To see the other types of publications on this topic, follow the link: Alternating current.

Journal articles on the topic 'Alternating current'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Alternating current.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sadiku, Matthew N. O., Adedamola A. Omotoso, and Sarhan M. Musa Adebowale E. Shadare. "Flexible Alternating Current Transmission Systems." International Journal of Trend in Scientific Research and Development Volume-3, Issue-1 (December 31, 2018): 809–11. http://dx.doi.org/10.31142/ijtsrd19063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McKee, M. "Alternating Current." Minnesota Review 2010, no. 75 (September 1, 2010): 42–44. http://dx.doi.org/10.1215/00265667-2010-75-42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maheshwari, Siddharth, Nishant Chetwani, and Hsueh-Chia Chang. "Alternating Current Electrospraying." Industrial & Engineering Chemistry Research 48, no. 21 (November 4, 2009): 9358–68. http://dx.doi.org/10.1021/ie801841r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Makhlin, N. M. "Peculiarities of contactless ignitions of alternating current arc." Paton Welding Journal 2015, no. 10 (October 28, 2015): 29–35. http://dx.doi.org/10.15407/tpwj2015.10.05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

YAMAMOTO, Mitsuyoshi, and Takeshi ISHIGOHKA. "History of Alternating Current." Journal of The Institute of Electrical Engineers of Japan 125, no. 7 (2005): 421–24. http://dx.doi.org/10.1541/ieejjournal.125.421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Eßmann, Vera, Jan Clausmeyer, and Wolfgang Schuhmann. "Alternating current-bipolar electrochemistry." Electrochemistry Communications 75 (February 2017): 82–85. http://dx.doi.org/10.1016/j.elecom.2017.01.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, D. K., T. H. Ha, Y. C. Ha, J. H. Bae, H. G. Lee, D. Gopi, and J. D. Scantlebury. "Alternating current induced corrosion." Corrosion Engineering, Science and Technology 39, no. 2 (June 2004): 117–23. http://dx.doi.org/10.1179/147842204225016930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schneider, Friedemaan W., Marcus J. B. Hauser, and Joachim Reising. "An Alternating Current Battery." Berichte der Bunsengesellschaft für physikalische Chemie 97, no. 1 (January 1993): 55–58. http://dx.doi.org/10.1002/bbpc.19930970111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zou, Haiyang, Guozhang Dai, Aurelia Chi Wang, Xiaogan Li, Steven L. Zhang, Wenbo Ding, Lei Zhang, Ying Zhang, and Zhong Lin Wang. "Alternating Current Photovoltaic Effect." Advanced Materials 32, no. 11 (February 3, 2020): 1907249. http://dx.doi.org/10.1002/adma.201907249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zou, Haiyang, Guozhang Dai, Aurelia Chi Wang, Xiaogan Li, Steven L. Zhang, Wenbo Ding, Lei Zhang, Ying Zhang, and Zhong Lin Wang. "Alternating Current Photovoltaic Effect." Advanced Materials 32, no. 21 (May 2020): 2001532. http://dx.doi.org/10.1002/adma.202001532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Guo, Peng, and Ke-Yin Ye. "Alternating the current direction." Science 380, no. 6640 (April 7, 2023): 34–35. http://dx.doi.org/10.1126/science.adh1837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

YAMAMOTO, MITSUYOSHI. "Direct Current to Alternating Current, Again Direct Current." Journal of the Institute of Electrical Engineers of Japan 116, no. 6 (1996): 352–57. http://dx.doi.org/10.1541/ieejjournal.116.352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Rutberg, P. G., A. A. Safronov, and V. L. Goryachev. "Strong-current arc discharges of alternating current." IEEE Transactions on Plasma Science 26, no. 4 (1998): 1297–306. http://dx.doi.org/10.1109/27.725162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Nikolo, Martin. "Superconductivity: A guide to alternating current susceptibility measurements and alternating current susceptometer design." American Journal of Physics 63, no. 1 (January 1995): 57–65. http://dx.doi.org/10.1119/1.17770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kropachev, S. A. "Direct or alternating?" Safety and Reliability of Power Industry 14, no. 2 (July 28, 2021): 148–50. http://dx.doi.org/10.24223/1999-5555-2021-14-2-148-150.

Full text
Abstract:
The article is devoted to the so-called "war of currents", which unfolded in the United States in the late 19th-early 20th century. The winner of this "war" was a talented Serbian inventor Nikola Tesla. He professed the ideas of alternating current. He was opposed by the famous American businessman and scientist T. Edison. Enterprises of the latter produced machines running on direct current. It made a big profit. After a number of conflicts, Tesla, who worked for Edison, left his company and organized a business of his own jointly with an industrialist D. Westinghouse. Tesla's ideas and projects won a landslide victory. The development of direct current systems ended in the late 1920s, despite the efforts of T. Edison. N. Tesla was at the origins of alternating current systems, the appearance of electric motors, robotics, wireless charging devices and much more. Today, the ideas of the great Serbian inventor, even the most fantastic ones, are experiencing a rebirth.
APA, Harvard, Vancouver, ISO, and other styles
16

Shastri, Anshuman, Irfan Ullah, and Benito Sanz-Izquierdo. "Alternating Current Sensing Slot Antenna." IEEE Sensors Journal 21, no. 7 (April 1, 2021): 9484–91. http://dx.doi.org/10.1109/jsen.2021.3055639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Saba, Marcelo M. F., and Daniel D. Monteiro. "Color addition and alternating current." Physics Teacher 38, no. 7 (October 2000): 446. http://dx.doi.org/10.1119/1.1324543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Schuette, Sheila A., and Richard L. McCreery. "Hydrodynamically modulated alternating current voltammetry." Analytical Chemistry 59, no. 22 (November 15, 1987): 2692–99. http://dx.doi.org/10.1021/ac00149a013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ripka, P. "Alternating current-excited magnetoresistive sensor." Journal of Applied Physics 79, no. 8 (1996): 5211. http://dx.doi.org/10.1063/1.361343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ivanov, D. A., H. W. Lee, and L. S. Levitov. "Coherent states of alternating current." Physical Review B 56, no. 11 (September 15, 1997): 6839–50. http://dx.doi.org/10.1103/physrevb.56.6839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kochanski, Greg P. "Nonlinear alternating-current tunneling microscopy." Physical Review Letters 62, no. 19 (May 8, 1989): 2285–88. http://dx.doi.org/10.1103/physrevlett.62.2285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Aparnadevi, M., and R. Mahendiran. "Alternating current magnetotransport in Sm0.1La0.6Sr0.3MnO3." AIP Advances 3, no. 1 (January 2013): 012114. http://dx.doi.org/10.1063/1.4789408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Knina, S. L., A. A. Nechai, and A. A. Semenov. "Alternating current bridges in thermometry." Measurement Techniques 31, no. 8 (August 1988): 769–71. http://dx.doi.org/10.1007/bf00863490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Olecki, A. "Alternating-current reference voltage sources." Measurement Techniques 33, no. 3 (March 1990): 249–53. http://dx.doi.org/10.1007/bf00865193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Fernando Gomollón-Bel, special to C&EN. "Alternating current for selective reductions." C&EN Global Enterprise 99, no. 40 (November 1, 2021): 9. http://dx.doi.org/10.1021/cen-09940-scicon6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Guo, Si-Xuan, Alan M. Bond, and Jie Zhang. "Fourier Transformed Large Amplitude Alternating Current Voltammetry: Principles and Applications." Review of Polarography 61, no. 1 (2015): 21–32. http://dx.doi.org/10.5189/revpolarography.61.21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

He, Peixin, and Xiaoming Chen. "A computer-based instrument for alternating current impedance and high-frequency alternating current electrochemical measurements." Analytical Chemistry 62, no. 13 (July 1990): 1331–38. http://dx.doi.org/10.1021/ac00212a024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Xiao Han, Xiongjun Liu, Junguo Gao, Longxiao Chen, and Chendan Tang. "Design Method of Changing Medium Voltage Alternating-Current Cable to Direct-Current Operation." Electrotehnica, Electronica, Automatica 70, no. 4 (November 15, 2022): 54–63. http://dx.doi.org/10.46904/eea.22.70.4.1108006.

Full text
Abstract:
Changing the existing medium voltage alternating current cable to transmit direct current is a feasible technical transformation scheme, which has obvious advantages in cable capacity increase and operation reliability improvement. At present, there is only one project case introduced in the alternating current to direct current conversion of medium voltage alternating current cables. Most of the studies are carried out from the perspective of theoretical analysis and design calculation. The research focuses on the constraints of alternating current to direct current conversion of different cables and the design of ampacity and voltage. This paper studies the design method of converting the existing alternating current cable to direct current, analyses some problems in the current design and the technical details that need to be further improved, and discusses the constraints of converting the medium voltage alternating current cable to direct current from the aspects of current carrying capacity design, system design and system design, insulation temperature difference and electric field inversion, voltage design, space charge accumulation threshold calculation, electrical type test, etc. On this basis, this paper puts forward a design idea of alternating current to direct current transformation of medium voltage alternating current cable based on comprehensive constraints and suitable for practical engineering transformation and makes an example calculation. Finally, it gives implementation suggestions for the electrical type test of alternating current to direct current transformation of medium voltage alternating current cable.
APA, Harvard, Vancouver, ISO, and other styles
29

Chavez, R., A. Becker, M. Bartel, V. Kessler, G. Schierning, and R. Schmechel. "Note: High resolution alternating current/direct current Harman technique." Review of Scientific Instruments 84, no. 10 (October 2013): 106106. http://dx.doi.org/10.1063/1.4825118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Franke, Manfred, Niloy Bhadra, Narendra Bhadra, and Kevin Kilgore. "Direct current contamination of kilohertz frequency alternating current waveforms." Journal of Neuroscience Methods 232 (July 2014): 74–83. http://dx.doi.org/10.1016/j.jneumeth.2014.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ebrahimi, F., and S. C. Prager. "Current profile control by alternating current magnetic helicity injection." Physics of Plasmas 11, no. 5 (May 2004): 2014–25. http://dx.doi.org/10.1063/1.1690304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Horváth, Ildikó, and György Elmer. "Simulation of memristors conducting alternating current." Pollack Periodica 9, no. 3 (December 2014): 71–78. http://dx.doi.org/10.1556/pollack.9.2014.3.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Rodrigo, Sachini, Disni Gunasekera, Jyoti P. Mahajan, and Long Luo. "Alternating current electrolysis for organic synthesis." Current Opinion in Electrochemistry 28 (August 2021): 100712. http://dx.doi.org/10.1016/j.coelec.2021.100712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lyle, John T. "The Alternating Current of Design Process." Landscape Journal 4, no. 1 (1985): 7–13. http://dx.doi.org/10.3368/lj.4.1.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kovaleva, T. V., O. O. Komyakova, and N. V. Pashkova. "Resonance in alternating current traction network." Omsk Scientific Bulletin, no. 172 (2020): 32–35. http://dx.doi.org/10.25206/1813-8225-2020-172-32-35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Moriya, Toshio, Yutaka Hosokaws, and Keiichi Murata. "Alternating current-evoked oto-acoustic emission." AUDIOLOGY JAPAN 30, no. 3 (1987): 209–14. http://dx.doi.org/10.4295/audiology.30.209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hu, Dan, Xiuru Xu, Jingsheng Miao, Ori Gidron, and Hong Meng. "A Stretchable Alternating Current Electroluminescent Fiber." Materials 11, no. 2 (January 24, 2018): 184. http://dx.doi.org/10.3390/ma11020184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Jung, Woo-Hwan. "Alternating - Current Electrical Properties of La0.7Sr0.3FeO3Ceramics." Journal of the Korean Ceramic Society 44, no. 11 (November 30, 2007): 627–32. http://dx.doi.org/10.4191/kcers.2007.44.1.627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhang, Zhi-Bin, Xian-Jie Liu, Eleanor E. B. Campbell, and Shi-Li Zhang. "Alternating current dielectrophoresis of carbon nanotubes." Journal of Applied Physics 98, no. 5 (September 2005): 056103. http://dx.doi.org/10.1063/1.2037866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zheng, Gao-Feng, Hai-Yan Liu, Rong Xu, Xiang Wang, Juan Liu, Han Wang, and Dao-Heng Sun. "Alternating Current Electrohydrodynamic Printing of Microdroplets." Journal of Nanomaterials 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/596263.

Full text
Abstract:
This paper discusses the technology of orderly printing of microdroplets by means of electrohydrodynamic print (EHDP) with alternating current (AC). The AC electric field induces charges to reciprocate in the electrohydrodynamic charged jet and generates periodic alternation of electric field force, which facilitates the breakup of charged jets and injection of microdroplets. Microdroplets with a diameter of 100~300 μm can be printed with a frequency of 5~25 Hz via AC EHDP. Effects of process parameters on the microdroplet injection behaviors were investigated. A higher frequency of applied AC voltage led to a higher deposition frequency, but smaller diameters of printed droplets. Deposition frequency and droplet diameters increased with the increase of duty cycle and solution supply rate. AC pulse voltage has provided a novel way to study the control technology in EHDP, which would accelerate the application of inkjet printing in the field of micro/nanosystem production.
APA, Harvard, Vancouver, ISO, and other styles
41

Switzer, Jay A. "Alternating Current Electrolysis at Semiconductor Electrodes." Journal of The Electrochemical Society 136, no. 4 (April 1, 1989): 1009–11. http://dx.doi.org/10.1149/1.2096774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hemmen, J. L. van, and A. Süto. "Alternating-current-hampered tunnelling of magnetization." Journal of Physics: Condensed Matter 9, no. 14 (April 7, 1997): 3089–97. http://dx.doi.org/10.1088/0953-8984/9/14/024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Perumal, Ajay, Björn Lüssem, and Karl Leo. "Ultra-bright alternating current organic electroluminescence." Organic Electronics 13, no. 9 (September 2012): 1589–93. http://dx.doi.org/10.1016/j.orgel.2012.04.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Xiong, Yan-ling, Hong Zhao, Meng-ben Xiao, and Zhong-hua Yang. "Alternating current sensor system using GMM." Optoelectronics Letters 2, no. 2 (March 2006): 95–97. http://dx.doi.org/10.1007/bf03034020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Brubaker, Cole D., Kailey N. Newcome, G. Kane Jennings, and Douglas E. Adams. "3D-Printed alternating current electroluminescent devices." Journal of Materials Chemistry C 7, no. 19 (2019): 5573–78. http://dx.doi.org/10.1039/c9tc00619b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lindeman, M. A., P. Khosropanah, and R. A. Hijmering. "Model of superconducting alternating current bolometers." Journal of Applied Physics 113, no. 7 (February 21, 2013): 074502. http://dx.doi.org/10.1063/1.4790146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Robinson, S. M. "ALTERNATING CURRENT MOTORS CONTROLLED BY MUTATORS." Journal of the American Society for Naval Engineers 49, no. 2 (March 18, 2009): 153–73. http://dx.doi.org/10.1111/j.1559-3584.1937.tb02218.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Prasolov, M., and M. Skopenkov. "Tiling by rectangles and alternating current." Journal of Combinatorial Theory, Series A 118, no. 3 (April 2011): 920–37. http://dx.doi.org/10.1016/j.jcta.2010.11.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zude, Cao, Kong Lingshuang, and Liu Defu. "Sediment movement in periodic alternating current." Journal of Ocean University of Qingdao 1, no. 2 (October 2002): 201–5. http://dx.doi.org/10.1007/s11802-002-0018-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wang, Lin, Lian Xiao, Haoshuang Gu, and Handong Sun. "Advances in Alternating Current Electroluminescent Devices." Advanced Optical Materials 7, no. 7 (January 23, 2019): 1801154. http://dx.doi.org/10.1002/adom.201801154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography