Academic literature on the topic 'Aluminum 2024'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aluminum 2024.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aluminum 2024"
Zhu, Dezhi, Zhenxing Zheng, and Qi Chen. "Strain-rate sensitivity of aluminum 2024-T6/TiB2 composites and aluminum 2024-T6." Journal of Wuhan University of Technology-Mater. Sci. Ed. 30, no. 2 (April 2015): 256–60. http://dx.doi.org/10.1007/s11595-015-1135-4.
Full textNugroho, Fajar. "PENGARUH RAPAT ARUS ANODIZING TERHADAP NILAI KEKERASAN PADA PLAT ALUMINIUM PADUAN AA SERI 2024-T3." Angkasa: Jurnal Ilmiah Bidang Teknologi 7, no. 2 (September 13, 2017): 39. http://dx.doi.org/10.28989/angkasa.v7i2.147.
Full textZhu, De Zhi, Wei Ping Chen, and Yuan Yuan Li. "Strain-Rate Relationship of Aluminum Matrix Composites Predicted by Johnson-Cook Model." Materials Science Forum 704-705 (December 2011): 935–40. http://dx.doi.org/10.4028/www.scientific.net/msf.704-705.935.
Full textJunipitoyo, Bambang, Luqman Hakim Al Baihaqy, and Linda Winiasri. "Pengaruh Heat Treatment Dan Quenching Terhadap Sifat Fisis Dan Mekanis Aluminum Alloy 2024-t3." Jurnal Penelitian 5, no. 1 (April 27, 2020): 1–10. http://dx.doi.org/10.46491/jp.v5e1.481.1-10.
Full textHuang, Chuan Yong. "Electroless Ni-La-P Coatings on 2024 Aluminum Alloys for Aircraft Structure." Applied Mechanics and Materials 224 (November 2012): 348–51. http://dx.doi.org/10.4028/www.scientific.net/amm.224.348.
Full textZhang, Shi Xing, Yu Ping Zhu, and Gang Yi Cai. "Influence of Overburning on Microstructure and Property of 2024 Aluminum Alloy." Advanced Materials Research 941-944 (June 2014): 3–7. http://dx.doi.org/10.4028/www.scientific.net/amr.941-944.3.
Full textIsanaka, Sriram Praneeth, Sreekar Karnati, and Frank Liou. "Blown powder deposition of 4047 aluminum on 2024 aluminum substrates." Manufacturing Letters 7 (January 2016): 11–14. http://dx.doi.org/10.1016/j.mfglet.2015.11.007.
Full textAnghelina, Florina Violeta, Ionica Ionita, Dan Nicolae Ungureanu, Elena Valentina Stoian, Ileana Nicoleta Popescu, Vasile Bratu, Ivona Petre, Carmen Popa, and Alexis Negrea. "Structural Aspects Revealed by X-Ray Diffraction for Aluminum Alloys 2024 Type." Key Engineering Materials 750 (August 2017): 20–25. http://dx.doi.org/10.4028/www.scientific.net/kem.750.20.
Full textMrówka-Nowotnik, Grazyna, and Jan Sieniawski. "Analysis of Intermetallic Phases in 2024 Aluminium Alloy." Solid State Phenomena 197 (February 2013): 238–43. http://dx.doi.org/10.4028/www.scientific.net/ssp.197.238.
Full textWu, Jin Hao, You Hong Sun, Qing Nan Meng, Chi Zhang, and Su Su Peng. "Mechanical and Tribological Behaviors of WAl12 Reinforced 2024 Aluminum Alloy Matrix Composites." Materials Science Forum 993 (May 2020): 60–67. http://dx.doi.org/10.4028/www.scientific.net/msf.993.60.
Full textDissertations / Theses on the topic "Aluminum 2024"
Cai, Hong. "Microbiologically influenced corrosion and titanate conversion coatings on aluminum alloy 2024-T3 /." View online ; access limited to URI, 2006. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3225314.
Full textAkhtar, Anisa Shera. "Surface science studies of conversion coatings on 2024-T3 aluminum alloy." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/1713.
Full textWang, Xi. "Corrosion Protection of Aluminum Alloy 2024-T3 by Al-Rich Primer." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1557143060015145.
Full textGujarathi, Kedar Kanayalal. "Corrosion of aluminum alloy 2024 belonging to the 1930s in seawater environment." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-3002.
Full textGUO, YANG. "A Study of Trivalent Chrome Process Coatings on Aluminum Alloy 2024-T3." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1308166499.
Full textPatel, Rishikumar M. "Investigating the Mechanical Behavior of Conventionally Processed High Strength Aluminum Alloy 2024." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1523106869575194.
Full textVasudevan, Satish. "AN INVESTIGATION OF QUASI-STATIC BEHAVIOR, HIGH CYCLE FATIGUE AND FINAL FRACTURE BEHAVIOR OFALUMINUM ALLOY 2024 AND ALUMINUM ALLOY 2219." Akron, OH : University of Akron, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1193668130.
Full text"December, 2007." Title from electronic thesis title page (viewed 02/23/2008) Advisor, T. S. Srivatsan; Faculty readers, Craig Menzemer, Amit Prakash; Department Chair, Celal Batur; Dean of the College, George K. Haritos; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
Silva, José Wilson de Jesus [UNESP]. "Efeito dos oxi-ânions do grupo VIB sobre a corrosão aquosa das ligas Al(2024) e Al(7050) utilizadas na indústria aeronaútica." Universidade Estadual Paulista (UNESP), 2003. http://hdl.handle.net/11449/97122.
Full textFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Foram caracterizados os comportamentos eletroquímicos e avaliadas as resistências à corrosão das ligas aeronáuticas 2024-T351 e 7050-T7451 em soluções aquosas de cloreto contendo cromato, molibdato e tungstato. Foram realizados ensaios de corrosão não-eletroquímicos de imersão prolongada acompanhados de análise metalográfica de superfície por microscopia óptica e identificação dos produtos de corrosão por difratometria de raios-X. A análise quantitativa de superfícies das ligas após a imersão, indica que os pites formados têm áreas médias similares. Os pites são mais largos do que profundos e de geometria, predominantemente, cônica ou quase-cônica e irregular. Em todos os produtos de corrosão de cada liga foi encontrado hidróxido de alumínio, em suas diferentes formas cristalinas. Medidas de perda de dureza, como uma conseqüência da deterioração superficial, também foram determinadas. Além disso, ensaios eletroquímicos como medidas de potencial em circuito aberto, curvas de polarização e voltametria cíclica complementaram este estudo. Em meio aerado os resultados obtidos mediante medidas eletroquímicas são consistentes com aqueles obtidos nos ensaios de imersão, em particular o efeito do CrO42- e do MoO42-. O WO42- mostrou-se agressivo em períodos prolongados de imersão. Apesar dos ensaios revelarem uma redução parcial de MoO42- em ambas as ligas, o efeito desse oxi-ânion parece ser diferente sobre cada liga. Em meio desaerado as ligas apresentam passivação em todos os eletrólitos. A adição dos oxi-ânions não modificou significativamente o potencial de pite para a liga 7050, enquanto que para a liga 2024 ele foi deslocado levemente para valores mais positivos.
It has been characterized the electrochemical behavior and evaluated the 2024-T351 and 7050-T7451 aircraft alloys corrosion resistance in chloride aqueous solutions containing chromate, molybdate and tungstate. It has been carried out non-electrochemical long immersion corrosion testings accompanied by surface metalography analysis achieved by light microscopy and corrosion products identification by X-ray difratometry. Surfaces quantitative analysis upon the alloys after immersion, indicates that formed pits have similar average area. Pits are widther than deeper and own predominantly a conical or quasi-conical and irregular geometry. In all corrosion products of each alloy it has been found aluminum hydroxide in its different crystalline ways. Hardness loss measurements have also been determined. In addition, electrochemical testings such as open circuit potential measures, polarization curves and cyclical voltammetry have completed this study. In aerated means the obtained results before electrochemical mesurements are similar to those obtained in the immersion tests, in particular CrO42- and MoO42- effects. WO42- has been found to be aggressive in very long immersion period. Though tests display a MoO42- partial reduction in both alloys, this oxi-anion effect seems to be different upon each alloy. In de-aerated means alloys present passivation in all eletrolytes. Oxi-anion addition has not changed significantly pit potential for 7050 alloy, while for 2024 alloy it has been dislocated, slightly, for more positive values.
Mann, Philip. "Evaluation of surface modifications introduced by shot peening of aluminum alloy 2024-T351." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123117.
Full textLe grenaillage est un procédé de déformation mécanique consistant à bombarder une surface métallique ductile avec de petits billes sphériques à des vitesses élevées (10 à 100 m/s). Lors de l'impact, les billes génèrent l'apparition d'une zone déformée en surface, caractérisée par un durcissement relativement important ainsi qu'un champ de contraintes résiduelles de compression, ce qui entraîne une meilleure résistance à la fatigue. Cependant, l'effet de la vitesse d'impact de la bille et de la couverture de surface sur la modification des propriétés de surface induit par le grenaillage ne sont pas bien compris.Dans cette étude, la dureté et les contraintes résiduelles ont été étudiées en utilisant des expériences de nanoindentation pour les situations suivantes: trois vitesses de billes différentes correspondant à 35 m/s, 54 m/s et 66 m/s, ainsi que deux couvertures de surface correspondant à un seul impact et à une couverture complète (100%). Pour la situation (i) de l'étude d'un unique impact, une nouvelle procédure de polissage a été développée permettant de localiser un impact isolé. Cette procédure permet de préparer la surface de telle sorte que la nanoindentation peut être effectuée sur la section transversale de l'impact et permet de vérifier que l'impact a été produit par une bille frappant la surface avec une incidence normale. Il a été observé que la dureté et les contraintes résiduelles de compression augmentent avec une augmentation de la vitesse de la bille. Les résultats expérimentaux de contraintes résiduelles ont été comparés à ceux d'une simulation numérique en utilisant les mêmes paramètres expérimentaux de grenaillages. Il a été observé que les résultats expérimentaux montrent un comportement similaire et sont du même ordre de grandeur que ceux obtenus par simulation numérique. La principale différence est que les résultats expérimentaux ont montré une contrainte résiduelle de compression maximale étant indépendante de la vitesse de la bille.Pour la situation (ii) d'une couverture complète et à l'aide du procédé de microscopie électronique à balayage, nous avons observé un raffinement des grains adjacents à la surface grenaillée. En outre, nous avons observé que la dureté et les contraintes résiduelles de compression augmentaient avec une augmentation de la vitesse de la bille. De même que pour l'impact isolé, la localisation des contraintes résiduelles de compression maximale était indépendante de la vitesse de la bille.
Lopez-Garrity, Omar A. "Corrosion Inhibition Mechanisms of Aluminum Alloy 2024-T3 by Selected non-Chromate Inhibitors." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1372077968.
Full textBooks on the topic "Aluminum 2024"
Beaver, P. W. Experimental and theoretical determination of J(IC) for 2024-T351 aluminium alloy. Melbourne, Australia: Aeronautical Research Laboratories, 1986.
Find full textKolkman, H. J. Microstructural and fractographic analysis of fatigue crack propagation in 2024-T351 and 2324-T39. Amsterdam: National Aerospace Laboratory, 1985.
Find full textHarper, Christopher Paul. Effect of alumina particle additions on the aging kinetics of 2014-aluminum matrix composites. Monterey, Calif: Naval Postgraduate School, 1991.
Find full textE, Bennett Lawrence. Aluminum structures design manual: 2004 Florida building code : with 2006 supplements. 2nd ed. [South Daytona, FL]: L.E. Bennett (P.O. Box 214368, South Daytona 32121), 2007.
Find full textK, Kokula Krishna Hari, ed. Investigations of Analysis and Fabrication of butt joint using friction stir welding of A319 Aluminum Alloy: ICIEMS 2014. India: Association of Scientists, Developers and Faculties, 2014.
Find full textK, Kokula Krishna Hari, ed. Comparative Study of Gray cast Iron and Aluminum Material of Connecting Rod for Four Stroke Single Cylinder Engine: ICIEMS 2014. India: Association of Scientists, Developers and Faculties, 2014.
Find full textK, Kokula Krshina Hari, ed. Effects of Combined Addition of Aluminum Oxide, Fly Ash, Carbon and Yttrium on Density and Hardness of ZA27 Zinc Alloy: ICIEMS 2014. India: Association of Scientists, Developers and Faculties, 2014.
Find full textInternational Symposium on Gamma Titanium Aluminides (3rd 2003 San Diego, Calif.). Gamma titanium aluminides 2003: Proceedings of symposium sponsored by the Materials & Processing Committee of ASM International Materials Science Critical Technology Sector and the High Temperature Alloys Committee and the Titanium Committee of the Structural Materials Division (SMD) of TMS (The Minetals, Metals & Materials Society), held during the TMS 2004 Annual Meeting in San Diego, California, USA March 2-6, 2003. Warrendale, Penn: TMS (Minerals, Metals & Materials Society), 2003.
Find full textN, Sharpe William, and Langley Research Center, eds. Short fatigue crack behavior in notched 2024-T3 aluminum specimens. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Find full textWoodson, Steven Wayne. An investigation of unipolar arcing at atmospheric pressure in Aluminum 2024 and aluminum coated glass slides. 1987.
Find full textBook chapters on the topic "Aluminum 2024"
Vetter, Christopher, Katherine Gohmann, Alice C. Harper, and Victoria Johnston Gelling. "Polypyrrole/Aluminum Flake Hybrids as Corrosion Inhibitors for Aluminum 2024-T3." In ACS Symposium Series, 151–63. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1050.ch011.
Full textOkoro, E., and M. N. Cavalli. "Simulated Corrosion-Fatigue via Ocean Waves on 2024-Aluminum." In Experimental and Applied Mechanics, Volume 6, 583–89. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9792-0_86.
Full textMcEvily, A. J., Masahiro Endo, S. Cho, J. Kasivitamnuay, and Hisao Matsunaga. "Fatigue Striations and Fissures in 2024-T3 Aluminum Alloy." In Materials Science Forum, 397–400. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-469-3.397.
Full textEto, Takehiko, and Manabu Nakai. "New Process-Microstructure Method for Affordable 2024 Series Aerospace Aluminum Alloys." In THERMEC 2006, 3643–48. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.3643.
Full textEvans, William Todd, George E. Cook, and Alvin M. Strauss. "Joining Aerospace Aluminum 2024-T4 to Titanium by Friction Stir Extrusion." In The Minerals, Metals & Materials Series, 79–89. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52383-5_9.
Full textHarada, Yohei, Yutaro Sada, and Shinji Kumai. "Joining of 2024 Aluminum Alloy Stud to AZ80 Magnesium Alloy Extruded Plate by Advanced High-Speed Solid-State Method." In ICAA13: 13th International Conference on Aluminum Alloys, 771–76. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118495292.ch113.
Full textMilcic, Miodrag, Tomaz Vuherer, Igor Radisavljevic, and Dragan Milcic. "Experimental Investigation of Mechanical Properties on Friction Stir Welded Aluminum 2024 Alloy." In Experimental and Numerical Investigations in Materials Science and Engineering, 44–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99620-2_4.
Full textYost, William T., and John H. Cantrell. "The Effects of Artificial Aging of Aluminum 2024 on its Nonlinearity Parameter." In Review of Progress in Quantitative Nondestructive Evaluation, 2067–73. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2848-7_265.
Full textCantrell, John H., and William T. Yost. "Nonlinear Acoustic Assessment of Precipitation-Induced Coherency Strains in Aluminum Alloy 2024." In Review of Progress in Quantitative Nondestructive Evaluation, 1361–65. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0383-1_178.
Full textMohammadi, Maysam, Ali Yazdani, Farzad Mohammadi, and Akram Alfantazi. "Corrosion Behavior of 2024 Aluminum Alloy Anodized in Sulfuric Acid Containing Inorganic Inhibitor." In Light Metals 2013, 509–13. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118663189.ch87.
Full textConference papers on the topic "Aluminum 2024"
Gilat, A., J. D. Seidt, Mark Elert, Michael D. Furnish, William W. Anderson, William G. Proud, and William T. Butler. "DYNAMIC PUNCH TESTING OF 2024-T351 ALUMINUM." In SHOCK COMPRESSION OF CONDENSED MATTER 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP, 2009. http://dx.doi.org/10.1063/1.3295239.
Full textGilat, A., J. D. Seidt, and J. M. Pereira. "Characterization of 2024-T351 Aluminum for Dynamic Loading Applications." In 11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40988(323)75.
Full textWang, Hao, Yihui Huang, Zhenying Du, Wenwu Zhang, and Mengxue Bi. "Effect of Laser Shock Peening on Electrochemical Corrosion Resistance of 2024 Aluminum Alloy." In ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/msec2016-8549.
Full textShaffer, Derek, Sean Sehman, Ihab Ragai, John T. Roth, and Bin Wang. "Effect of Electrical Current on Cold Work in Aluminum 2024." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71090.
Full textMANOEL CLEBER DE SAMPAIO ALVES, MARCOS VALÉRIO RIBEIRO, Marcel Yuzo Kondo, José Vitor Candido de Souza, Cleverson Pinheiro, and NATHALIA MAYUMI BERNARDES MIYAHARA. "Comparative analysis of performance tools in the aluminum 2024 turning." In 23rd ABCM International Congress of Mechanical Engineering. Rio de Janeiro, Brazil: ABCM Brazilian Society of Mechanical Sciences and Engineering, 2015. http://dx.doi.org/10.20906/cps/cob-2015-0132.
Full textLi, Xiaoqiang, Honghan Yu, Guiqiang Guo, and Dongsheng Li. "Single-point incremental forming of 2024-T3 aluminum alloy sheets." In NUMISHEET 2014: The 9th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes: Part A Benchmark Problems and Results and Part B General Papers. AIP, 2013. http://dx.doi.org/10.1063/1.4850103.
Full textParkhill, Robert L., and Edward T. Knobbe. "Surface texturing of aluminum alloy 2024 via excimer laser irradiation." In Photonics West '97, edited by Harry Shields and Peter E. Dyer. SPIE, 1997. http://dx.doi.org/10.1117/12.270085.
Full textZhao, Xudong, Rongshi Xiao, and Kai Chen. "Study on welding of 2024 aluminum alloy sheet with disc laser." In ICALEO® 2009: 28th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2009. http://dx.doi.org/10.2351/1.5061550.
Full textDou, Kai, Robert L. Parkhill, and Edward T. Knobbe. "Femtosecond pulse laser ablation and surface modification of aluminum alloy 2024." In Symposium on High-Power Lasers and Applications, edited by Santanu Basu, Steven J. Davis, and Ernest A. Dorko. SPIE, 2000. http://dx.doi.org/10.1117/12.384297.
Full textHu, Cai, Yu Wang, Yun-Lai Deng, and Jian-Guo Tang. "Effects of Snake Rolling on Mechanical Properties of 2024 Aluminum Alloys." In 2016 International Conference on Mechanics and Materials Science (MMS2016). WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813228177_0075.
Full textReports on the topic "Aluminum 2024"
Wang, Le-Min, and Chih-Jrn Tsai. Creep Resistance of 2024 Aluminum Alloy. Warrendale, PA: SAE International, October 2013. http://dx.doi.org/10.4271/2013-32-9110.
Full textKoch, Gerhardus H., Elise L. Hagerdorn, and Alan P. Berens. Effect of Preexisting Corrosion on Fatigue Cracking of Aluminum Alloys 2024-T3 and 7075-T6. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada430616.
Full textYu, Lingyu, and Kumar V. Jata. Review and Study of Physics Driven Pitting Corrosion Modeling in 2024-T3 Aluminum Alloys (Postprint). Fort Belvoir, VA: Defense Technical Information Center, May 2015. http://dx.doi.org/10.21236/ada624864.
Full textKay, G. Failure Modeling of Titanium-6Al-4V and 2024-T3 Aluminum with the Johnson-Cook Material Model. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/15006359.
Full textPlaczankis, Brian E., Chris E. Miller, and Craig A. Matzdorf. GM 9540P Cyclic Accelerated Corrosion Analysis of Nonchromate Conversion Coatings on Aluminum Alloys 2024, 2219, 5083, and 7075 Using DOD Paint Systems. Fort Belvoir, VA: Defense Technical Information Center, June 2003. http://dx.doi.org/10.21236/ada416876.
Full textPlaczankis, Brian E., Chris E. Miller, and Craig A. Matzdorf. GM 9540P Cyclic Accelerated Corrosion Analysis of Nonchromate Conversion Coatings on Aluminum Alloys 2024, 2219, 5083, and 7075 Using DoD Paint Systems. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada419831.
Full textWard, Lisa, Marvin Trimm, Christopher Verst, and Sean Boland. Visual Examination of Aluminum Containers for Extended Wet Storage of Non-Aluminum-Clad Spent Nuclear Fuel (FY 2021). Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1804668.
Full text