Journal articles on the topic 'Aluminium alloy 2618'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Aluminium alloy 2618.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Spigarelli, S., F. Bardi, and E. Evangelista. "Hot Workability of the 2618 Aluminium Alloy." Materials Science Forum 331-337 (May 2000): 449–54. http://dx.doi.org/10.4028/www.scientific.net/msf.331-337.449.
Full textSauerborn, M., and H. J. McQueen. "Modelling extrusion of 2618 aluminium alloy and 2618-1 10%AI203and 2618-20%AI203composites." Materials Science and Technology 14, no. 9-10 (September 1998): 1029–38. http://dx.doi.org/10.1179/mst.1998.14.9-10.1029.
Full textCavaliere, P. "Hot and warm forming of 2618 aluminium alloy." Journal of Light Metals 2, no. 4 (November 2002): 247–52. http://dx.doi.org/10.1016/s1471-5317(03)00008-7.
Full textNový, František, Miloš Janeček, Robert Král, and Branislav Hadzima. "Microstructure evolution in a 2618 aluminium alloy during creep-fatigue tests." International Journal of Materials Research 103, no. 6 (June 2012): 688–93. http://dx.doi.org/10.3139/146.110679.
Full textNový, F., M. Janeček, and R. Král. "Microstructure changes in a 2618 aluminium alloy during ageing and creep." Journal of Alloys and Compounds 487, no. 1-2 (November 2009): 146–51. http://dx.doi.org/10.1016/j.jallcom.2009.08.014.
Full textOguocha, I. N. A., and S. Yannacopoulos. "Natural ageing behaviour of cast alumina particle-reinforced 2618 aluminium alloy." Journal of Materials Science 31, no. 12 (June 1996): 3145–51. http://dx.doi.org/10.1007/bf00354660.
Full textBelelli, Filippo, Riccardo Casati, Martina Riccio, Alessandro Rizzi, Mevlüt Y. Kayacan, and Maurizio Vedani. "Development of a Novel High-Temperature Al Alloy for Laser Powder Bed Fusion." Metals 11, no. 1 (December 26, 2020): 35. http://dx.doi.org/10.3390/met11010035.
Full textSubawi, Handoko, and Sutarno. "The Phenomenon of Pitting Corrosion Attack on the Milled Aluminium Alloy Al 2618 Plate during Surface Preparation through Sulphuric Acid Anodising." Advanced Materials Research 896 (February 2014): 596–99. http://dx.doi.org/10.4028/www.scientific.net/amr.896.596.
Full textTjong, S. C., and Z. Y. Ma. "Steady state creep deformation behaviour of SiC particle reinforced 2618 aluminium alloy based composites." Materials Science and Technology 15, no. 4 (April 1999): 429–36. http://dx.doi.org/10.1179/026708399101505897.
Full textPantělejev, Libor, Daniel Koutný, David Paloušek, and Jozef Kaiser. "Mechanical and Microstructural Properties of 2618 Al-Alloy Processed by SLM Remelting Strategy." Materials Science Forum 891 (March 2017): 343–49. http://dx.doi.org/10.4028/www.scientific.net/msf.891.343.
Full textPater, Zbigniew, Andrzej Gontarz, and Arkadiusz Tofil. "Analysis of the cross-wedge rolling process of toothed shafts made from 2618 aluminium alloy." Journal of Shanghai Jiaotong University (Science) 16, no. 2 (April 2011): 162–66. http://dx.doi.org/10.1007/s12204-011-1119-2.
Full textSauerborn, M., and H. J. McQueen. "Modelling extrusion of 2618 aluminium alloy and 2618-1 10%AI203 and 2618-20%AI203 composites." Materials Science and Technology 14, no. 9 (September 1, 1998): 1029–38. http://dx.doi.org/10.1179/026708398790613371.
Full textBobrow, D., A. Arbel, and D. Eliezer. "The effect of elevated-temperature reverse cyclic loading on fracture toughness of aluminium alloy type 2618." Journal of Materials Science 26, no. 8 (January 1, 1991): 2045–49. http://dx.doi.org/10.1007/bf00549165.
Full textBardi, Franco, Marcello Cabibbo, and Stefano Spigarelli. "An analysis of thermo-mechanical treatments of a 2618 aluminium alloy: study of optimum conditions for warm forging." Materials Science and Engineering: A 334, no. 1-2 (September 2002): 87–95. http://dx.doi.org/10.1016/s0921-5093(01)01775-0.
Full textSakthivel, A., R. Palaninathan, R. Velmurugan, and P. Rao. "The Effect of Silicon Carbide Particulates on Tensile, Fatigue, Impact and Final Fracture Behaviour of 2618 Aluminium Alloy Matrix Composites." International Journal of Aerospace Innovations 3, no. 3 (September 2011): 193–206. http://dx.doi.org/10.1260/1757-2258.3.3.193.
Full textSingh, Nirbhay, Ram Khelawan, and G. N. Mathur. "Effect of stress ratio and frequency on fatigue crack growth rate of 2618 aluminium alloy silicon carbide metal matrix composite." Bulletin of Materials Science 24, no. 2 (April 2001): 169–71. http://dx.doi.org/10.1007/bf02710096.
Full textGao, Jun Zhen, Qiang Zhu, Da Quan Li, and Yong Lin Kang. "Microstructural Changes and Thermal Stability of A201, 319s and 2618 Aluminum Alloys during Thermal Exposure." Materials Science Forum 913 (February 2018): 55–62. http://dx.doi.org/10.4028/www.scientific.net/msf.913.55.
Full textZhu, Z., H. Peng, Y. Liu, H. Tu, J. Wang, and X. Su. "Multistage homogenization process of aluminum alloy 2618." Materialwissenschaft und Werkstofftechnik 51, no. 7 (July 2020): 992–1001. http://dx.doi.org/10.1002/mawe.201900117.
Full textMalek, Benaïssa, Catherine Mabru, and Michel Chaussumier. "Multiaxial fatigue behavior of 2618 aluminum alloy." MATEC Web of Conferences 300 (2019): 09003. http://dx.doi.org/10.1051/matecconf/201930009003.
Full textJaukovic,, Ν., and V. Asanovic,. "The Investigation of Aluminum 2618 Alloy Containing Lanthanides." Journal for Manufacturing Science and Production 8, no. 2-4 (December 2007): 97–104. http://dx.doi.org/10.1515/ijmsp.2007.8.2-4.97.
Full textDu, Z. W., G. J. Wang, X. L. Han, Z. H. Li, B. H. Zhu, X. Fu, Y. A. Zhang, and B. Q. Xiong. "Microstructural evolution after creep in aluminum alloy 2618." Journal of Materials Science 47, no. 6 (December 16, 2011): 2541–47. http://dx.doi.org/10.1007/s10853-011-6077-4.
Full textToschi, Stefania, Eleonora Balducci, Lorella Ceschini, Eva Mørtsell, Alessandro Morri, and Marisa Di Sabatino. "Effect of Zr Addition on Overaging and Tensile Behavior of 2618 Aluminum Alloy." Metals 9, no. 2 (January 26, 2019): 130. http://dx.doi.org/10.3390/met9020130.
Full textJiang, Jing Ze, Bao Li, and Bi Cheng Yang. "Second Phase Particles and Mechanical Properties of 2618 Aluminum Alloy Ring." Materials Science Forum 1035 (June 22, 2021): 212–16. http://dx.doi.org/10.4028/www.scientific.net/msf.1035.212.
Full textKun, Ma, Liu Tingting, Liu Ya, Su Xuping, and Wang Jianhua. "Study on Strengthening and Toughening Mechanisms of Aluminum Alloy 2618-Ti at Elevated Temperature." High Temperature Materials and Processes 37, no. 1 (January 26, 2018): 9–15. http://dx.doi.org/10.1515/htmp-2015-0226.
Full textXia, K., and G. Tausig. "Liquidus casting of a wrought aluminum alloy 2618 for thixoforming." Materials Science and Engineering: A 246, no. 1-2 (May 1998): 1–10. http://dx.doi.org/10.1016/s0921-5093(97)00758-2.
Full textMalek, Benaissa, Catherine Mabru, and Michel Chaussumier. "Study and modelling of anodized 2618 aluminum behavior subjected to multiaxial fatigue." MATEC Web of Conferences 165 (2018): 16010. http://dx.doi.org/10.1051/matecconf/201816516010.
Full textLiu, Tingting, Xuping Su, Ya Liu, Changjun Wu, and Jianhua Wang. "Microstructural Evolution of Aluminum Alloy 2618 During Homogenization and Its Kinetic Analysis." High Temperature Materials and Processes 33, no. 1 (February 1, 2014): 85–94. http://dx.doi.org/10.1515/htmp-2013-0029.
Full textPradhan,, D., D. Mantha,, and R. G. Reddy,. "Mechanical Properties and Microstructure of Aluminum 2618 Alloy containing Manganese and Chromium." High Temperature Materials and Processes 28, no. 4 (August 2009): 203–10. http://dx.doi.org/10.1515/htmp.2009.28.4.203.
Full textJauković,, Nada, Vanja Asanović,, and Žarko Radović,. "Mechanical Properties and Microstructure of Aluminum 2618 Alloy Containing Manganese and Chromium." High Temperature Materials and Processes 28, no. 4 (August 2009): 253–62. http://dx.doi.org/10.1515/htmp.2009.28.4.253.
Full textMalek, Benaïssa, Catherine Mabru, and Michel Chaussumier. "Fatigue behavior of 2618-T851 aluminum alloy under uniaxial and multiaxial loadings." International Journal of Fatigue 131 (February 2020): 105322. http://dx.doi.org/10.1016/j.ijfatigue.2019.105322.
Full textSakthivel, A., R. Palaninathan, R. Velmurugan, and P. Raghothama Rao. "Production and mechanical properties of SiCp particle-reinforced 2618 aluminum alloy composites." Journal of Materials Science 43, no. 22 (November 2008): 7047–56. http://dx.doi.org/10.1007/s10853-008-3033-z.
Full textZeng, Lei, Zhaoyang Li, Renqing Che, Takahiro Shikama, Shinji Yoshihara, Tadashi Aiura, and Hiroshi Noguchi. "Mesoscopic analysis of fatigue strength property of a modified 2618 aluminum alloy." International Journal of Fatigue 59 (February 2014): 215–23. http://dx.doi.org/10.1016/j.ijfatigue.2013.08.016.
Full textDing, J. L., and W. N. Findley. "Nonproportional Loading Steps in Multiaxial Creep of 2618 Aluminum." Journal of Applied Mechanics 52, no. 3 (September 1, 1985): 621–28. http://dx.doi.org/10.1115/1.3169111.
Full textLeng, Yang. "Study of creep crack growth in 2618 and 8009 aluminum alloys." Metallurgical and Materials Transactions A 26, no. 2 (February 1995): 315–28. http://dx.doi.org/10.1007/bf02664669.
Full textYu, Kun, Wenxian Li, Songrui Li, and Jun Zhao. "Mechanical properties and microstructure of aluminum alloy 2618 with Al3(Sc, Zr) phases." Materials Science and Engineering: A 368, no. 1-2 (March 2004): 88–93. http://dx.doi.org/10.1016/j.msea.2003.09.092.
Full textÖzbek, İbrahim. "A study on the re-solution heat treatment of AA 2618 aluminum alloy." Materials Characterization 58, no. 3 (March 2007): 312–17. http://dx.doi.org/10.1016/j.matchar.2006.07.002.
Full textWang, Jianhua, Danqing Yi, Xuping Su, and Fucheng Yin. "Influence of deformation ageing treatment on microstructure and properties of aluminum alloy 2618." Materials Characterization 59, no. 7 (July 2008): 965–68. http://dx.doi.org/10.1016/j.matchar.2007.08.007.
Full textZamarripa, A. Salas, C. Pinna, M. W. Brown, M. P. Guerrero Mata, M. Castillo Morales, and T. P. Beber-Solano. "Identification of modes of fracture in a 2618-T6 aluminum alloy using stereophotogrammetry." Materials Characterization 62, no. 12 (December 2011): 1141–50. http://dx.doi.org/10.1016/j.matchar.2011.09.005.
Full textJAUKOVIC, Nada, and Milisav LALOVIC. "Effect of Zirconium and Lanthanides on the Recovery in 2618 Base Aluminum Alloys." ISIJ International 45, no. 3 (2005): 405–7. http://dx.doi.org/10.2355/isijinternational.45.405.
Full textLeng, Y., W. C. Porr, and R. P. Gangloff. "Tensile deformation of 2618 and AlFeSiV aluminum alloys at elevated temperatures." Scripta Metallurgica et Materialia 24, no. 11 (November 1990): 2163–68. http://dx.doi.org/10.1016/0956-716x(90)90504-a.
Full textLeng, Yang. "Study of creep crack growth in 2618 and 8009 aluminum aiioys." Metallurgical and Materials Transactions A 26, no. 6 (June 1995): 1607. http://dx.doi.org/10.1007/bf02647615.
Full textBassani, Paola, Carlo Alberto Biffi, Riccardo Casati, Adrianni Zanatta Alarcon, Ausonio Tuissi, and Maurizio Vedani. "Properties of Aluminium Alloys Produced by Selective Laser Melting." Key Engineering Materials 710 (September 2016): 83–88. http://dx.doi.org/10.4028/www.scientific.net/kem.710.83.
Full textKoutny, Daniel, David Palousek, Libor Pantelejev, Christian Hoeller, Rudolf Pichler, Lukas Tesicky, and Jozef Kaiser. "Influence of Scanning Strategies on Processing of Aluminum Alloy EN AW 2618 Using Selective Laser Melting." Materials 11, no. 2 (February 14, 2018): 298. http://dx.doi.org/10.3390/ma11020298.
Full textSAKURAI, Keizo, Takeshi SAWAI, and Katsushige ADACHI. "Performance of TiN coated flute-less tap on 15% SiC particle reinforced 2618 aluminum alloy tapping." Journal of Japan Institute of Light Metals 56, no. 6 (2006): 301–6. http://dx.doi.org/10.2464/jilm.56.301.
Full textTroconis de Rincón, Oladis, Andrés Torres-Acosta, Alberto Sagüés, and Miguel Martinez-Madrid. "Galvanic Anodes for Reinforced Concrete Structures: A Review." Corrosion 74, no. 6 (January 7, 2018): 715–23. http://dx.doi.org/10.5006/2613.
Full textRockenhäuser, Christian, Christian Rowolt, Benjamin Milkereit, Reza Darvishi Kamachali, Olaf Kessler, and Birgit Skrotzki. "On the long-term aging of S-phase in aluminum alloy 2618A." Journal of Materials Science 56, no. 14 (January 11, 2021): 8704–16. http://dx.doi.org/10.1007/s10853-020-05740-x.
Full textNosova, E. A., A. A. Fadeeva, and M. A. Starodubtseva. "Research of grain size homogeneity effect on sheet stamping ability characteristics of Al2Mg and Al6Mg alloys." Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy, no. 3 (June 19, 2019): 47–54. http://dx.doi.org/10.17073/0021-3438-2019-3-47-55.
Full textCameron, D. W., R. H. Jeal, and D. W. Hoeppner. "SEM Investigations of Fatigue Crack Propagation in RR 58 Aluminum Alloy." Journal of Engineering for Gas Turbines and Power 107, no. 1 (January 1, 1985): 238–41. http://dx.doi.org/10.1115/1.3239689.
Full textPater, Z., and J. Tomczak. "Experimental Tests for Cross Wedge Rolling of Forgings Made from Non-Ferrous Metal Alloys / Próby Doświadczalne Walcowania Poprzeczno-Klinowego Odkuwek Ze Stopów Metali Nieżelaznych." Archives of Metallurgy and Materials 57, no. 4 (December 1, 2012): 919–28. http://dx.doi.org/10.2478/v10172-012-0101-9.
Full textBergsma, S. C., X. Li, and M. E. Kassner. "Effects of thermal processing and copper additions on the mechanical properties of aluminum alloy ingot AA 2618." Journal of Materials Engineering and Performance 5, no. 1 (February 1996): 100–102. http://dx.doi.org/10.1007/bf02647276.
Full text