Academic literature on the topic 'Aluminum alloys. Aluminum Materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aluminum alloys. Aluminum Materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aluminum alloys. Aluminum Materials"
Wongpreedee, Kageeporn, Panphot Ruethaitananon, and Tawinun Isariyamateekun. "Interface Layers of Ag-Al Fusing Metals by Casting Processes." Advanced Materials Research 787 (September 2013): 341–45. http://dx.doi.org/10.4028/www.scientific.net/amr.787.341.
Full textMounika, G. "Closed Loop Reactive Power Compensation on a Single-Phase Transmission Line." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (June 20, 2021): 2156–59. http://dx.doi.org/10.22214/ijraset.2021.35489.
Full textIshimaru, Hajime. "Developments and Applications for All-Aluminum Alloy Vacuum Systems." MRS Bulletin 15, no. 7 (July 1990): 23–31. http://dx.doi.org/10.1557/s0883769400059212.
Full textZou, Cheng Lu, Gui Hong Geng, and Wei Ye Chen. "Development and Application of Aluminium-Lithium Alloy." Applied Mechanics and Materials 599-601 (August 2014): 12–17. http://dx.doi.org/10.4028/www.scientific.net/amm.599-601.12.
Full textMartin, J. W. "Aluminum-Lithium Alloys." Annual Review of Materials Science 18, no. 1 (August 1988): 101–19. http://dx.doi.org/10.1146/annurev.ms.18.080188.000533.
Full textHosford, William F. "The anisotropy of aluminum and aluminum alloys." JOM 58, no. 5 (May 2006): 70–74. http://dx.doi.org/10.1007/s11837-006-0027-7.
Full textHamritha, S., M. Shilpa, M. R. Shivakumar, G. Madhoo, Y. P. Harshini, and Harshith. "Study of Mechanical and Tribological Behavior of Aluminium Metal Matrix Composite Reinforced with Alumina." Materials Science Forum 1019 (January 2021): 44–50. http://dx.doi.org/10.4028/www.scientific.net/msf.1019.44.
Full textHuynh, Khanh Cong, and Luc Hoai Vo. "Modification of aluminium and aluminium alloys by AL-B master alloy." Science and Technology Development Journal 17, no. 2 (June 30, 2014): 56–66. http://dx.doi.org/10.32508/stdj.v17i2.1315.
Full textMamala, A., and W. Sciężor. "Evaluation of the Effect of Selected Alloying Elements on the Mechanical and Electrical Aluminium Properties." Archives of Metallurgy and Materials 59, no. 1 (March 1, 2014): 413–17. http://dx.doi.org/10.2478/amm-2014-0069.
Full textVisuttipitukul, Patama, Tatsuhiko Aizawa, and Hideyuki Kuwahara. "Advanced Plasma Nitriding for Aluminum and Aluminum Alloys." MATERIALS TRANSACTIONS 44, no. 12 (2003): 2695–700. http://dx.doi.org/10.2320/matertrans.44.2695.
Full textDissertations / Theses on the topic "Aluminum alloys. Aluminum Materials"
Lebeau, Thomas. "Wetting of alumina-based ceramics by aluminum alloys." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=68039.
Full textThe conventional experimental approach to wettability consists of measuring the contact angle of a drop of the liquid metal resting on flat substrate of the ceramic reinforcement materials.
This work deals with the fabrication of eutectic $ rm ZrO sb2/Al sb2O sb3 (ZA), ZrO sb2/Al sb2O sb3/TiO sb2$ (ZAT), and $ rm ZrO sb2/Al sb2O sb3/SiO sb2$ (ZAS) ceramic substrates and the study of their wetting behavior by different classes of Al alloys. Wetting experiments were performed under high vacuum or under ultra high purity Ar atmosphere. Four major variables were tested to study the wetting behavior of the different ceramic/metal systems. Variables include holding time, melt temperature, alloy and ceramic compositions.
Ceramic materials were sintered under vacuum at temperatures ranging from 1500$ sp circ$C to 1790$ sp circ$C for 2.5 hours, and achieved over 96% of the theoretical density. An experimental set-up was designed to measure in-situ contact angles using the sessile drop method. For any ceramic substrate, a temperature over 950$ sp circ$C was necessary to observe an equilibrium wetting angle less than 90$ sp circ$ with pure Al; by alloying the aluminum, wetting could be observed at lower temperatures ($ theta$ = 76-86$ sp circ$ at 900$ sp circ$C for Al-10wt%Si, $ theta sim72 sp circ$ at 850$ sp circ$C for Al-2.4wt%Mg). Finally, ZAS specimens reacted with molten Al alloys over 900$ sp circ$C to produce Zr-Al based intermetallics at the metal/ceramic interface.
Fransson, Christoffer. "Accelerated aging of aluminum alloys." Thesis, Karlstad University, Karlstad University, Karlstad University, Karlstad University, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-5041.
Full textIn order to determine storage life for aluminum alloys it is essential to have a good knowledge on the accelerated aging behavior and the mechanical properties that are affected. The selected aluminum alloys are AA2017, AA6082, AA7075 and the study has been focused on their impact toughness and hardness relation to aging beyond peak conditions. To be able to plot the mechanical properties versus aging time and temperature, Differential Scanning Calorimetric runs have been the key to obtain supporting activation energies for a specific transformation. The activation energies have been calculated according to the Kissinger method, plotted in Matlab. Arrhenius correlation has also been applied to predict the natural aging time for long time storage in 30 degrees Celsius. It could be concluded that the results from the mechanical test series show that the constructed Arrhenius 3D method did not meet the expectations to extrapolate constant activation energies down to storage life condition. Scanning electron microscopy together with light optical microscopy analyses show how important it is to apply notches in proper test specimen directions and how precipitates are grown, as it will affect impact toughness and hardness.
An ending discussion is held to explain how mechanical testing progressed and how other external issues affected the master thesis operations.
Gammage, Justin Wilkinson D. S. "Damage in heterogeneous aluminum alloys /." *McMaster only, 2002.
Find full textGustafsson, Sofia. "Corrosion properties of aluminium alloys and surface treated alloys in tap water." Thesis, Uppsala universitet, Institutionen för materialkemi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-157527.
Full textHuang, Ting-Yun Sasha. "Stability of nanostructured : amorphous aluminum-manganese alloys." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104107.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 113-122).
Nanocrystalline alloys have attracted interest for decades because of their improved mechanical strength without sacrificing ductility, but structural stability has always been an issue. In this work, bulk aluminum-manganese (Al-Mn) nanocrystalline alloys have been synthesized using room temperature ionic liquid electrodeposition, by which various nanostructures and dual-phase structures can be created by controlling the Mn solute incorporation level. The manganese exhibits grain boundary segregation in the Al-Mn solid solution in the as-deposited condition, which contributes to enhanced stability of the nanostructure. The grain boundary properties of the nanostructured alloys were studied via three dimensional atom probe tomography and aberration-corrected scanning electron microscopy. The segregation energies were calculated based on the experimental results and compared with the values calculated from a thermodynamic-based segregation model. Upon heating of the nanostructured and dual-phase alloys, a variety of complex phase transformations occur. A combination of X-ray diffraction, transmission electron microscopy, as well as differential scanning calorimetry were employed to understand the phase transformation mechanisms and grain growth processes. A Johnson-Mehl-Avrami-Kolmogorov analytical model was proposed as a descriptive method to explain the phase transformation sequence. Using the parameters extracted from the analytical model, predictive time-temperature transformation diagrams were constructed. The stability region of the alloy in time-temperature space is thus established, providing a simple way to evaluate nanostructure stability.
by Ting-Yun Sasha Huang.
Ph. D.
Liu, Li. "Évaluation de la propreté des alliages d'aluminium de fonderie A356.2 et C357 à l'aide de la technique PoDFA /." Thèse, Chicoutimi : Université du Québec à Chicoutimi, 1997. http://theses.uqac.ca.
Full textOzbakir, Erol. "Development of aluminum alloys for diesel-engine applications." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=32568.
Full textLa diminution du poids des véhicules résulte dans l'apport important de bénéfices au niveau de l'économie d'essence, la réduction des gaz à effets de serre aussi bien que l'amélioration du rendement du véhicule. Le matériau principal présentement utilisé pour la fabrication de la tête et du bloc moteur est la fonte ductile. Le remplacement de la fonte par des alliages d'aluminium va conduire vèrs une diminution (30-40%) significative du poids. Les alliages d'aluminium de coulée actuels laissent voir dans le temps un ramolissement du métal lorsque les températures d'opération du moteur exèdent 200ºC. Ce phénomène provoquera à plus ou moins brève échéance un bris prématuré du moteur diésel. Deux nouveaux alliages développés à partir de l'alliage commercial A356 sont présentés dans les termes suivants : microstructure, fluage, comportement au vieillissement et propriétés de traction à des températures élevées. L'alliage contenant les deux groupes d'éléments soit péritectiques (Cr, Zr et Mn) dans un premier temps et pour le durcissement structural par le vieillissement (Cu et Mg) dans un second temps, démontre une réponse supérieure au vieillissement à la température de 200ºC pour une période de 200 heures et de meilleures propriétés de fluage à la température de 300ºC pour une période de 300 heures. De façon plus intéressant, l'alliage possède de meilleures propriétés de traction (161MPa) à 250ºC avec une ductilité adéquate comparativement aux alliages de bloc moteur fabriqués à partir des alliages A356 et A356 + Cu. L'amélioration des propriétés mécaniques est ainsi attribuable aux nouveaux précipit
Fauré, Philippe L. "Aluminium : production processes and architectural application." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63919.
Full textDiewwanit, Ittipon. "Semi-solid processing of hypereutectic aluminum-silicon alloys." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10860.
Full textOh, Se-Yong. "Wetting of ceramic particulates with liquid aluminum alloys." Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/14643.
Full textBooks on the topic "Aluminum alloys. Aluminum Materials"
McQueen, H. J. Hot deformation and processing of aluminum alloys. Boca Raton: CRC Press, 2011.
Find full textAluminum-Lithium Symposium (1987 Los Angeles, Calif.). Aluminum-lithium alloys: Design, development and application update : proceedings of the 1987 Aluminum-Lithium Symposium. Metals Park, Ohio: ASM International, 1988.
Find full textDresvi︠a︡nnikov, A. F. Fizikokhimii︠a︡ nanostrukturirovannykh ali︠u︡miniĭsoderzhashchikh materialov. Kazanʹ: FĂN Akademii︠a︡ nauk RT, 2007.
Find full textJokinen, Antero. Fabrication and properties of powder metallugical and cast aluminium alloy matrix composite products. Espoo, Finland: Technical Research Centre of Finland, 1993.
Find full textIllarionov, Ė. I. Ali︠u︡minievye splavy v aviakosmicheskoĭ tekhnike. Moskva: Nauka, 2001.
Find full textEdwards, P. R. Short-crack growth behaviour in various aircraft materials. Neuilly sur Seine, France: AGARD, 1990.
Find full textEdwards, P. R. Short-crack growth behaviour in various aircraft materials. Neuilly sur Seine: Agard, 1990.
Find full textW. G. J. 't Hart. Residual strength of damage tolerant aluminium-lithium sheet materials (NLR contribution to BREU 3250, Task 3). Amsterdam: National Aerospace Laboratory, 1992.
Find full textStarke, E. A. NASA-UVa Light Aerospace Alloy and Structure Technology Program supplement: aluminum-based materials for high speed aircraft. Hampton, Va: Langley Research Center, 1993.
Find full textYin, Weimin. Aluminum alloys: Fabrication, characterization and applications II : proceedings of symposia sponsored by the Light Metals Division of the Minerals, Metals & Materials Society (TMS) : held during TMS 2009 annual meeting & exhibition, San Francisco, California, USA, February 15-19, 2009. Warrendale, PA: TMS, 2009.
Find full textBook chapters on the topic "Aluminum alloys. Aluminum Materials"
Kammer, Catrin. "Aluminum and Aluminum Alloys." In Springer Handbook of Materials Data, 161–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69743-7_6.
Full textvon Hehl, Axel, and Peter Krug. "Aluminum and Aluminum Alloys." In Structural Materials and Processes in Transportation, 49–112. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527649846.ch2.
Full textKobayashi, Toshiro. "Wrought Aluminum Alloys." In Strength and Toughness of Materials, 111–40. Tokyo: Springer Japan, 2004. http://dx.doi.org/10.1007/978-4-431-53973-5_6.
Full textKobayashi, Toshiro. "Cast Aluminum Alloys." In Strength and Toughness of Materials, 141–61. Tokyo: Springer Japan, 2004. http://dx.doi.org/10.1007/978-4-431-53973-5_7.
Full textCho, Jae Hyung, Suk Hoon Kang, Kyu Hwan Oh, Heung Nam Han, and Suk Bong Kang. "Friction Stir Weld Modeling of Aluminum Alloys." In Advanced Materials Research, 999–1002. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-463-4.999.
Full textZervaki, A. D., and G. N. Haidenmenopoulos. "Laser Welding of 6xxx Series Aluminum Alloys." In Materials for Transportation Technology, 141–49. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527606025.ch24.
Full textKermanidis, Alexis T. "Aircraft Aluminum Alloys: Applications and Future Trends." In Revolutionizing Aircraft Materials and Processes, 21–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35346-9_2.
Full text"Aluminum and Aluminum Alloys." In Metallic Materials. CRC Press, 2003. http://dx.doi.org/10.1201/9780203912423.ch19.
Full text"Aluminum Alloys." In Lightweight Materials, 33–139. ASM International, 2012. http://dx.doi.org/10.31399/asm.tb.lmub.t53550033.
Full textStarke, E. A., and H. M. M. A. Rashed. "Alloys: Aluminum." In Reference Module in Materials Science and Materials Engineering. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-803581-8.09210-9.
Full textConference papers on the topic "Aluminum alloys. Aluminum Materials"
Sakamoto, H., K. Shibata, and F. Dausinger. "Laser welding of different aluminum alloys." In ICALEO® ‘92: Proceedings of the Laser Materials Processing Symposium. Laser Institute of America, 1992. http://dx.doi.org/10.2351/1.5058523.
Full textBHATT, D., and R. LEDERICH. "Superplastic forming of high-strength aluminum alloys." In 26th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-748.
Full textLarsen-Basse, J., and Sanjeev Jain. "Aluminum Alloys as Potential O.T.E.C. Heat Exchanger Materials." In OCEANS '86. IEEE, 1986. http://dx.doi.org/10.1109/oceans.1986.1160547.
Full textDedyukhin, A. S., E. A. Kharina, A. V. Shchetinskiy, V. A. Volkovich, and L. F. Yamshchikov. "Lanthanum solubility in gallium-aluminum liquid alloys." In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002962.
Full textChirita, G., I. Stefanescu, D. Soares, D. Cruz, F. S. Silva, Glaucio H. Paulino, Marek-Jerzy Pindera, et al. "Centrifugal Casting Features∕Metallurgical Characterization of Aluminum Alloys." In MULTISCALE AND FUNCTIONALLY GRADED MATERIALS 2006. AIP, 2008. http://dx.doi.org/10.1063/1.2896847.
Full textvan der Veen, Sjoerd, Christophe Sigli, and Raphael Muzzolini. "Optimizing New Aluminum Alloys Through Computer Simulation." In 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-1851.
Full textCHELLMAN, D., J. EKVALL, L. BAKOW, and R. FLORES. "Compression crippling behavior of elevated temperature aluminum alloys." In 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-975.
Full textEKVALL, J., and D. CHELLMAN. "Ingot metallurgy aluminum - Lithium alloys for aircraft structure." In 27th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-890.
Full textEKVALL, J., R. RAINEN, D. CHELLMAN, R. FLORES, and M. GERSBACH. "Elevated temperature aluminum alloys for advanced fighter aircraft." In 30th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1407.
Full textTarasov, Sergei. "Minkowski functionals and fractography of aluminum alloys." In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016: Proceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4966517.
Full textReports on the topic "Aluminum alloys. Aluminum Materials"
John F Wallace, David Schwam, and Wen Hong dxs11@po.cwru.edu. Mold Materials For Permanent Molding of Aluminum Alloys. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/791424.
Full textViswanathan, S. Lightweight materials for automotive applications/topic 2: Wear resistant aluminum alloy. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/594435.
Full textMcCray, Daniel B., Jeffrey A. Smith, Kara M. Storage, Erik R. Ripberger, Megan D. Shouse, and James J. Mazza. Nonmetallic Materials Supportability. Task Order 0001: Nonmetallic Materials Supportability Project (1-052): The Evaluation of Two-Part Epoxy Paste Adhesives for Repair Bonding of Aluminum Alloys. Fort Belvoir, VA: Defense Technical Information Center, October 2011. http://dx.doi.org/10.21236/ada597056.
Full textSikka, V. K., G. M. Goodwin, and D. J. Alexander. Low-aluminum content iron-aluminum alloys. Office of Scientific and Technical Information (OSTI), June 1995. http://dx.doi.org/10.2172/115407.
Full textPurtscher, P. T., M. Austin, S. Kim, and D. Rule. Aluminum-lithium alloys :. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.3986.
Full textNieh, T. G. Superplasticity in aluminum alloys. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/574532.
Full textDavenport, J. W., N. Chetty, R. B. Marr, S. Narasimhan, J. E. Pasciak, R. F. Peierls, and M. Weinert. First principles pseudopotential calculations on aluminum and aluminum alloys. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10112660.
Full textPeacock, H., and R. Frontroth. Properties of aluminum-uranium alloys. Office of Scientific and Technical Information (OSTI), August 1989. http://dx.doi.org/10.2172/5462232.
Full textSunwoo, A. J. Diffusion bonding of superplastic aluminum alloys. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10144113.
Full textLee, E. U., R. Taylor, C. Lei, B. Pregger, and E. Lipnickas. Stress Corrosion Cracking of Aluminum Alloys. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada568598.
Full text