Academic literature on the topic 'Aluminum silicon carbide metal matrix composites'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aluminum silicon carbide metal matrix composites.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aluminum silicon carbide metal matrix composites"

1

Velavan, K., and K. Palanikumar. "Effect of Silicon Carbide (SiC) on Stir Cast Aluminium Metal Matrix Hybrid Composites – A Review." Applied Mechanics and Materials 766-767 (June 2015): 293–300. http://dx.doi.org/10.4028/www.scientific.net/amm.766-767.293.

Full text
Abstract:
Nowadays, the usage of metal matrix composites is increased in aero space, automotive, marine, electronic and manufacturing industries. Aluminum metal matrix composites have attained significant attention due to their good mechanical properties like strength, stiffness, abrasion and impact resistant, corrosion resistance. When compared to the conventional materials Aluminum Silicon Carbide (AlSiC) hybrid materials available in minimum cost. In the present study, based on the literature review, the individual Silicon Carbide with aluminum and combined influence of Silicon Carbide with graphite reinforcements Aluminium Metal Matrix Composites and Silicon Carbide with mica reinforcement Aluminum is studied. The monolithic composite materials are combined in different compositions by stir casting fabrication techniques, to produce composite materials. The literature review framework in this paper provides a clear overview of the usage of Graphite and Mica as a reinforcing agent in different composition matrices along with its distinctive performances.
APA, Harvard, Vancouver, ISO, and other styles
2

Souvignier, C. W., T. B. Sercombe, S. H. Huo, P. Calvert, and G. B. Schaffer. "Freeform fabrication of aluminum metal-matrix composites." Journal of Materials Research 16, no. 9 (September 2001): 2613–18. http://dx.doi.org/10.1557/jmr.2001.0359.

Full text
Abstract:
A series of metal-matrix composites were formed by extrusion freeform fabrication of a sinterable aluminum alloy in combination with silicon carbide particles and whiskers, carbon fibers, alumina particles, and hollow flyash cenospheres. Silicon carbide particles were most successful in that the composites retained high density with up to 20 vol% of reinforcement and the strength approximately doubles over the strength of the metal matrix alone. Comparison with simple models suggests that this unexpectedly high degree of reinforcement can be attributed to the concentration of small silicon carbide particles around the larger metal powder. This fabrication method also allows composites to be formed with hollow spheres that cannot be formed by other powder or melt methods.
APA, Harvard, Vancouver, ISO, and other styles
3

Thirupathaiah, C., and Sanjeev Reddy K. Hudgikar. "Effect of Silicon Carbide Boron Carbide and Fly-Ash Particles on Aluminium Metal Matrix Composite." Advances in Science and Technology 106 (May 2021): 26–30. http://dx.doi.org/10.4028/www.scientific.net/ast.106.26.

Full text
Abstract:
The current paper deals about the fabrication of composite material is to combine the desirable attributes of metals and ceramics. Aluminium 6063 used as a base material in combination with the Silicon carbide ,Boron carbide and fly-ash were used as reinforcement material. Our intention is to increased or enhanced properties of pure Aluminium 6063 by addition of Silicon Carbide ,Boron Carbide and fly-ash. The process of fabrication composite material is prepared by using stir casting method. In this paper, addition of Silicon Carbide 1% , Boron Carbide 1% and fly-ash1% with aluminium increasing percentage ratio the mechanical properties of composite material is enhanced, so it is clear that the effect of Silicon Carbide , Boron Carbide and fly-ash were helpful to increasing properties of pure Aluminium by addition. The influence of reinforced ratio of silicon carbide, Boron carbide and fly-ash particles on mechanical behavior was examined. The effect of different weight percentage of silicon carbide, Boron carbide and fly-ash in composite on tensile strength, hardness, microstructure was studied. It was observed that the hardness & tensile strength of the composites increased with increasing reinforcement elements addition in it. The distribution of silicon carbide, Boron carbide and fly-ash particles was uniform in aluminum.
APA, Harvard, Vancouver, ISO, and other styles
4

Sulardjaka, Sri Nugroho, Suyanto, and Deni Fajar Fitriana. "Investigation of Mechanical Properties of Al7Si/ SiC and Al7SiMg/SiC Composites Produced by Semi Solid Stir Casting Technique." MATEC Web of Conferences 159 (2018): 02036. http://dx.doi.org/10.1051/matecconf/201815902036.

Full text
Abstract:
Mechanical characteristic of silicon carbide particle reinforced aluminum matrix composites produced by semi solid stir casting technique was investigated. Al7Si and Al7SiMg were used as metal matrix. High purity silicon carbida with average particle size mesh 400 was used as reinforcement particle. Aluminum matrix composites with variation of SiC: 5 %, 7.5 % and 10 % wt were manufactured by the semi solid stir casting technique. Stiring process was performed by 45 ° degree carbide impeller at rotation of 600 rpm and temperature of 570 °C for 15 minutes. Characteritation of composites speciment were: microscopic examination, density, hardness, tensile and impact test. Hardness and density were tested randomly at top, midlle and bottom of composites product. Based on distribution of density, distribution of hardness and SEM photomicrograph, it can be concluded that semisolid stir casting produces the uniform distribution of particles in the matrix alloy. The results also indicate that introducing SiC reinforcement in aluminum matrix increases the hardness of Al7Si composite and Al7SiMg composite. Calculated porosities increases with increasing wt % of SiC reinforcements in composite. The addition of 1 % Mg also increases the hardness of composites, reduces porosities of composite and enhances the mechanical properties of composites.
APA, Harvard, Vancouver, ISO, and other styles
5

Shrivastava, Anil K., Kalyan K. Singh, and Amit R. Dixit. "Tribological properties of Al 7075 alloy and Al 7075 metal matrix composite reinforced with SiC, sliding under dry, oil lubricated, and inert gas environments." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 232, no. 6 (August 18, 2017): 693–98. http://dx.doi.org/10.1177/1350650117726631.

Full text
Abstract:
Tribological properties of silicon carbide-based aluminum metal matrix composite and aluminum matrix alloy have been studied for various sliding speeds of 3.14 and 3.77 m/s and load range from 10 to 30 N under dry, lubricated, and inert gas (argon) environment. Pin-on-disk tribometer were used for experiments. The composite was fabricated by stir casting route by using aluminum 7075 alloy as the matrix and 10% by weight silicon carbide as reinforced material. Results have revealed that the value of coefficient of friction is found to be maximum in case of inert condition in matrix alloy at sliding speed 3.77 m/s and minimum in case of lubricated condition in composite at sliding speed 3.14 m/s. The wear rate is least for both the alloy and the composite under lubricated condition compared with dry and inert condition. Wear rate increases with the normal load and sliding speed and it is maximum in inert condition of matrix alloy at 30 N. Uniform distribution of silicon carbide in aluminum matrix alloy reduces the values of coefficient of friction and wear rate for composites compared to aluminum matrix alloy under dry, lubricated, and inert condition which increases the life of the composites for longer duration. Silicon carbide significantly improves the strength the aluminum matrix alloy in dry, lubricated, and inert condition and acts as load-bearing members.
APA, Harvard, Vancouver, ISO, and other styles
6

Maruyama, Benji, and Fumio S. Ohuchi. "H2O catalysis of aluminum carbide formation in the aluminum-silicon carbide system." Journal of Materials Research 6, no. 6 (June 1991): 1131–34. http://dx.doi.org/10.1557/jmr.1991.1131.

Full text
Abstract:
Aluminum carbide was found to form catalytically at aluminum-silicon carbide interfaces upon exposure to water vapor. Samples, composed of approximately 2 nm thick layers of Al on SiC, were fabricated and reacted in vacuo, and analyzed using XPS. Enhanced carbide formation was detected in samples exposed to 500 Langmuirs H2O and subsequently reacted for 600 s at 873 K. The cause of the catalysis phenomenon is hypothesized to be the weakening of silicon-carbon bonds caused by very strong bonding of oxygen atoms to the silicon carbide surface. Aluminum carbide formation is of interest because of its degrading effect on the mechanical properties of aluminum/silicone carbide reinforced metal matrix composites, as well as its effect on the electrical properties of aluminum metallizations on silicon carbide layers in microelectronic components.
APA, Harvard, Vancouver, ISO, and other styles
7

Yadav, Govind, R. S. Rana, R. K. Dwivedi, and Ankur Tiwari. "Development and Analysis of Automotive Component Using Aluminium Alloy Nano Silicon Carbide Composite." Applied Mechanics and Materials 813-814 (November 2015): 257–62. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.257.

Full text
Abstract:
Composite materials are important engineering materials due to their outstanding mechanical properties. Composites are materials in which the desirable properties of separate materials are combined by mechanically binding them together. Each of the components retains its structure and characteristic, but the composite generally possesses better properties. Composite materials offer superior properties to conventional alloys for various applications as they have high stiffness, strength and wear resistance. The development of these materials started with the production of continuous-fiber-reinforced composites. The high cost and difficulty of processing these composites restricted their application and led to the development of discontinuously reinforced composites. The aim involved in designing metal matrix composite materials is to combine the desirable attributes of metals and ceramics. The addition of high strength, high modulus refractory particles to a ductile metal matrix produce a material whose mechanical properties are intermediate between the matrix alloy and the ceramic reinforcement. Metal Matrix Composites with Aluminum as metal matrix is the burning area for research now a days.
APA, Harvard, Vancouver, ISO, and other styles
8

Constantin, V., L. Scheed, and J. Masounave. "Sliding Wear of Aluminum-Silicon Carbide Metal Matrix Composites." Journal of Tribology 121, no. 4 (October 1, 1999): 787–94. http://dx.doi.org/10.1115/1.2834136.

Full text
Abstract:
The sliding wear of an aluminum matrix composite, reinforced with different volume fraction of particles, against a stainless-steel slider has been studied. In dry conditions, i.e., unlubricated tests, the pairs (slider and specimen), wear. When rubbing against an aluminum alloy (unreinforced), the slider does not wear but the aluminum alloy wears quickly by adhesion. In dry conditions, both slider and composite wear, but there is a minimum wear rate for this pair at a critical volume fraction of reinforcing particles. Under lubricated conditions, the situation changes dramatically. The composite no longer wears, but the slider wears very quickly. Under water, results are a compromise between the two previous situations, dry and lubricated. These results are explained by a simple, descriptive mechanism, which takes in account both the effect of the shear rate, due to the sliding action in the composite, and the abrasive effect of the particles. A general relationship, which describes the effect of the applied pressure and volume fraction of particles in the composite, is proposed.
APA, Harvard, Vancouver, ISO, and other styles
9

BEHERA, RAJESH KUMAR, SARAT CHANDRA PANIGRAHI, BIRAJENDU PRASAD SAMAL, and PRAMOD KUMAR PARIDA. "MECHANICAL PROPERTIES AND MICRO-STRUCTURAL STUDY OF SINTERED ALUMINIUM METAL MATRIX COMPOSITES BY P/M TECHNIQUE." Journal of Modern Manufacturing Systems and Technology 3 (October 1, 2019): 89–97. http://dx.doi.org/10.15282/jmmst.v2i2.2402.

Full text
Abstract:
Material world requires a strong research to produce a new class of materials having light weight, higher strength and better performances. This has been leads to investigate for high strength light weight alloy. The main objective in developing aluminium metal matrix composites is to provide enhanced characteristic performances and properties above the currently available materials. Based upon the literature a new type of aluminium composite has been tries to develop which will offer attractive mechanical properties such as high strength, easy machinability, appreciable density, and low manufacturing cost etc. Aluminum powders of 99.55% purity and 325 mesh sizes are mixed with alloying metals like Copper, Magnesium, Silicon and Silicon Carbide powders in a precisely controlled quantity. During the process of powder metallurgy (P/M) product preparation, it was minutely observed to attain the maximum efficiency and accuracy. Aluminium (Al) is a light weight material but doesn’t possess a good strength. To achieve this, Copper (Cu), Silicon (Si), Magnesium (Mg) & Silicon Carbide (SiC) powders were blended with it at required proportions. The compaction was carried out with help of a C-45 steel die by power compaction press with a load of 150KN to 250KN. The obtained green products were sintered in a Muffle furnace to produce the final Aluminium Metal Matrix Composites (AMMCs) product.
APA, Harvard, Vancouver, ISO, and other styles
10

El-Gallab, Mariam S., and Mateusz P. Sklad. "Machining of aluminum/silicon carbide particulate metal matrix composites." Journal of Materials Processing Technology 152, no. 1 (October 2004): 23–34. http://dx.doi.org/10.1016/j.jmatprotec.2004.01.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Aluminum silicon carbide metal matrix composites"

1

Kothari, Mitul Arvind. "Welding of cast A359/SiC/10p metal matrix composites." Texas A&M University, 2005. http://hdl.handle.net/1969.1/2699.

Full text
Abstract:
Welding of metal matrix composites (MMCs) is an alternative to their mechanical joining, since they are difficult to machine. Published literature in fusion welding of similar composites shows metallurgical problems. This study investigates the weldability of A359/SiC/10p aluminum SiC MMC. Statistical experiments were performed to identify the significant variables and their effects on the hardness, tensile and bending strengths, ductility, and microstructure of the weld. Finite Element Analysis (FEA) was used to predict the preheat temperature field across the weld and the weld pool temperature. Welding current, welding speed, and the preheat temperature (300-350??C) affected the weld quality significantly. It was seen that the fracture of the welded specimens was either in the base MMC or in the weld indicating a stronger interface between the weld and the base MMC. Oxides formation was controlled along the weld joint. Low heat inputs provided higher weld strengths and better weld integrity. It was found that the weld strengths were approximately 85% of the parent material strength. The weld region had higher extent of uniform mixing of base and filler metal when welded at low currents and high welding speeds. These adequate thermal conditions helped the SiC particles to stay in the central weld region. The interface reaction between the matrix and SiC particles was hindered due to controlled heat inputs and formation of harmful Al4C3 flakes was suppressed. The hardness values were found to be slightly higher in the base metal rich region. There was no significant loss in the hardness of the heat affected zone. The ductility of the weld was considerably increased to 6.0-7.0% due to the addition of Al-Si filler metal.
APA, Harvard, Vancouver, ISO, and other styles
2

Yilmaz, Hamdi Sencer. "Characterization Of Silicon Carbide Particulate Reinforced Squeeze Cast Aluminum 7075 Matrix Composite." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12605261/index.pdf.

Full text
Abstract:
The aim of this study is to investigate the mechanical behavior and its relation with processing and microstructure of the silicon carbide particulate (SiCp) reinforced aluminum matrix composite. Aluminum 7075 alloy is chosen as matrix alloy, in which zinc is the main alloying element. Four different additions of SiCp were used and the weight fractions were 10%, 15%, 20% and 30%. Composites were processed by with squeeze casting and the applied pressure during casting was 80 MPa. The mould is specially designed to produce both specimens ready for tensile and three point bending tests. Both as-cast and heat treated aluminum composites were examined and T6 heat treatment was applied. Three point bending tests were performed to reveal the fracture strength of aluminum composites. 10wt% SiCp aluminum composites showed the maximum flexural strength in both as-cast and heat treated composites. The mechanical test results revealed that precipitated phases in heat treated composites, behaved like fine silicon carbide particulates and they acted as barriers to dislocation motion. Maximum flexural strength increased about 40 MPa (10%) in as-cast and 180 MPa (44%) in heat treated composites. Tensile testing was also conducted to verify the results of the three point bending tests. Hardness tests were done to find the effect of silicon carbide addition and to find the peak hardness in heat treatment. For as-cast specimens hardness values increased from 133 to 188 Vickers hardness (10 kg.) with increase in SiCp content from 0 to 30wt% and for heat treatment specimens hardness values increased from 171 to 221 Vickers hardness (10 kg.). The peak hardness values were obtained at 24 hours precipitation heat treatment. SEM studies were carried out to examine the heat treated composites, to take SEM photographs and to obtain a general elemental analysis. Theoretical volume percentage addition of SiCp was checked with Clemex Image Analyzer program. Distribution of SiCp was determined by mettalographic examination. Second phases that were formed during heat treatment was searched by x-ray analysis.
APA, Harvard, Vancouver, ISO, and other styles
3

Hicks, Kevin Paul. "A study of magnesium and magnesium alloy composites containing alumina and silicon carbide-based fibres." Thesis, University of Bath, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bindas, Erica Bindas. "EFFECT OF TEMPERATURE, STRAIN RATE, AND AXIAL STRAIN ON DIRECT POWDER FORGED ALUMINUM-SILICON CARBIDE METAL MATRIX COMPOSITES." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1530871866585058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Uribe, Restrepo Catalina. "Process-dependent microstructure and severe plastic deformation in SiCp?? reinforced aluminum metal matrix composites." Master's thesis, University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4712.

Full text
Abstract:
Discontinuously reinforced MMCs with optimized microstructure are sought after for exceptional high strain rate behavior. The microstructure evolution of a stir-cast A359 aluminum composite reinforced with 30 vol.% SiCsubscript p] after isothermal anneal, successive hot-rolling, and high strain rate deformation has been investigated. Quantitative microstructural analysis was carried out for the as-cast, annealed (470??C, 538??C and 570??C) and successively hot rolled specimens (64, 75, 88, and 96% rolling reductions). Selected composites were also examined after high strain rate deformation. X-ray diffraction, optical microscopy, scanning electron microscopy and transmission electron microscopy were employed for microstructural characterization. The strength and ductility of the A359 Al alloys, and the composite, were greatly influenced by the brittle eutectic silicon phase and its morphology. Lamellar eutectic silicon spheroidized with isothermal anneal and successive hot rolling with a corresponding decrease in hardness. The hot rolling process also considerably decreased the SiC particle size (approximately 20% after 96% reduction) by breaking-up the hard SiC particles. However, this break-up of particles increased the homogeneity of SiCsubscript p] size distribution. Successive hot rolling also healed voids due to solidification shrinkage, incomplete infiltration of molten Al and defects originating from fractured particles. Four selected specimens of composites were examined after high strain rate deformation. Fractography and metallographic analysis for the craters, voids, and relevant regions affected by the high velocity impact were carried out. The deposition of impact residuals was frequently observed on the exposed fracture surfaces. These residuals were typically observed as "molten-and-solidified" as a consequence of excessive heat generated during and after the damage.; Particularly in regions of entry and exit of impact, intermixing of residuals and composite constituents were observed, demonstrating that the Al matrix of the composite also had melted. In all samples examined, cracks were observed to propagate through the eutectic Si network while a small number of broken reinforcement particles were observed. A slight variation in failure mechanisms was observed (e.g., radial, fragmentation, petalling) corresponding to the variation in ductility against high strain rate deformation. In selected specimens, parallel sub-cracks at the exit were observed at 45?? and 30??. These sub-cracks were again filled with intermixed constituents from projectile residuals and composites. This observation suggests that the melting of composite constituents that leads to intermixing occured after the crack propagation and other damage.
ID: 030646232; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; On t.p. "p??" is subscript.; Thesis (M.S.M.S.E.)--University of Central Florida, 2011.; Includes bibliographical references (p. 86-88).
M.S.M.S.E.
Masters
Materials Science Engineering
Engineering and Computer Science
Materials Science and Engineering
APA, Harvard, Vancouver, ISO, and other styles
6

Vargas, Alexandro. "Machinability Study on Silicon Carbide Particle-Reinforced Aluminum Alloy Composite with CVD Diamond Coated Tools." Scholarly Commons, 2017. https://scholarlycommons.pacific.edu/uop_etds/215.

Full text
Abstract:
Particle-reinforced MMCs (pMMC) such as aluminum alloys reinforced with ceramic silicon carbide particles (AlSiC) require special cutting tools due to the high hardness and abrasive properties of the ceramic particles. Diamond coated cutting tools are ideal for machining this type of pMMC. Previous research studies focus on the machinability of pMMCs with low ceramic content. The aim of this research is to determine the optimal cutting parameters for machining AlSiC material containing high silicon carbide particle reinforcement (>25%). The optimal cutting parameters are determined by investigating the relationship between cutting forces, tool wear, burr formation, surface roughness, and material removal rate (MRR). Experimental milling tests are conducted using CVD diamond coated end mills and non-diamond tungsten carbide end mills. It was found that low tool rotation speeds, feed rates and depths of cut are necessary to achieve smoother surface finishes of R a < 1 μm. A high MRR to low tool wear and surface roughness ratio was obtainable at a tool rotation speed of 6500 r/min, feed rate of 762 mm/min and depth of cut of 3 mm. Results showed that a smooth surface roughness of the workpiece material was achieved with non-diamond tungsten carbide end mills, however, this was at the expense of extreme tool wear and high burr formation. The use of coolant caused a 50% increase in tool wear compared to the dry-cutting experiments which had lower cutting tool forces.
APA, Harvard, Vancouver, ISO, and other styles
7

Ren, Zheng Materials Science &amp Engineering Faculty of Science UNSW. "Mechanical properties of 7075 aluminium matrix composites reinforced by nanometric silicon carbide particulates." Awarded by:University of New South Wales, 2007. http://handle.unsw.edu.au/1959.4/34742.

Full text
Abstract:
Aluminium composites reinforced by particles have received considerable attention because of their superior mechanical properties over monolithic aluminum matrix. Over the last ten years, nanocomposites with nano-sized reinforcements have become a revolutionary progress for composites because they have different strengthening mechanisms as compared to that in composites with micro-sized reinforcements. Consequently novel properties can be expected from the nanometric particulate reinforced composites. The aim of this project was to fabricate SiC (50nm)/7075 aluminium composites via a modified powder metallurgy and extrusion route. Ageing treatment was used to increase the strength of the composites and mechanical tests, including tensile test and abrasive wear test, were performed. The effects of nanometric silicon carbide particulates to the ageing behaviours and mechanical properties of the composites have been studied by optical metallography, scanning electron microscopy and transmission electron microscopy. It was found that the dispersion of nanometric silicon carbide was not homogeneous, but tended to disperse along grain boundaries. Clustering of these nano-reinforcements was also found within the grains. This was particular true when the amount of nano-reinforcement increased to 5%. Compared with the monolithic 7075 alloy, the 1 vol.% SiC (50nm)/7075 aluminium had a higher strength because of effective dislocation pinnings by the reinforcements, while 5% SiC (50nm)/7075 had a much lower strength and ductility because of severe aggregation of nanometric particulates. Nanometric silicon carbide was not as effective as the micro ones in improving abrasive wear resistance of aluminium, this was because of micro-cracking in the aggregation and relatively large abrasive grit. In summary, the addition of a small amount of SiC nanoreinforcements has a high potential to further strengthen 7xxx aluminium alloy. However, the clustering of reinforcements in the matrix will detrimentally affect the strength and ductility of the alloy. The wear resistance of nanometric particulate reinforced composites was inferior to those with micrometric reinforcements. It is suggested that by improving the dispersion of nanometric reinforcements, as well as putting in reinforcememts with different sizes, the mechanical properties and wear resistance can both be increased.
APA, Harvard, Vancouver, ISO, and other styles
8

Kieschke, Robert Richard. "The interface region in titanium reinforced with silicon carbide monofilaments." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rix, Michael V. "Development of silicon carbide monofilaments for the reinforcement of metal matrix composites." Thesis, University of Surrey, 2018. http://epubs.surrey.ac.uk/848794/.

Full text
Abstract:
Silicon carbide (SiC) monofilaments are high strength, continuous ceramic fibres produced through chemical vapour deposition (CVD) and used to reinforce metal matrix composites. Such composites have excellent mechanical properties. However, they are expensive to manufacture and the monofilaments must be highly reproducible to ensure reliability of the resulting composite. TISICS Ltd are the sole producers of the material outside of the United States of America and have recently developed two new monofilaments, SM3256 (140 μm diameter) and SM3240 (100 μm diameter) with enhanced mechanical properties and reduced cost of production. These monofilaments and composite panels have been evaluated through tensile testing. They have been found to be highly reproducible over three years of production with the monofilaments possessing an average tensile strength of 4.0±0.2 GPa with a Weibull modulus of 50±10. Recent advances in plasma focussed ion beam (PFIB) milling techniques and scanning transmission electron microscopy (STEM) have been exploited to produce specimens revealing the interior of the monofilaments with unparalleled detail and precision. Raman spectroscopy and Auger spectroscopy have been used to characterise the microstructure and composition of the monofilaments and inform their development. The process for depositing a protective coating on the monofilaments has been improved, resulting in a 17% decrease in the total cost of CVD feedstock chemicals required. Previously unobserved nanoscale voids in the tungsten filament substrate have been identified as a critical process variable potentially responsible for the narrow strength distribution of the monofilaments. Analysis of the monofilament microstructures has indicated the potential for increasing the production speed of SM3256. Experimental trials have resulted in up to 75% faster production however a resulting decrease in performance demonstrates that further work is necessary. This research has resulted in significant cost reductions and has improved the economic viability of the monofilaments. The demonstration of reproducibility of the material properties has contributed to ongoing qualification for their use in aerospace components. The potential for further fundamental improvements to the process has been identified.
APA, Harvard, Vancouver, ISO, and other styles
10

Bawane, Kaustubh Krishna. "Silicon Carbide - Nanostructured Ferritic Alloy Composites for Nuclear Applications." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/96403.

Full text
Abstract:
Silicon carbide and nanostructured ferritic alloy (SiC-NFA) composites have the potential to maintain the outstanding high temperature corrosion and irradiation resistance and enhance the mechanical integrity for nuclear cladding. However, the formation of detrimental silicide phases due to reaction between SiC and NFA remains a major challenge. By introducing a carbon interfacial barrier on NFA (C@NFA), SiC-C@NFA composites are investigated to reduce the reaction between SiC and NFA. In a similar way, the effect of chromium carbide (Cr3C2) interfacial barrier on SiC (Cr3C2@SiC) is also presented for Cr3C2@SiC-NFA composites. Both the coatings were successful in suppressing silicide formation. However, despite the presence of coatings, SiC was fully consumed during spark plasma sintering process. TEM and EBSD investigations revealed that spark plasma sintered SiC-C@NFA and Cr3C2@SiC-NFA formed varying amounts of different carbides such as (Fe,Cr)7C3, (Ti,W)C and graphite phases in their microstructure. Detailed microstructural examinations after long term thermal treatment at 1000oC on the microstructure of Cr3C2@SiC-NFA showed precipitation of new (Fe,Cr)7C3, (Ti,W)C carbides and also the growth of existing and new carbides. The results were successfully explained using ThermoCalc precipitation and coarsening simulations respectively. The oxidation resistance of 5, 15 and 25 vol% SiC@NFA and Cr3C2@SiC-NFA composites at 500-1000oC temperature under air+45%water vapor containing atmosphere is investigated. Oxidation temperature effects on surface morphologies, scale characteristics, and cross-sectional microstructures were investigated and analyzed using XRD and SEM. SiC-C@NFA showed reduced weight gain but also showed considerable internal oxidation. Cr3C2@SiC-NFA composites showed a reduction in weight gain with the increasing volume fraction of Cr3C2@SiC (5, 15 and 25) without any indication of internal oxidation in the microstructure. 25 vol% SiC-C@NFA and 25 vol% Cr3C2@SiC-NFA showed over 90% and 97% increase in oxidation resistance (in terms of weight gain) as compared to NFA. The results were explained using the fundamental understanding of the oxidation process and ThermoCalc/DICTRA simulations. Finally, the irradiation performance of SiC-C@NFA and Cr3C2@SiC-NFA composites was assessed in comparison with NFA using state-of-the-art TEM equipped with in-situ ion irradiation capability. Kr++ ions with 1 MeV energy was used for irradiation experiments. The effect of ion irradiation was recorded after particular dose levels (0-10 dpa) at 300oC and 450oC temperatures. NFA sample showed heavy dislocation damage at both 300oC and 450oC increasing gradually with dose levels (0-10 dpa). Cr3C2@SiC-NFA showed similar behavior as NFA at 300oC. However, at 450oC, Cr3C2@SiC-NFA showed remarkably low dislocation loop density and loop size as compared to NFA. At 300oC, microstructures of NFA and Cr3C2@SiC-NFA show predominantly 1/2<111> type dislocation loops. At 450oC, NFA showed predominantly <100> type loops, however, Cr3C2@SiC-NFA composite was still predominant in ½<111> loops. The possible reasons for this interesting behavior were discussed based on the large surface sink effects and enhanced interstitial-vacancy recombination at higher temperatures. The molecular dynamics simulations did not show considerable difference in formation energies of ½<111> and <100> loops for NFA and Cr3C2@SiC-NFA composites. The additional Si element in the SiC-NFA sample could have been an important factor in determining the dominant loop types. SiC-C@NFA composites showed heavy dislocation damage during irradiation at 300oC. At 450oC, SiC-C@NFA showed high dislocation damage in thicker regions. Thinner regions near the edge of TEM samples were largely free from dislocation loops. The precipitation and growth of new (Ti,W)C carbides were observed at 450oC with increasing irradiation dose. (Fe,Cr)7C3 precipitates were largely free from any dislocation damage. Some Kr bubbles were observed inside (Fe,Cr)7C3 precipitates and at the interface between α-ferrite matrix and carbides ((Fe,Cr)7C3, (Ti,W)C). The results were discussed using the fundamental understanding of irradiation and ThermoCalc simulations.
Doctor of Philosophy
With the United Nations describing climate change as 'the most systematic threat to humankind', there is a serious need to control the world's carbon emissions. The ever increasing global energy needs can be fulfilled by the development of clean energy technologies. Nuclear power is an attractive option as it can produce low cost electricity on a large scale with greenhouse gas emissions per kilowatt-hour equivalent to wind, hydropower and solar. The problem with nuclear power is its vulnerability to potentially disastrous accidents. Traditionally, fuel claddings, rods which encase nuclear fuel (e.g. UO2), are made using zirconium based alloys. Under 'loss of coolant accident (LOCA) scenarios' zirconium reacts with high temperature steam to produce large amounts of hydrogen which can explode. The risks associated with accidents can be greatly reduced by the development of new accident tolerant materials. Nanostructured ferritic alloys (NFA) and silicon carbide (SiC) are long considered are leading candidates for replacing zirconium alloys for fuel cladding applications. In this dissertation, a novel composite of SiC and NFA was fabricated using spark plasma sintering (SPS) technology. Chromium carbide (Cr3C2) and carbon (C) coatings were employed on SiC and NFA powder particles respectively to act as reaction barrier between SiC and NFA. Microstructural evolution after spark plasma sintering was studied using advanced characterization tools such as scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) techniques. The results revealed that the Cr3C2 and C coatings successfully suppressed the formation of detrimental reaction products such as iron silicide. However, some reaction products such as (Fe,Cr)7C3 and (Ti,W)C carbides and graphite retained in the microstructure. This novel composite material was subjected to high temperature oxidation under a water vapor environment to study its performance under the simulated reactor environment. The degradation of the material due to high temperature irradiation was studied using state-of-the-art TEM equipped with in-situ ion irradiation capabilities. The results revealed excellent oxidation and irradiation resistance in SiC-NFA composites as compared to NFA. The results were discussed based on fundamental theories and thermodynamic simulations using ThermoCalc software. The findings of this dissertation imply a great potential for SiC-NFA based composites for future reactor material designs.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Aluminum silicon carbide metal matrix composites"

1

Buarzaiga, Mohamed M. Corrosion behavior of as-cast silicon carbide particulate/aluminum alloy metal-matrix composites. Ottawa: National Library of Canada, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Onat, Adem. Silicon carbide particulate reinforced aluminum alloys matrix composites fabricated by squeeze casting method. New York: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Characterization of metal matrix composites. [Washington, DC]: National Aeronautics and Space Administration, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

J, Birt Michael, and Langley Research Center, eds. Evaluation of several micromechanics models for discontinuously reinforced metal matrix composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Modeling and life prediction methodology for titanium matrix composites subjected to mission profiles. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Modeling and life prediction methodology for titanium matrix composites subjected to mission profiles. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Aluminum silicon carbide metal matrix composites"

1

Gribkov, A. N. "Composites of the aluminium—silicon carbide system." In Metal Matrix Composites, 440–86. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-1266-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jeong, H., D. K. Hsu, R. E. Shannon, and P. K. Liaw. "Elastic Moduli of Silicon Carbide Particulate Reinforced Aluminum Metal Matrix Composites." In Review of Progress in Quantitative Nondestructive Evaluation, 1395–402. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5772-8_179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gallerneault, M., and R. W. Smith. "The Settling of Reinforcement During the Unidirectional Solidification of Particulate Reinforced Aluminum-Silicon/Silicon Carbide Metal Matrix Composites." In Composite Structures, 759–80. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3662-4_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Saigal, A., S. Krikorian, and G. G. Leisk. "Acoustoelastic Measurement of Second- and Third-Order Elastic Constants in Silicon Carbide and Alumina Particulate-Reinforced Aluminum Metal Matrix Composites." In Review of Progress in Quantitative Nondestructive Evaluation, 1637–44. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0383-1_214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

le Roux, T., M. L. H. Wise, and D. K. Aspinwall. "Electric Discharge Machining of an Aluminium Alloy Silicon Carbide Reinforced Metal Matrix Composite." In Proceedings of the Thirtieth International MATADOR Conference, 247–54. London: Macmillan Education UK, 1993. http://dx.doi.org/10.1007/978-1-349-13255-3_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nair, Anantha Krishnan, Arun Kalmadi, Nitin Kumar, and B. P. Dileep. "Investigation on Mechanical Properties of Aluminum-Boron Carbide Metal Matrix Composites." In Lecture Notes in Mechanical Engineering, 213–21. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3033-0_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gupta, Sheetal, Anirban Giri, Saikat Adhikari, and Vivek Srivastava. "Development and Characterization of In-situ Aluminum–Titanium Carbide Composites Prepared by Pneumatic Powder Injection Route." In Metal-Matrix Composites Innovations, Advances and Applications, 59–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72853-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Malhotra, Paridhi, R. K. Tyagi, Nishant K. Singh, and Basant Singh Sikarwar. "Comparative Microstructural Investigation of Aluminium Silicon Carbide–Mg and Aluminium Boron Carbide–Mg Particulate Metal Matrix Composite Fabricated by Stir Casting." In Lecture Notes in Mechanical Engineering, 725–34. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5463-6_64.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rix, Michael V., Mark Baker, Mark J. Whiting, Ray P. Durman, and Robert A. Shatwell. "An Improved Silicon Carbide Monofilament for the Reinforcement of Metal Matrix Composites." In Proceedings of the 3rd Pan American Materials Congress, 317–24. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52132-9_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Naik, Subhashree, Soumyashree Sabat, Sudhansu Ranjan Das, Debabrata Dhupal, and Bijoy Kumar Nanda. "Experimental Investigation, Parametric Optimization, and Cost Analysis in EDM of Aluminium-Silicon Carbide Metal Matrix Composite." In Advanced Manufacturing Systems and Innovative Product Design, 175–87. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9853-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Aluminum silicon carbide metal matrix composites"

1

Bell, J. A. E., T. F. Stephenson, A. E. M. Warner, and Victor Songmene. "Physical Properties of Graphitic Silicon Carbide Aluminum Metal Matrix Composites." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/970788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Orlowsky, Nick, Gap-Yong Kim, Mina Bastwros, and Caleb Messmer. "Fabrication of Aluminum-Silicon Carbide Composites Using Spray-Assisted Roll Bonding." In ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-3999.

Full text
Abstract:
The fabrication of nanoparticle reinforced sheet metal composites may result in composites with promising mechanical, thermal and electrical properties. Cold roll bonding (CRB) is a good candidate for fabricating such composites as it can be easily scaled up for industrial production. Moreover, it eliminates some of the problems accompanied with conventional metal matrix composite (MMC) fabrication methods. This study begins by looking at the effects of surface preparation on the CRB process. Additionally, it looks at fabrication of aluminum-silicon carbide (Al-SiC) composites using CRB and an ultrasonic spray deposition technique. Further, the accumulative roll bonding (ARB) process is investigated as a possibility for increasing the loading capacity of reinforcement particles. The bond strength was tested using a peel test and the bonding and process quality was inspected and analyzed with optical microscopy. The addition of the SiC nanoparticles at the interface increased the bond strength by approximately 1.5 and 2.0 times that of the unsprayed sample. The samples fabricated using ARB were successfully bonded and samples composed of up to 128 layers were successfully fabricated.
APA, Harvard, Vancouver, ISO, and other styles
3

Liaw, P. K., R. Pitchumani, S. C. Yao, D. K. Hsu, and H. Jeong. "Nondestructive Eddy Current Evaluation of Anisotropic Conductivities of Silicon Carbide Reinforced Aluminum Metal-Matrix Composite Extrusions." In ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/93-gt-015.

Full text
Abstract:
Nondestructive eddy current methods were used to evaluate the electrical conductivity behavior of silicon-carbide particulate (SiCp) reinforced aluminum (Al) metal-matrix composite extrusions. The composites investigated included 2124, 6061 and 7091 Al base alloys reinforced by SiCp. The composite extrusions exhibited anisotropic conductivities with the maximum conductivity occurring along the extrusion plane. Microstructural characterization showed that the observed anisotropic conductivities could result from the preferred orientation distribution of SiCp. A theoretical model was formulated to quantify the influence of composite constituents (SiCp, intermetallics and Al base alloy) on the anisotropic conductivities of the composites. The theoretical predictions of conductivities were found to be in good agreement with the experimental results.
APA, Harvard, Vancouver, ISO, and other styles
4

Somasundaram, G., and S. R. Boopathy. "Fabrication and friction drilling of aluminum silicon carbide metal matrix composite." In International Conference on Frontiers in Automobile and Mechanical Engineering (FAME 2010). IEEE, 2010. http://dx.doi.org/10.1109/fame.2010.5714793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Garcia, David, R. Joey Griffiths, and Hang Z. Yu. "Additive Friction Stir Deposition for Fabrication of Silicon Carbide Metal Matrix Composites." In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8532.

Full text
Abstract:
Abstract Additive friction stir deposition is an emerging solid-state additive manufacturing technology that has shown promise for bulk fabrication of metals and metal-matrix composites. Here, we perform a preliminary investigation into the influence of tool geometries on the particle distribution and matrix-particle coherence of SiC in the matrix of Aluminum Alloy 6061 and commercially pure Copper. Two tool geometries have been used: (1) a simple, featureless tool and (2) a complex geometry tool with four surface protrusions. For the simple tool geometry, the Al-SiC is observed to have less uniform bulk distribution of the reinforcement phase, resulting in regions of highly concentrated SiC reinforcement (up to 69 area%). The Cu-SiC sample produced with the simple geometry tool has a homogeneous distribution. The samples produced with the complex geometry tool show more uniform distribution of SiC reinforcement throughout the bulk of the deposit with local reinforcement concentrations reaching up to 42 area% and 28 area% for the Al and Cu matrix, respectively. All tool geometries create samples with good interfaces that have continuous contact between the particle and matrix phases, even including particles with sharp angles and non-spherical surfaces. Further optimization of tool geometries and processing conditions can lead to improved control of the reinforcement phase distribution and enable design of metal-matrix composites with tailored site-specific properties.
APA, Harvard, Vancouver, ISO, and other styles
6

Gupta, Suresh. "Erosion Characteristics of Ceramic Particulate and Whisker Reinforced Aluminum Composites." In ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/92-gt-369.

Full text
Abstract:
Advanced composite materials are one of the key enabling technologies for achieving the planned revolutionary improvements in the next generation of aero gas turbine engines. For example the thrust to weight ratio of advanced military engines is targeted to double (to 20:1) within the next 10 to 15 years. A number of families of advanced composites are being developed, and metal matrix composites is one significant member of these. These can be either ceramic fiber or ceramic particulate/whiskers embedded in matrixes of aluminum, titanium or superalloys. Silicon carbide particulate/whisker reinforced aluminum has been under consideration for the cold section of front end engine components such as compressor blades, compressor stator vanes and casings. One potentially serious problem anticipated in using these composites for such application is its behavior in particulate erosion, as may happen in sandy environments and runways. This paper describes the test program undertaken to study this problem, and discusses the results obtained. It was found that the erosion rate of such composites can be considerably higher than that of non-reinforced aluminum alloys. Further, the characteristic erosion behavior is modified significantly. Also identified were new mechanisms of material removal coming into play. These are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Ramu, Gurupavan Hurugalavadi, Holalu Venkatadas Ravindra, and Devegowda Tadagavadi Muddegowda. "Effect of Wire Electrode Materials on Performance Characteristics for Wire Electrical Discharge Machining of Metal Matrix Composite Material." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23511.

Full text
Abstract:
Abstract Composite materials are the advanced materials which are widely used in manufacturing industries. The most commonly used composite materials are metal matrix composites. Due to the presence of abrasive reinforcing particles, traditional machining of these causes severe tool wear and hence reduces the life of cutting tool. Wire electrical discharge machining (WEDM) is quite successful for machining of metal matrix composites. Wire Electrical Discharge machining is a specialized thermal machining process capable of accurately machining parts of hard materials with complex shapes. One of the main research fields in WEDM is related to the improvement of the process productivity by avoiding wire breakage. Wire electrodes used in WEDM are the core of the system. In this study the effect of different wire electrode materials on electrode wear and surface finish for wire electrical discharge machining of metal matrix composite material were investigated. The experiments were conducted under the following process parameters viz., pulse-on time, pulse-off time, wire feed speed and current. For the experiment the aluminium 6061 alloy with 0%, 5%, and 10% of silicon carbide (SiC) reinforcement material was used. To conduct the experiment CNC wire EDM machine with two different wires viz., molybdenum and brass wire was used. Experimental results indicate that for better surface finish of Al6061 alloy, the brass wire is more suitable. The use of brass wire as electrode material leads to significant reduction in electrode wear in machining of Al-5%SiC and Al-10%SiC composite materials compare to molybdenum wire. Increasing percentage of silicon carbide in aluminium 6061 alloy increases the variation in surface finish and electrode wear. Wire wear rate of both brass and molybdenum wire is increased with increase in percentage of silicon carbide.
APA, Harvard, Vancouver, ISO, and other styles
8

Ahmed, Mohd Mujeeb, and Tirupati Kadam. "Development and investigation of aluminum metal matrix composite reinforced with copper, nickel, zinc and silicon carbide particle." In 1ST INTERNATIONAL CONFERENCE ON MANUFACTURING, MATERIAL SCIENCE AND ENGINEERING (ICMMSE-2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5141192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ankegowda, Naveen, S. A. Mohan Krishna, and B. S. Nithyananda. "Characterization Of Mechanical And Tribological Behaviour Of Aluminium-Silicon Carbide-Titanium Dioxide Hybrid Metal Matrix Composites(MMC)." In Third International Conference on Current Trends in Engineering Science and Technology ICCTEST-2017. Grenze Scientific Society, 2017. http://dx.doi.org/10.21647/icctest/2017/49067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Avinash, C., S. Ramaswamy, S. Raguraman, and N. Muthukrishnan. "An Investigation on Effect of Workpiece Reinforcement Percentage on Tool Wear in Cutting Al-SiC Metal Matrix Composites." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41231.

Full text
Abstract:
The tool wear mechanism in machining of metal matrix composites (MMC) and its dependence on the percentage of reinforcements with MMC was investigated. Silicon carbide metal matrix composites of two samples were prepared by using stir casting method. Samples having 10 percentage & 20 percentage of silicon carbide particles (grain size ranging from 55 to 85 micron meter) by weight were fabricated in the form of cylindrical bars. Experiments were conducted in medium duty lathe by using poly crystalline diamond (PCD) insert of 1500 grade as cutting insert and the experiment was performed by using design of experiments (L27 orthogonal array) on two different samples and the parameters obtained were optimized by analyzing the power consumed by main spindle and surface finish of machined component. The results from machining of this fabricated Aluminum Alloy A356, reinforced with SiC particles MMC is highlighted in this paper. All trails were carried out with time duration of one minute. By setting these optimum parameters, tool wear study was carried out till the flank wear reached 0.4mm. The results showed that tool life was minimum while machining 20 percentage of SiC reinforcement MMC as compared with 10 percentage of SiC reinforcement. The tool wear images were captured by Cam scope with a magnification of 100X which supports the results.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Aluminum silicon carbide metal matrix composites"

1

Howell, Paul R. Microstructural Development in a Spray Formed Aluminum-Silicon Carbide Based Metal Matrix Composite. Fort Belvoir, VA: Defense Technical Information Center, May 1992. http://dx.doi.org/10.21236/ada251425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography