Academic literature on the topic 'Aluminum Materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aluminum Materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aluminum Materials"
MIZOGUCHI, Kentaro. "Aluminum architectural materials." Journal of Japan Institute of Light Metals 35, no. 1 (1985): 57–67. http://dx.doi.org/10.2464/jilm.35.57.
Full textYao, Guang Chun, Huan Liu, and Bin Na Song. "The Progress in Aluminum Foam Research in China." Advanced Materials Research 457-458 (January 2012): 253–56. http://dx.doi.org/10.4028/www.scientific.net/amr.457-458.253.
Full textOCHIAI, Shojiro, and Kozo OSAMURA. "Aluminum matrix composite materials." Journal of Japan Institute of Light Metals 38, no. 10 (1988): 685–94. http://dx.doi.org/10.2464/jilm.38.685.
Full textPlumb, James W. "Recycling aluminum packaging materials." JOM 44, no. 12 (December 1992): 28. http://dx.doi.org/10.1007/bf03223192.
Full textKovtunov, A. I., Yu Yu Khokhlov, and S. V. Myamin. "Aluminum-Lead Composite Materials." Metal Science and Heat Treatment 59, no. 1-2 (May 2017): 72–75. http://dx.doi.org/10.1007/s11041-017-0105-1.
Full textStein, Andreas, and Brian Holland. "Aluminum-containing mesostructural materials." Journal of Porous Materials 3, no. 2 (June 1996): 83–92. http://dx.doi.org/10.1007/bf01186037.
Full textChen, Ting Yi, Wen Lu, Wei Liu, Ya Dian Xie, and Ye Qi Fu. "Preparation of Purity Al2O3 for LED Sapphire Materials by Ammonium Aluminum Sulfate and its Performance." Advanced Materials Research 1053 (October 2014): 50–55. http://dx.doi.org/10.4028/www.scientific.net/amr.1053.50.
Full textMohamed, M. A., M. E. Kassim, and E. A. El-katatny. "Optimization of the extraction of aluminum sulfate and ammonium aluminum sulfate alums from aluminum dross tailings." Journal of Materials Research 13, no. 4 (April 1998): 1075–83. http://dx.doi.org/10.1557/jmr.1998.0149.
Full textSheller, Mimi. "Global Energy Cultures of Speed and Lightness: Materials, Mobilities and Transnational Power." Theory, Culture & Society 31, no. 5 (June 27, 2014): 127–54. http://dx.doi.org/10.1177/0263276414537909.
Full textWongpreedee, Kageeporn, Panphot Ruethaitananon, and Tawinun Isariyamateekun. "Interface Layers of Ag-Al Fusing Metals by Casting Processes." Advanced Materials Research 787 (September 2013): 341–45. http://dx.doi.org/10.4028/www.scientific.net/amr.787.341.
Full textDissertations / Theses on the topic "Aluminum Materials"
Lebeau, Thomas. "Wetting of alumina-based ceramics by aluminum alloys." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=68039.
Full textThe conventional experimental approach to wettability consists of measuring the contact angle of a drop of the liquid metal resting on flat substrate of the ceramic reinforcement materials.
This work deals with the fabrication of eutectic $ rm ZrO sb2/Al sb2O sb3 (ZA), ZrO sb2/Al sb2O sb3/TiO sb2$ (ZAT), and $ rm ZrO sb2/Al sb2O sb3/SiO sb2$ (ZAS) ceramic substrates and the study of their wetting behavior by different classes of Al alloys. Wetting experiments were performed under high vacuum or under ultra high purity Ar atmosphere. Four major variables were tested to study the wetting behavior of the different ceramic/metal systems. Variables include holding time, melt temperature, alloy and ceramic compositions.
Ceramic materials were sintered under vacuum at temperatures ranging from 1500$ sp circ$C to 1790$ sp circ$C for 2.5 hours, and achieved over 96% of the theoretical density. An experimental set-up was designed to measure in-situ contact angles using the sessile drop method. For any ceramic substrate, a temperature over 950$ sp circ$C was necessary to observe an equilibrium wetting angle less than 90$ sp circ$ with pure Al; by alloying the aluminum, wetting could be observed at lower temperatures ($ theta$ = 76-86$ sp circ$ at 900$ sp circ$C for Al-10wt%Si, $ theta sim72 sp circ$ at 850$ sp circ$C for Al-2.4wt%Mg). Finally, ZAS specimens reacted with molten Al alloys over 900$ sp circ$C to produce Zr-Al based intermetallics at the metal/ceramic interface.
Panchula, Martin Lawrence. "Synthesis and sintering of nanocrystalline alumina and aluminum nitride." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85366.
Full textCross, Peggi Sue 1960. "The synthesis of aluminum hydrous oxide from aluminum acetylacetonate." Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/277276.
Full textAllen, Susan Marie. "Effect of alumina particle additions of the aging kinetics of 6061 aluminum matrix composites." Thesis, Monterey, California : Naval Postgraduate School, 1990. http://handle.dtic.mil/100.2/ADA238052.
Full textThesis Advisor(s): Dutta, I. "June 1990." Description based on title screeen viewed on October 15, 2009. DTIC Descriptor(s): Scanning, aging(materials), composite materials, growth(general), thermal stability, phase, particles, aluminum oxides, electrical resistance, kinetics, hardness, metastable state, isotherms, calorimetry, protective treatments, addition, measurement DTIC Indicator(s): Aluminum matrix composites. Author(s) subject terms: Aluminum matrix composites. Includes bibliographical references (p. 54-56). Also available in print.
Lin, Ching-Te 1967. "Microstructure, texture, and hardness gradients in aluminum diffusion-bonded to aluminum oxide." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50351.
Full textPoirier, Dominique. "Fabrication of aluminum based nanomaterials." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66642.
Full textLes applications structurales du secteur des transports nécessitent des matériaux avec des résistances mécaniques et des rigidités spécifiques élevées. Avec sa faible densité, l'aluminium s'avère un candidat de choix. Par contre, pour favoriser son utilisation, l'augmentation des propriétés spécifiques est nécessaire.Dans ce projet, le potentiel et les limitations des nanorenforts pour l'augmentation de la résistance mécanique de l'aluminium ont été évalués. Pour ce faire, des composites à matrice d'aluminium renforcés par nanotubes de carbone (CNTs) et alumine nanométrique (n-Al2O3) ont été fabriqués par métallurgie des poudres. Il a été constaté que le broyage mécanique disperse de manière homogène l'alumine nanométrique dans l'aluminium. En plus, le broyage mécanique offre l'avantage de renforcer la matrice d'aluminium par affinement des grains et écrouissage en plus de procurer un durcissement par solution solide et par précipitation. Par contre, les nanotubes de carbone sont endommagés par le broyage et il n'est pas possible d'obtenir une dispersion homogène des nanotubes dans l'aluminium par l'utilisation d'un dispersant chimique.La consolidation des nanocomposites présente aussi de nombreux défis puisque le pressage à chaud ne permet pas un bon frittage, provoque la croissance des grains et mène à la formation de carbures à partir des nanotubes endommagés. La pulvérisation à froid des poudres composites Al2O3/Al a quant à elle produit un revêtement poreux avec une dureté réduite.La microdureté et les propriétés mécaniques en compression du nanocomposite Al2O3/Al produit par broyage mécanique suivi d'un pressage à chaud ont été mesurées. La comparaison de ces résultats avec les valeurs modélisées et celles provenant de la littérature indique que le gain en limite d'élasticité obtenu expérimentalement avec l'addition d'alumine nanom
Fransson, Christoffer. "Accelerated aging of aluminum alloys." Thesis, Karlstad University, Karlstad University, Karlstad University, Karlstad University, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-5041.
Full textIn order to determine storage life for aluminum alloys it is essential to have a good knowledge on the accelerated aging behavior and the mechanical properties that are affected. The selected aluminum alloys are AA2017, AA6082, AA7075 and the study has been focused on their impact toughness and hardness relation to aging beyond peak conditions. To be able to plot the mechanical properties versus aging time and temperature, Differential Scanning Calorimetric runs have been the key to obtain supporting activation energies for a specific transformation. The activation energies have been calculated according to the Kissinger method, plotted in Matlab. Arrhenius correlation has also been applied to predict the natural aging time for long time storage in 30 degrees Celsius. It could be concluded that the results from the mechanical test series show that the constructed Arrhenius 3D method did not meet the expectations to extrapolate constant activation energies down to storage life condition. Scanning electron microscopy together with light optical microscopy analyses show how important it is to apply notches in proper test specimen directions and how precipitates are grown, as it will affect impact toughness and hardness.
An ending discussion is held to explain how mechanical testing progressed and how other external issues affected the master thesis operations.
Lofstrom, geoff. "Solid Salt Fluxing of Molten Aluminum." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1372269556.
Full textGammage, Justin Wilkinson D. S. "Damage in heterogeneous aluminum alloys /." *McMaster only, 2002.
Find full textHoegh, Harald 1976. "An economic analysis of aluminum sheet production and prospects of aluminum for the automotive unibody." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/67167.
Full textIncludes bibliographical references (p. 48).
In order to lower fuel consumption and reduce emissions, aluminum is being considered as an alternative to steel in large scale production of autobodies. This study evaluates the prospects of aluminum sheets as a cost efficient alternative to steel in autobodies with the unibody design. The study focuses on the processing technologies and alloy selection for aluminum automotive sheets and looks at the impact of these on the total part forming cost of the unibody. Technical cost modeling was used to analyze the costs of traditional direct chill casting and subsequent rolling of aluminum alloy sheet and compared the technology to the alternative continuous casting fabrication method. A change to continuous casting displayed large potential cost savings and was believed to be crucial in order for aluminum to be competitive with steel. A large cost penalty is associated with the alloying and heat treatment of 6xxx series sheet for outer body panels as opposed to 5xxx series sheet for interior panels. Changes in production method for 6xxx series sheet or a replacement by 5xxx series sheet will have large impact on the cost of the autobody. The volatility in the price of aluminum ingot has a critical influence on the price of sheet. Changes in the price level have been shown to be equally critical for the final sheet cost as substantial technical improvements. Recent developments of high strength steel have shown promise for substantial weight reduction in steel automobiles and make the challenge even greater for aluminum as its possible successor.
by Harald Hoegh.
S.B.
Books on the topic "Aluminum Materials"
J, O'Connor D. Alumina extraction from non bauxtic materials. Düsseldorf: Aluminium-Verlag, 1988.
Find full textAssociation, Aluminum. Aluminum automotive extrusion manual. Washington, D.C: Aluminum Association, 1998.
Find full textAssociation, Aluminum. Automotive aluminum crash energy management manual. Washington, D.C: Aluminum Association, 1998.
Find full textG, Davis E. Evaluation of refractories for aluminum recycling furnaces. Pittsburgh, Pa: U.S. Dept. of the Interior, Bureau of Mines, 1988.
Find full textEdwards, P. R. Short-crack growth behaviour in various aircraft materials. Neuilly sur Seine, France: AGARD, 1990.
Find full textEdwards, P. R. Short-crack growth behaviour in various aircraft materials. Neuilly sur Seine: Agard, 1990.
Find full textPotter, Michael J. Kyanite and related materials: A chapter from Mineral facts and problems, 1985 edition. [Washington, D.C.?]: U.S. Dept. of the Interior, Bureau of Mines, 1985.
Find full textKolkman, H. J. Stress corrosion resistance of damage tolerant aluminum-lithium sheet materials. Amsterdam: National Aerospace Laboratory, 1991.
Find full textZhang, H. Materials used in the Hall-Heroult Cell for aluminum production. Warrendale, Pa: Minerals, Metals & Materials Society, 1994.
Find full textGoldin, B. A. Keramika na osnove prirodnykh ali︠u︡mo- i kalʹt︠s︡iĭmagnievykh silikatov. Ekaterinburg: Izd-vo Komi nauchnogo t︠s︡entra UrORAN, 2003.
Find full textBook chapters on the topic "Aluminum Materials"
Baker, Ian. "Aluminium/Aluminum." In Fifty Materials That Make the World, 5–9. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78766-4_2.
Full textKammer, Catrin. "Aluminum and Aluminum Alloys." In Springer Handbook of Materials Data, 161–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69743-7_6.
Full textvon Hehl, Axel, and Peter Krug. "Aluminum and Aluminum Alloys." In Structural Materials and Processes in Transportation, 49–112. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527649846.ch2.
Full textYu, Yan, and Yu Zhong Ruan. "Activated Alumina Adsorbent Developed from Waste Aluminum Sludge." In Key Engineering Materials, 1886–88. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.1886.
Full textYurkov, Andrey. "Refractories and Heat Insulation Materials for Cast Houses." In Refractories for Aluminum, 229–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53589-0_3.
Full textYurkov, Andrey. "The Properties of Refractory and Heat Insulation Materials." In Refractories for Aluminum, 1–73. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53589-0_1.
Full textKobayashi, Toshiro. "Wrought Aluminum Alloys." In Strength and Toughness of Materials, 111–40. Tokyo: Springer Japan, 2004. http://dx.doi.org/10.1007/978-4-431-53973-5_6.
Full textKobayashi, Toshiro. "Cast Aluminum Alloys." In Strength and Toughness of Materials, 141–61. Tokyo: Springer Japan, 2004. http://dx.doi.org/10.1007/978-4-431-53973-5_7.
Full textYurkov, Andrey. "Refractories and Carbon Cathode Materials for Aluminum Reduction Cells." In Refractories for Aluminum, 75–227. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53589-0_2.
Full textKo, Young H., Se Hun Chang, Ik Hyun Oh, Jae Ik Cho, and Chang Seog Kang. "Joining of Aluminum Foam/Aluminum Metal by Spark Plasma Sintering Process." In Advanced Materials Research, 1349–52. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-463-4.1349.
Full textConference papers on the topic "Aluminum Materials"
Zhong, Z. W., N. P. Hung, and J. C. Wong. "DUCTILE-MODE MACHINING OF ALUMINA / ALUMINUM COMPOSITE." In Processing and Fabrication of Advanced Materials VIII. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811431_0102.
Full textKissell, Randy. "Three Aluminum Design Codes: Materials, Connections." In Structures Congress 2001. Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40558(2001)139.
Full textKawali, S. M., G. L. Viegelahn, and R. Scheuerman. "Laser welding of alumina reinforced 6061 aluminum alloy composite." In ICALEO® ‘91: Proceedings of the Laser Materials Processing Symposium. Laser Institute of America, 1991. http://dx.doi.org/10.2351/1.5058436.
Full textMitina, N. A., A. A. Zemnickaya, S. A. Boriskin, K. V. Larina, and A. A. Ditts. "Obtaining heat-conducting materials from aluminum nitride." In 2012 7th International Forum on Strategic Technology (IFOST). IEEE, 2012. http://dx.doi.org/10.1109/ifost.2012.6357549.
Full textSanders, R. E., and C. L. Wood. "Aluminum Automotive Recycling and Materials Selection Issues." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/930493.
Full textCola, Baratunde A., Xianfan Xu, and Timothy S. Fisher. "Aluminum Foil/Carbon Nanotube Thermal Interface Materials." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32815.
Full textMontanari, Danielle E., Nathan Dean, Pete E. Poston, Steve Blair, and Joel M. Harris. "UV fluorescence enhancement from nanostructured aluminum materials." In SPIE Nanoscience + Engineering, edited by Gilles Lérondel, Satoshi Kawata, and Yong-Hoon Cho. SPIE, 2016. http://dx.doi.org/10.1117/12.2239108.
Full textSuprapto, Suprapto, Yatim Lailun Ni’mah, Ita Ulfin, Harmami Harmami, Fredy Kurniawan, Djarot Sugiarso, Hendro Juwono, Kiki Cahayati Hidayatulloh, and Gayu Septiandini. "Optimization of aluminum recovery from aluminum smelting waste using the surface response methodology." In PROCEEDINGS OF THE 3RD INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2019): Exploring New Innovation in Metallurgy and Materials. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0002649.
Full textMalakhov, A. Iu, A. E. Perekrestov, and V. A. Perekrestova. "Obtaining wear-resistant coatings on aluminum-containing materials." In ТЕНДЕНЦИИ РАЗВИТИЯ НАУКИ И ОБРАЗОВАНИЯ. НИЦ «Л-Журнал», 2019. http://dx.doi.org/10.18411/lj-01-2019-131.
Full textClaar, T. Dennis, Chin-Jye Yu, Ian Hall, John Banhart, Joachim Baumeister, and Wolfgang Seeliger. "Ultra-Lightweight Aluminum Foam Materials for Automotive Applications." In SAE 2000 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-0335.
Full textReports on the topic "Aluminum Materials"
John F Wallace, David Schwam, and Wen Hong dxs11@po.cwru.edu. Mold Materials For Permanent Molding of Aluminum Alloys. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/791424.
Full textKhanna, Shiv N. Aluminum Cluster-Based Materials for Propulsion and Other Applications. Fort Belvoir, VA: Defense Technical Information Center, April 2012. http://dx.doi.org/10.21236/ada578557.
Full textKhanna, Shiv N. Aluminum Cluster-Based Materials for Propulsion and Other Applications. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada640103.
Full textHaggerty, J. S., and D. R. Sadoway. Investigation of materials for inert electrodes in aluminum electrodeposition cells. Office of Scientific and Technical Information (OSTI), September 1987. http://dx.doi.org/10.2172/5743785.
Full textVigil, M. G. Precision Linear Shaped Charge designs for severance of aluminum materials. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10121620.
Full textSadoway, D. R. Advanced materials for the energy efficient production of aluminum. Final report. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10147562.
Full textViswanathan, S. Lightweight materials for automotive applications/topic 2: Wear resistant aluminum alloy. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/594435.
Full textBowen, Jr, and Kit H. Toward the Development of Aluminum Cluster-Containing Materials for Propulsion Applications. Fort Belvoir, VA: Defense Technical Information Center, February 2011. http://dx.doi.org/10.21236/ada563725.
Full textFarrell, K. Assessment of aluminum structural materials for service within the ANS reflector vessel. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/201578.
Full textSchilling, C. H., and G. L. Graff. Immersion tests of TiB/sub 2/-based materials for aluminum processing applications. Office of Scientific and Technical Information (OSTI), July 1988. http://dx.doi.org/10.2172/7089343.
Full text