Z. Buchwald and Robert Fox. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199696253.013.30.

Full text
Abstract:
This article considers the role of physics in transforming cosmology into a research field which relies heavily on fundamental physical knowledge. It begins with an overview of astrophysics and the state of physical cosmology prior to the introduction of relativity, followed by a discussion of Albert Einstein’s application of his new theory of gravitation to cosmology. It then examines the development of a theory about the possibility of an expanding universe, citing the work of such scientists as Edwin Hubble, Alexander Friedmann, Georges Lemaître, and George Gamow; the emergence of the field of nuclear archaeology to account for the origins of the early universe; and the controversy sparked by the steady-state theory. It also describes the discovery of a cosmic microwave background of the kind that Alpher and Herman had predicted in 1948 before concluding with a review of modern cosmological hypotheses such as the idea of ‘multiverse’.
APA, Harvard, Vancouver, ISO, and other styles
8

Horing, Norman J. Morgenstern. Quantum Mechanical Ensemble Averages and Statistical Thermodynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0006.

Full text
Abstract:
Chapter 6 introduces quantum-mechanical ensemble theory by proving the asymptotic equivalence of the quantum-mechanical, microcanonical ensemble average with the quantum grand canonical ensemble average for many-particle systems, based on the method of Darwin and Fowler. The procedures involved identify the grand partition function, entropy and other statistical thermodynamic variables, including the grand potential, Helmholtz free energy, thermodynamic potential, Gibbs free energy, Enthalpy and their relations in accordance with the fundamental laws of thermodynamics. Accompanying saddle-point integrations define temperature (inverse thermal energy) and chemical potential (Fermi energy). The concomitant emergence of quantum statistical mechanics and Bose–Einstein and Fermi–Dirac distribution functions are discussed in detail (including Bose condensation). The magnetic moment is derived from the Helmholtz free energy and is expressed in terms of a one-particle retarded Green’s function with an imaginary time argument related to inverse thermal energy. This is employed in a discussion of diamagnetism and the de Haas-van Alphen effect.
APA, Harvard, Vancouver, ISO, and other styles
9

Hermans, A. J. Proceedings 13th International Workshop on Water Waves and Floating Bodies: 29 March-1 April 1998 Alphen Aan Den Rijn, the Netherlands. Delft Univ Pr, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Implementation And Application Of Functional Languages 22nd International Symposium Ifl 2010 Alphen Aan Den Rijn The Netherlands September 13 2010 Revised Selected Papers. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Alpheran"

1

Wiedenstried, Holger E. "Alphen, Hieronymus van." In Kindlers Literatur Lexikon (KLL), 1. Stuttgart: J.B. Metzler, 2020. http://dx.doi.org/10.1007/978-3-476-05728-0_4232-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fujita, Shigeji, and Kei Ito. "De Haas–Van Alphen Oscillations." In Quantum Theory of Conducting Matter, 133–49. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-74103-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, J. L., C. M. Fowler, B. L. Freeman, W. L. Hults, J. C. King, and F. M. Mueller. "de Haas-van Alphen Effect in YBCO." In Advances in Superconductivity III, 231–35. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68141-0_49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kido, G., K. Komorita, H. Katayama-Yoshida, T. Takahashi, Y. Kitaoka, K. Ishida, and T. Yoshitomi. "de Haas-van Alphen Measurement in YBa2Cu3O7." In Advances in Superconductivity III, 237–40. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68141-0_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kido, G., K. Komorita, H. Katayama-Yoshida, T. Takahashi, Y. Kitaoka, K. Ishida, and T. Yoshitomi. "De Haas-van Alphen Effect in YBa2Cu3O7." In Springer Proceedings in Physics, 169–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77154-5_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zondergeld, Rein A. "Alphen, Hieronymus van: Proeve van kleine gedigten voor kinderen." In Kindlers Literatur Lexikon (KLL), 1–2. Stuttgart: J.B. Metzler, 2020. http://dx.doi.org/10.1007/978-3-476-05728-0_4233-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Romanov, Vladimir, Vadim Kozhevnikov, Vladimir Grigorev, and Mariia Filianina. "The Statistical Description of de Haas—van Alphen Oscillations in Silicon Nanosandwich." In Springer Proceedings in Physics, 37–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58868-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bakker, F. E., and A. P. Thijssen. "An Environmental Housing Design for Ecolonia, Alphen Aan de Rijn, the Netherlands." In Architecture and Urban Space, 359–64. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-017-0778-7_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Eisenstein, J. P., H. L. Störmer, V. Narayanamurti, and A. C. Gossard. "High Precision de Haas-Van Alphen Measurements on a Two-Dimensional Electron Gas." In Proceedings of the 17th International Conference on the Physics of Semiconductors, 309–12. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4615-7682-2_66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Winzer, K., and K. Krug. "Electronic Structure of Y and Lu Borocarbides Determined by de Haas—van Alphen Experiments." In Rare Earth Transition Metal Borocarbides (Nitrides): Superconducting, Magnetic and Normal State Properties, 63–69. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0763-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Alpheran"

1

Yoshinaga, Takeo, Jun Kaneyoshi, Eiichi Matsuoka, Hisashi Kotegawa, Hideki Tou, Ai Nakamura, Dai Aoki, Hisatomo Harima, and Hitoshi Sugawara. "de Haas–van Alphen Effect in NdTi2Al20." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019). Journal of the Physical Society of Japan, 2020. http://dx.doi.org/10.7566/jpscp.30.011116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Omasa, Kazuyuki, Eiichi Matsuoka, Dai Aoki, and Hitoshi Sugawara. "de Haas–van Alphen Effect in SmTi2Al20." In Proceedings of J-Physics 2019: International Conference on Multipole Physics and Related Phenomena. Journal of the Physical Society of Japan, 2020. http://dx.doi.org/10.7566/jpscp.29.015007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

FUJITA, S., and D. L. MORABITO. "ON THE DE HAAS-VAN ALPHEN OSCILLATION IN 2D." In Proceedings of the International Workshop. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709592_0019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Omasa, Kazuyuki, Eiichi Matsuoka, Hisashi Kotegawa, Hideki Tou, Ai Nakamura, Yoshiya Homma, Dai Aoki, et al. "Single-crystal Growth and de Haas–van Alphen Effect in CeIr2." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019). Journal of the Physical Society of Japan, 2020. http://dx.doi.org/10.7566/jpscp.30.011130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Omasa, Kazuyuki, Eiichi Matsuoka, Hisashi Kotegawa, Hideki Tou, Ai Nakamura, Yoshiya Homma, Dai Aoki, et al. "Single-crystal Growth and de Haas–van Alphen Effect in LaIr2." In Proceedings of J-Physics 2019: International Conference on Multipole Physics and Related Phenomena. Journal of the Physical Society of Japan, 2020. http://dx.doi.org/10.7566/jpscp.29.012012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ota, Jouji, Wataru Iha, Shoya Kawakatsu, Masashi Kakihana, Dai Aoki, Ai Nakamura, Jun Gouchi, et al. "De Haas–van Alphen Effect and Fermi Surface Properties of Ti2Sn3." In Proceedings of J-Physics 2019: International Conference on Multipole Physics and Related Phenomena. Journal of the Physical Society of Japan, 2020. http://dx.doi.org/10.7566/jpscp.29.013007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Iha, Wataru, Shinya Matsuda, Fuminori Honda, Tetsuya Takeuchi, Jun Gouchi, Yoshiya Uwatoko, Hisatomo Harima, Masato Hedo, Takao Nakama, and Yoshichika Ōnuki. "De Haas–van Alphen Effect and Fermi Surface Properties of Antiferromagnet EuSnP." In Proceedings of J-Physics 2019: International Conference on Multipole Physics and Related Phenomena. Journal of the Physical Society of Japan, 2020. http://dx.doi.org/10.7566/jpscp.29.012002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nagashima, Souta, Taihei Nishiwaki, Akira Otani, Masahito Sakoda, Eiichi Matsuoka, Hisatomo Harima, and Hitoshi Sugawara. "De Haas–Van Alphen Effect in RTi2Al20(R = La, Pr, and Sm)." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.3.011019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Matsumoto, Yuji, Yoshinori Haga, Naoyuki Tateiwa, Haruyoshi Aoki, Noriaki Kimura, Tatsuma D. Matsuda, Etsuji Yamamoto, Zachary Fisk, and Hiroshi Yamagami. "Single-Crystal Growth and de Haas–van Alphen Effect Study of ThRu2Si2." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.3.011096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Singha, Ratnadwip, and Prabhat Mandal. "Fermi surface properties of NbAs2 studied by de Haas-van Alphen oscillation." In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029000.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Alpheran"

1

Onuki, Y., A. Umezawa, W. K. Kwok, G. W. Crabtree, M. Nishihara, T. Yamazaki, T. Omi, and T. Komatsubara. High field magnetoresistance and de Haas-van Alphen effect in antiferromagnetic PrB/sub 6/ and NdB/sub 6/. Office of Scientific and Technical Information (OSTI), August 1987. http://dx.doi.org/10.2172/6419453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography