Academic literature on the topic 'Alpine Tethys'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Alpine Tethys.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Alpine Tethys"

1

Rampone, Elisabetta, and Alessio Sanfilippo. "The Heterogeneous Tethyan Oceanic Lithosphere of the Alpine Ophiolites." Elements 17, no. 1 (2021): 23–28. http://dx.doi.org/10.2138/gselements.17.1.23.

Full text
Abstract:
The Alpine–Apennine ophiolites are lithospheric remnants of the Jurassic Alpine Tethys Ocean. They predominantly consist of exhumed mantle peridotites with lesser gabbroic and basaltic crust and are locally associated with continental crustal material, indicating formation in an environment transitional from an ultra-slow-spreading seafloor to a hyperextended passive margin. These ophiolites represent a unique window into mantle dynamics and crustal accretion in an ultra-slow-spreading extensional environment. Old, pre-Alpine, lithosphere is locally preserved within the mantle sequences: these have been largely modified by reaction with migrating asthenospheric melts. These reactions were active in both the mantle and the crust and have played a key role in creating the heterogeneous oceanic lithosphere in this branch of the Mesozoic Western Tethys.
APA, Harvard, Vancouver, ISO, and other styles
2

Puglisi, Diego. "Tectonic evolution of the Sicilian Maghrebian Chain inferred from stratigraphic and petrographic evidences of Lower Cretaceous and Oligocene flysch." Geologica Carpathica 65, no. 4 (2014): 293–305. http://dx.doi.org/10.2478/geoca-2014-0020.

Full text
Abstract:
Abstract The occurrence of a Lower Cretaceous flysch group, cropping out from the Gibraltar Arc to the Balkans with a very similar structural setting and sedimentary provenance always linked to the dismantling of internal areas, suggests the existence of only one sedimentary basin (Alpine Tethys s.s.), subdivided into many other minor oceanic areas. The Maghrebian Basin, mainly developed on thinned continental crust, was probably located in the westernmost sector of the Alpine Tethys. Cretaceous re-organization of the plates triggered one (or more) tectonic phases, well recorded in almost all the sectors of the Alpine Tethys. However, the Maghrebian Basin seems to have been deformed by Late- or post-Cretaceous tectonics, connected with a “meso-Alpine” phase (pre-Oligocene), already hypothesized since the beginning of the nineties. Field geological evidence and recent biostratigraphic data also support this important meso- Alpine tectonic phase in the Sicilian segment of the Maghrebian Chain, indicated by the deformations of a Lower Cretaceous flysch sealed by Lower Oligocene turbidite deposits. This tectonic development is emphasized here because it was probably connected with the onset of rifting in the southern paleomargin of the European plate, the detaching of the so-called AlKaPeCa block (Auct.; i.e. Alboran + Kabylian + Calabria and Peloritani terranes) and its fragmentation into several microplates. The subsequent early Oligocene drifting of these microplates led to the progressive closure of the Maghrebian Basin and the opening of new back-arc oceanic basins, strongly controlled by extensional processes, in the western Mediterranean (i.e. Gulf of Lion, Valencia Trough, Provençal Basin and Alboran Sea).
APA, Harvard, Vancouver, ISO, and other styles
3

Tartarotti, Paola, Silvana Martin, Andrea Festa, and Gianni Balestro. "Metasediments Covering Ophiolites in the HP Internal Belt of the Western Alps: Review of Tectono-Stratigraphic Successions and Constraints for the Alpine Evolution." Minerals 11, no. 4 (2021): 411. http://dx.doi.org/10.3390/min11040411.

Full text
Abstract:
Ophiolites of the Alpine belt derive from the closure of the Mesozoic Tethys Ocean that was interposed between the palaeo-Europe and palaeo-Adria continental plates. The Alpine orogeny has intensely reworked the oceanic rocks into metaophiolites with various metamorphic imprints. In the Western Alps, metaophiolites and continental-derived units are distributed within two paired bands: An inner band where Alpine subduction-related high-pressure (HP) metamorphism is preserved, and an outer band where blueschist to greenschist facies recrystallisation due to the decompression path prevails. The metaophiolites of the inner band are hugely important not just because they provide records of the prograde tectonic and metamorphic evolution of the Western Alps, but also because they retain the signature of the intra-oceanic tectono-sedimentary evolution. Lithostratigraphic and petrographic criteria applied to metasediments associated with HP metaophiolites reveal the occurrence of distinct tectono-stratigraphic successions including quartzites with marbles, chaotic rock units, and layered calc schists. These successions, although sliced, deformed, and superposed in complex ways during the orogenic stage, preserve remnants of their primary depositional setting constraining the pre-orogenic evolution of the Jurassic Tethys Ocean.
APA, Harvard, Vancouver, ISO, and other styles
4

Oszczypko, Nestor, Andrzej Ślączka, Marta Oszczypko-Clowes, and Barbara Olszewska. "Where was the Magura Ocean?" Acta Geologica Polonica 65, no. 3 (2015): 319–44. http://dx.doi.org/10.1515/agp-2015-0014.

Full text
Abstract:
Abstract In the Late Jurassic to Early Cretaceous palaeogeography of the Alpine Tethys the term Ocean is used for different parts of these sedimentary areas: eg. Ligurian – Piedmont and Penninic, Magura, Pieniny, Valais and Ceahlau-Severins oceans. The Magura Ocean occupied the more northern position in the Alpine-Carpathian arc. During the Late Cretaceous–Paleogene tectono-sedimentary evolution the Magura Ocean was transformed into several (Magura, Dukla, Silesian, sub-Silesian and Skole) basins and intrabasinal source area ridges now incorporated into the Outer Western Carpathians.
APA, Harvard, Vancouver, ISO, and other styles
5

Piccardo, Giovanni B., and Luisa Guarnieri. "Alpine peridotites from the Ligurian Tethys: an updated critical review." International Geology Review 52, no. 10-12 (2010): 1138–59. http://dx.doi.org/10.1080/00206810903557829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ricou, L. E., J. Dercourt, J. Geyssant, C. Grandjacquet, C. Lepvrier, and B. Biju-Duval. "Geological constraints on the alpine evolution of the Mediterranean Tethys." Tectonophysics 123, no. 1-4 (1986): 83–122. http://dx.doi.org/10.1016/0040-1951(86)90194-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kyriakopoulos, K., V. Karakitsios, M. Tsipoura-Vlachou, G. Barbera, P. Mazzoleni, and D. Puglisi. "PETROLOGICAL CHARACTERS OF THE EARLY CRETACEOUS BOEOTHIAN FLYSCH, (CENTRAL GREECE)." Bulletin of the Geological Society of Greece 43, no. 2 (2017): 663. http://dx.doi.org/10.12681/bgsg.11229.

Full text
Abstract:
This paper is aimed to study the petrographic characters of the Boeothian Flysch, an Early Cretaceous turbidite deposit which marks the boundary between the External/Internal Hellenides in central-southern Greece, in order to define a preliminary palaeogeographic reconstruction of the Pindos segment of the Alpine Tethys. The Boeothian Flysch is mainly made up by basal conglomerates and arenaceous-pelitic lithofacies, locally interlayered with Calpionellid micrite limestones. This formation is here supposed to belong to the Early Cretaceous flysch family, which marks the contact between the internal and external areas along all the western and central European Alpine Chains for more than 7,000 km, from the Gibraltar Arc to the Balkans via the Calabria-Peloritani Arc. Provenance of these flysch is commonly connected to internal areas, mainly made up by Hercynian crystalline basements and, locally, by ophiolitic complexes. The petrographic data obtained from representative sandstones of the Boeothian Flysch suggest a provenance from internal sources, formed by a Jurassic carbonate platform, metamorphic basements and by ophiolitic complexes, which can be identified with the Pelagonian Terranes (Auct.). An Early Cretaceous uplift and rejuvenation processes, probably related to the late Cretaceous tectogenesis, widely recorded in almost all the central-western Alpine Tethis, affected these internal domains with consequent production of abundant detrital supply in the innermost sector of the Pindos Ocean, whose external margin was bounded by the Parnassos microcontinent.
APA, Harvard, Vancouver, ISO, and other styles
8

McCarthy, Anders, Julie Tugend, and Geoffroy Mohn. "Formation of the Alpine Orogen by Amagmatic Convergence and Assembly of Previously Rifted Lithosphere." Elements 17, no. 1 (2021): 29–34. http://dx.doi.org/10.2138/gselements.17.1.29.

Full text
Abstract:
The tectonic and magmatic characteristics of the Alps and Pyrenees during convergence are quite distinct from characteristics associated with classic Benioff-type oceanic subduction. From the initiation of subduction at passive margins until the onset of continental collision, the closure of the Western Tethys never produced a long-lived magmatic arc. This is a consequence of the 3-D architecture of the Western Tethys (a series of hyper-thinned basins and continental blocks) and its narrow width (<500–700 km) prior to convergence. Subduction primarily involved the slow and amagmatic subduction of a narrow domain of dry lithospheric mantle. This type of congested Ampferer subduction led to the sequential and coherent accretion of inherited rifted domains which today form the Alpine and Pyrenean orogens.
APA, Harvard, Vancouver, ISO, and other styles
9

MAROTTA, ANNA MARIA, MANUEL RODA, KATYA CONTE, and MARIA IOLE SPALLA. "Thermo-mechanical numerical model of the transition from continental rifting to oceanic spreading: the case study of the Alpine Tethys." Geological Magazine 155, no. 2 (2016): 250–79. http://dx.doi.org/10.1017/s0016756816000856.

Full text
Abstract:
AbstractWe develop a two-dimensional thermo-mechanical numerical model in which the formation of oceanic crust and serpentinite due to the hydration of the uprising mantle peridotite has been implemented, with the aim of discussing the behaviour of the lithosphere of the Alps and Northern Apennines during the transition from continental rifting to ocean spreading of the Alpine Tethys. The predictions of the model are compared with natural data related to the Permian–Triassic high-temperature – low-pressure (HT-LP) metamorphism affecting the continental lithosphere and data from the JurassicP–Tevolution of the oceanic lithosphere from the Alps and the Northern Apennines. Our analysis indicates that a thinned continental crust, an ocean–continent transition zone and an oceanic lithosphere characterize the final structure of the system in a poor magma rift pre-Alpine configuration. We also find that mantle serpentinization starts before crustal break-up and that denudation occurs before ocean spreading. The mantle denudation starts several million years before the gabbros/basalt formation, generating an ocean–continent transition zone from the passive continental margin to the oceanic lithosphere of size 160–280 km. The comparative analysis shows that the extension of a hot and weak lithosphere, which promotes the development of hyperextended Alpine margins, better agrees with the natural data. Finally, our comparative analysis supports the hypothesis that the lithospheric extension preceding the opening of the Alpine Tethys did not start in a stable continental lithosphere, but developed by recycling part of the old Variscan collisional suture.
APA, Harvard, Vancouver, ISO, and other styles
10

De Togni, Marcello, Marco Gattiglio, Stefano Ghignone, and Andrea Festa. "Pre-Alpine Tectono-Stratigraphic Reconstruction of the Jurassic Tethys in the High-Pressure Internal Piedmont Zone (Stura di Viù Valley, Western Alps)." Minerals 11, no. 4 (2021): 361. http://dx.doi.org/10.3390/min11040361.

Full text
Abstract:
We present a detailed description of the tectono-stratigraphic architecture of the eclogite-facies Internal Piedmont Zone (IPZ) metaophiolite, exposed in the Lanzo Valleys (Western Alps), which represents the remnant of the Jurassic Alpine Tethys. Seafloor spreading and mantle exhumation processes related to the Alpine Tethys evolution strongly conditioned the intra-oceanic depositional setting, which resulted in an articulated physiography and a heterogeneous stratigraphic succession above the exhumed serpentinized mantle. “Complete” and “reduced” successions were recognized, reflecting deposition in morphological or structural lows and highs, respectively. The “complete” succession consists of quartzite, followed by marble and calcschist. The “reduced” succession differs for the unconformable contact of the calcschist directly above mantle rocks, lacking quartzite and gray marble. The serpentinite at the base of this succession is intruded by metagabbro and characterized at its top by ophicalcite horizons. Mafic metabreccia grading to metasandstone mark the transition between the “complete” and “reduced” successions. The character of the reconstructed succession and basin floor physiography of the IPZ metaophiolite is well comparable with the Middle Jurassic–Late Cretaceous succession of both the Queyras Complex (External Piedmont Zone) and the Internal Ligurian Units (Northern Apennines) and with modern slow-spreading mid-ocean ridges.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Alpine Tethys"

1

Raven, Katy Jane. "The nature of 'oceanic' basins trapped within the Alpine-Himalayan Belt, and their relationship to Tethys." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Claudel, Marie-Elisabeth. "Reconstitution paléogéographique du domaine briançonnais au Mésozoïque : ouvertures océaniques et raccourcissements croisés." Phd thesis, Grenoble 1, 1999. http://tel.archives-ouvertes.fr/tel-00509949.

Full text
Abstract:
La zone briançonnaise est issue d'un domaine de la marge passive de la Téthys ligure, qui a émergé au Jurassique. Elle est actuellement située au cœur de l'arc alpin entre la zone externe et les autres zones internes. L'évolution particulière de ce domaine pose le problème de sa localisation paléogéographique au sein de la marge passive. En effet, les séries briançonnaises des Alpes occidentales (Sud et du Pelvoux) montrent les traces de déformations anté-alpines antérieures ou postérieures au rifting jurassique de la Téthys ligure. L'analyse des marqueurs structuraux (failles normales, filons, hard-ground, ...) contenus dans la sédimentation associée aux études classiques de sédimentologie, stratigraphie et de micropaléontologie permettent d'établir une chronologie précise des évènements extensifs, de caractériser ces paléostructures et de mettre au jour l'évolution du domaine briançonnais tout au long du Mésozoïque et du Cénozoïque. Des variations d'épaisseurs de l'unité lithologique des « Calcaires rubanés » du Ladinien inférieur impliquent une subsidence différentielle d'origine tectonique (période antérift). Des phénomènes de dissociation trouvés à la limite Ladinien-Carnien pourraient correspondre à des ébranlements sismiques contemporains d'une structure syn-rift précoce de la plate-forme triasique. A partir de l'analyse diagénétique d'échantillons prélevés au niveau de la surface d'émersion, il semble que la lacune débute au Sinémurien supérieur sur l'aire de Peyre-Haute. Le rifting téthysien comprendrait 2 phases : au Carnien et au Sinémurien (surrection). En Briançonnais, 2 aires de subsidence distinctes discernables sur des courbes de subsidence ont donc été mises en évidence pour cette période. L'effondrement « post-rift » de la pate-forme briançonnaise au Bathonien supérieur est suivi par une nouvelle structuration au Callovien-Oxfordien créant de nouvelles failles [Claudel et al., 1997]. Les périodes d'activité tectonique du Crétacé sont surtout marquées par des réactivations de failles : à l'Aptien-Albien et au Turonien supérieur. Les brèches du Campanien-Maastrichtien pourraient s'être déposées en contexte de convergence. L'analyse structurale montre l'existence de chevauchements hors-séquences au sein de l'édifice de nappes briançonnaises : la direction de chevauchement des charriages éocènes seraient obliques (vers le nord ?) par rapport aux charriages vers l'ouest oligocènes. La 1ère mise en place de nappes (Peyre-Haute et Prorel) est superficielle et marquée par des olistostromes (Eychauda, Queyrelets). L'analyse paléomagnétique préliminaire [Thomas et al., soumis] suggère une rotation anti-horaire d'une quarantaine de degrés postérieure à toutes les phases de plissements post-nappes de l'ensemble de la zone briançonnaise étudiée. Le dépliage des unités tectoniques, prenant en compte la rotation et les transports vers le nord, a permis de proposer une reconstitution paléogéographique régionale qui replace le domaine briançonnais au sein du Sud Est de la France dans le prolongement est de la Provence jusqu'au Jurassique supérieur. Replacées dans le contexte géodynamique globale, ces structurations successives croisées au niveau du domaine briançonnais pourraient résulter d'interférences entre les cycles de rifting-ouverture océanique suivants décalés dans l'espace et dans le temps [Claudel & Dumont, soumis] : système Halstatt-Méliata au Ladinien inférieur ; système Atlantique Central-Téthys ligure au Carnien-Lias ; système Atlantique Nord-Golfe de Gascogne-domaine valaisan au Callovien-Oxfordien. La plate-forme triasique enregistrerait tout d'abord l'écho du rifting de l'océan Halstatt au Ladinien, puis subit le 1er stade du rifting téthysien dès le Ladinien supéruer-Carnien. La phase principale survenant au Lias se traduit en domaine briançonnais par une surrection ; ce qui permet d'admettre que ce domaine constituait l'épaulement du rift téthysien [Stampfi, 1993]. Après l'ouverture initiale de l'océan Téthysien ligure, le rifting valaisan oblique par rapport à la ride médio-téthysienne continue de structurer le domaine briançonnais situé dès lors à l'intersection de 2 zones de rupture crustale. Le Wombat plateau au large de l'Australie a subit une évolution de ce type et fournit une image analogue à celle proposée pour le domaine briançonnais au Mésozoïque.
APA, Harvard, Vancouver, ISO, and other styles
3

Hornung, Thomas. "The Carnian crisis in the Tethys Realm multistratigraphic studies and palaeoclimate constraints." Saarbrücken VDM Verlag Dr. Müller, 2007. http://d-nb.info/991343743/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grand, Thierry. "Exemples de structures en extension et de leur influence sur les déformations postérieures dans le domaine téthysien (Bourg d'Oisans, Alpes occidentales françaises et Troodos, Chypre)." Phd thesis, Grenoble 1, 1987. http://tel.archives-ouvertes.fr/tel-00514374.

Full text
Abstract:
La mesure systématique dans les plans striés et leur traitement statistique par la méthode des dièdres droits ont permis de mettre en évidence, dans la région de Bourg-d'Oisans, 3 épisodes d'extension, antérieurs aux phénomènes alpins. Des critères stratigraphiques permettent de préciser leur âge, soit : • au Trias, direction d'extension N-S, • au Lias inférieur p.p., direction d'extension NE-SW, • au Lias supérieur, direction d'extension W.NW-E.SE. Ces faits sont à relier à la structuration de la marge européenne de la Téthys ligure, le bassin de Bourg d'Oisans étant considéré comme la couverture sédimentaire d'un bloc basculé décakilométrique. Le paléochamp de contraintes au Lias inférieur peut-être considéré comme le résultat d'une déviation de la contrainte générale en régime décrochant, du fait de l'existence d'accidents antérieurs hérités des phases tardi-hercyniennes. Les émissions de basaltes subalcalins (spilites) du sommet du Trias ont déjà été contrôlées par cette tectonique décrochante. Selon cette interprétation, le changement tectonique entre le sommet du Trias-Lias inférieur et le Lias supérieur s'est effectué par une simple permutation des contraintes D1 et D2 ; la contrainte minimale D3 étant restée constante en direction durant ces 2 épisodes. Ceci nous conduit à considérer que la réorganisation tectonique principale se situe au sommet du Trias et correspond donc au début du rifting dans cette région. L'évolution géodynamique de la région de Bourg-d'Oisans durant le Mésozoïque est similaire à celle d'autres systèmes de rift, comme le fossé rhénan et le Golfe de Suez. Les phases compressives alpines ont aussi été caractérisées. Leurs effets ont été fortement influencés par les structures héritées des épisodes distensifs mésozoïques. L'étude des structures syn-ophiolitiques dans le massif du Troodos à Chypre a permis d'individualiser une phase d'extension syn-ophiolitique dirigée W.NW-E.SE et des épisodes de déformation post-ophiolitiques (compression N160 et extensions récentes) fortement influencés par les structures antérieures.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Alpine Tethys"

1

Sinha, Anshu K. Geodynamic Domains in the Alpine-himalayan Tethys. Oxford & IBH Pub., 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

(Editor), Anshu K. Sinha, F. P. Sassi (Editor), and D. Papanikolaou (Editor), eds. Geodynamic Domains in Alpine-Himalaya Thetys. A.A. Balkema, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

A, Ziegler Peter, and Horvath Frank, eds. Structure and prospects of Alpine basins and forelands. Éditions du Muséum, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Geodynamic domains in Alpine-Himalayan Tethys: A publication of IGCP Project 276. A.A. Balkema, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Alpine Tethys"

1

Tollon, Francis, Jean-Jacques Bache, and Pierre Courjault-Radé. "The Economic Gold Deposits of Southeast Asia, the Caraibes and the Alpine-Himalayan Fold Belts." In The Tethys Ocean. Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1558-0_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

De Wever, Patrick. "Radiolarians, Radiolarites, and Mesozoic Paleogeography of the Circum-Mediterranean Alpine Belts." In Siliceous Deposits of the Tethys and Pacific Regions. Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3494-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Papanikolaou, Dimitrios I. "Organization and Evolution of the Tethyan Alpine System." In The Geology of Greece. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60731-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Henrich, Rüdiger, Karl-Heinz Baumann, and Torsten Bickert. "New Concepts on Mass Wasting Phenomena at Passive and Active Margins of the Alpine Tethys: Famous Classical Outcrops in the Berchtesgaden – Salzburg Alps Revisited. Part A: Jurassic Slide/Debrite Complexes Triggered by Syn-Sedimentary Block Faulting." In Submarine Mass Movements and Their Consequences. Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00972-8_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Henrich, Rüdiger, Karl-Heinz Baumann, and Torsten Bickert. "New Concepts on Mass Wasting Phenomena at Passive and Active Margins of the Alpine Tethys: Famous Classical Outcrops in the Berchtesgaden – Salzburg Alps Revisited. Part B: Stacking Patterns of Slide/Debrite Complexes in an Active Lower Cretaceous Foreland Wedge-Top Basin." In Submarine Mass Movements and Their Consequences. Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00972-8_60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pirajno, Franco. "Tianshan, Junggar and Altay Orogens (NW China), the Alpine-Himalayan Fold Belts (Tethyan Orogens), Kunlun and Songpan-Ganzi Terranes." In The Geology and Tectonic Settings of China's Mineral Deposits. Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4444-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Roure, François, Sami Khomsi, Dominique Frizon de Lamotte, and Rémi Lepretre. "Tethyan and Alpine Controls on the Crustal Architecture of the Tunisian and Algerian Atlas and Tell: Needs for Coupled Deep Seismic Soundings and Tomography." In The Structural Geology Contribution to the Africa-Eurasia Geology: Basement and Reservoir Structure, Ore Mineralisation and Tectonic Modelling. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01455-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shimabukuro, David H., and Claire Battistella. "Ligurian hyperextended continental margin preserved in an ophiolitic block at Timpa di Pietrasasso, Calabrian Arc, southern Italy." In From the Guajira Desert to the Apennines, and from Mediterranean Microplates to the Mexican Killer Asteroid: Honoring the Career of Walter Alvarez. Geological Society of America, 2022. http://dx.doi.org/10.1130/2022.2557(10).

Full text
Abstract:
ABSTRACT The Cenozoic accretionary complex in the Calabrian Arc, southern Italy, contains hectometric- to kilometric-scale exposures of basalt, gabbro, and serpentinite that have been interpreted as dismembered fragments of Alpine Tethys ocean crust because of their incomplete nature with respect to the traditional view of a complete ophiolite sequence. We present new geologic mapping, geochemistry, and geochronology of one of these units at Timpa di Pietrasasso near the town of Terranova di Pollino in the Basilicata region that exposes Jurassic Tethyan pillow basalt and chert that are separated from gabbro and serpentinite by a fault. The gabbro in the footwall is Permian in age, indicated by U-Pb zircon ages of 284 ± 6 Ma, 293 ± 6 Ma, and 295 ± 4 Ma, linking it to gabbros that underplated continental crust after the Permo-Carboniferous Variscan Orogeny. The gabbro first underwent amphibolite-facies metamorphism, then developed a greenschist-facies mylonitic foliation near the fault surface that is crosscut by undeformed Jurassic-aged dikes of Tethyan origin, indicating that deformation is early Tethyan or pre-Tethyan in age. The underlying serpentinite is tectonically interleaved with blocks of Variscan lower crust, indicating that the missing upper plate of the extensional detachment complex was continental in origin. These features indicate that the Timpa di Pietrasasso unit preserves a low-angle detachment fault that developed in a hyperextended continental margin of the Alpine Tethys.
APA, Harvard, Vancouver, ISO, and other styles
9

"From the Tethys to the Alpine Fold Belt." In The Western Alps, from Rift to Passive Margin to Orogenic Belt. Elsevier, 2011. http://dx.doi.org/10.1016/s0928-2025(11)14028-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Late Cretaceous and Paleocene Atlantic Sea-Floor Spreading and Alpine Collision." In Evolution of the Arctic-North Atlantic and the Western Tethys. American Association of Petroleum Geologists, 1988. http://dx.doi.org/10.1306/m43478c7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Alpine Tethys"

1

Shimabukuro, David H., Sabina Caparelli, and Eugenio Piluso. "RECONSTRUCTING THE EUROPEAN HYPEREXTENDED MARGIN OF THE ALPINE TETHYS IN CALABRIA, SOUTHERN ITALY." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-280784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nicolaïdes, S., C. Basuyau, H. Behira, A. Cesbron, L. Cherel, and L. Montadert. "The Eratosthenes Continental Block in the Eastern Mediterranean - A Result of the Neo-Tethys and Alpine Tectonic Histories." In 79th EAGE Conference and Exhibition 2017. EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201700636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hochscheid, Flora, Marc Ulrich, Manuel Muñoz, Damien Lemarchand, and Gianreto Manatschal. "Geochemical Study of Serpentinization along an Ocean-Continent Transition Zone: The Alpine Tethys as a Case Study (SE-Switzerland)." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography