Academic literature on the topic 'Aluwia'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aluwia.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aluwia"
MIKUŚ, Paweł, and Alfred UCHMAN. "WPŁYW WEZBRAŃ NA FAUNĘ ZAMIESZKUJĄCĄ ALUWIA NA PRZYKŁADZIE DOLNEGO BIEGU DUNAJCA." Biuletyn Państwowego Instytutu Geologicznego 454, no. 454 (January 1, 2015): 71–76. http://dx.doi.org/10.5604/08676143.1114054.
Full textPanyathanmaporn, Thammarat, Angkhana Jaroenworaluck, Sitthisuntorn Supothina, Rung-Arun Chumnanklang, Kannikar Juengsuwattananon, Supatra Jinawath, Tawan Sooknoi, Siriya Jiamsakul, and Sittinun Tawkaew. "Ag-Doped TiO2 Immobilized on Al2O3 Bead as Oxidation Catalyst." Materials Science Forum 544-545 (May 2007): 13–16. http://dx.doi.org/10.4028/www.scientific.net/msf.544-545.13.
Full textKim, W. H., H. J. Lee, Keun Woo Lee, Kwang Mahn Kim, Kyoung Nam Kim, and J. S. Shim. "The Effect of Ceramic Surface Treatments on the Shear Bond Strength of Dental Composite Resin to All-Ceramic Coping Materials." Key Engineering Materials 330-332 (February 2007): 1365–68. http://dx.doi.org/10.4028/www.scientific.net/kem.330-332.1365.
Full textMahlambi, Mphilisi M., Ajay K. Mishra, Shivani B. Mishra, Rui W. Krause, Bhekie B. Mamba, and Ashok M. Raichur. "TiO2Nanocatalysts Supported on a Hybrid Carbon-Covered Alumina Support: Comparison between Visible Light and UV Light Degradation of Rhodamine B." Journal of Nanotechnology 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/198723.
Full textHezil, Naouel, Mamoun Fellah, Ridha Djellabi, Mohamed Zine Touhami, Alex Montagne, Fethia Bouaksa, Alain Iost, Alberto Mejias, and Aleksei Obrosov. "Assessment of the Hydrophilic-Hydrophobic Balance of Alumina Oxidized at Different Temperatures via H2O and C4H10 Vapor Adsorption." Defect and Diffusion Forum 397 (September 2019): 161–68. http://dx.doi.org/10.4028/www.scientific.net/ddf.397.161.
Full textFarhan, Ahmed Jadah. "Effect of Alumina Contents on the Some Mechanical Properties of Alumina (Al2O3) Reinforced Polymer Composites." Neuroquantology 18, no. 5 (May 30, 2020): 35–42. http://dx.doi.org/10.14704/nq.2020.18.5.nq20165.
Full textJiménez-Piqué, E., L. Ceseracciu, M. Anglada, F. Chalvet, and G. De Portu. "Fatiga por contacto esférico en materiales multicapa de alúmina circona." Boletín de la Sociedad Española de Cerámica y Vidrio 44, no. 5 (October 30, 2005): 307–12. http://dx.doi.org/10.3989/cyv.2005.v44.i5.358.
Full textQuintero, F., J. Pou, F. Lusquiños, M. Boutinguiza, R. Soto, and M. Pérez-Amor. "Corte mediante láser de elementos estructurales de mullita-alúmina." Boletín de la Sociedad Española de Cerámica y Vidrio 45, no. 2 (April 30, 2006): 87–95. http://dx.doi.org/10.3989/cyv.2006.v45.i2.318.
Full textWoźniak, Jarosław, Kamil Broniszewski, Marek Kostecki, Kazimierz Czechowski, Lucyna Jaworska, and Andrzej Olszyna. "Cutting performance of alumina-graphene oxide composites." Mechanik, no. 2 (February 2015): 129/357–129/364. http://dx.doi.org/10.17814/mechanik.2015.2.100.
Full textZaiter, Haytham Z., Dermot P. Coyne, and James R. Steadman. "Rust Reaction and Pubescence in Alubia Beans." HortScience 25, no. 6 (June 1990): 664–65. http://dx.doi.org/10.21273/hortsci.25.6.664.
Full textDissertations / Theses on the topic "Aluwia"
Castro, Pedro Afonso de. "Pares cerâmicos homólogos alumina/alumina para anéis de empanque." Master's thesis, Universidade de Aveiro, 2006. http://hdl.handle.net/10773/4692.
Full textO propósito do presente trabalho é a produção, caracterização mecânica, microestrutural e avaliação do comportamento tribológico de pares homólogos de anéis vedantes (empanques) de alumina (Al2O3). Os anéis de empanque têm por função garantir a vedação em veios rotativos de equipamentos nos quais circulam fluidos. Dadas as solicitações tribológicas extremas a que os materiais constituintes dos anéis são sujeitos, por vezes em ambientes altamente corrosivos, a alumina apresenta-se como uma excelente alternativa aos materiais tradicionalmente usados na produção destes vedantes (metal duro, carbono grafitizado, ligas ferrosas, etc.) devido à combinação das suas propriedades mecânicas e inércia química. Foram sinterizados três lotes de alumina a diferentes velocidades de aquecimento do forno, mantendo constantes as restantes condições de processamento. O aumento do valor deste parâmetro traduziu-se num incremento da taxa de densificação, resultando a densidade relativa de r=97,2% para a velocidade de aquecimento mais elevada (Vaq=20ºC/min). Este lote apresenta valores de dureza e tenacidade à fractura de HV=15,4GPa e KIc=3,7MPa.m1/2 respectivamente, resistência à flexão σF=279MPa e módulo de elasticidade E=322GPa. Os ensaios tribológicos anel/anel realizaram-se com diferentes velocidades de rotação (w), no intervalo 500 a 2000rpm, pressão de fluido (PL, água destilada) entre 0,5 e 2bar, sob carga normal (Nt) variando até ao valor necessário para a vedação plena. Os vedantes de alumina apresentaram valores de coeficiente de atrito extremamente reduzidos (<0,05), impossibilitando mesmo em alguns casos a sua determinação por se localizarem abaixo do limite de sensibilidade da máquina. Para w=2000rpm e PL=2bar conseguiu-se a estanquicidade total em dois dos três lotes ensaiados, com cargas totais de Nt=0,438kN (lote menos denso) e Nt=0,420kN (lote com maior densidade), obtendo-se para o produto PV, onde P representa a pressão efectiva e V a velocidade linear, PV=1,523MPa.m/s e PV=1,324MPa.m/s respectivamente. No primeiro caso determinou-se ainda o limite máximo de funcionamento em vedação plena, registando-se para Nt=0,900kN o valor de PV=4,200MPa.m/s. A análise posterior dos anéis revelou superfícies polidas por acção do movimento relativo entre os anéis, com rugosidade inferior à medida previamente à realização dos testes, sem delaminação ou fractura, não evidenciando qualquer tipo de destruição. Foi ainda testado o comportamento tribológico com azeite, meio potencialmente mais agressivo, corroborando a capacidade de funcionamento deste sistema vedante.
The purpose of the present work is the production, microstructural and mechanical characterization, and evaluation of the tribological behaviour of self-mated pairs of alumina mechanical seals. These components are used to ensure sealing in rotating shafts in equipments where a fluid is flowing. Due to the drastic tribological solicitations that seal rings are usually exposed to, sometimes in highly corrosive environments, alumina is a potential alternative to the commonly used materials (hardmetal, graphitized carbon, nonferrous alloys, etc.) due to the good combination of mechanical properties and chemical inertness. Three grades of alumina were sintered using different heating rates, keeping constant the remaining processing conditions. The increase of this parameter lead to a higher densification rate, the highest density (r=97,2%) being achieved when using the highest heating rate (Vaq=20ºC/min). The main mechanical properties were the following: HV=15,4GPa, KIc=3,7MPa.m1/2, σF=279MPa and E=322GPa. Ring-on-ring tribological tests were conducted using different rotational speeds (w) from 500 to 2000rpm, fluid pressure (PL, distilled water) between 0,5 and 2bar, under a normal load (Nt) varying until the complete sealing. The tests showed that the alumina mechanical seals could guarantee full sealing conditions, with extremely low values of friction coefficient (<0.05), sometimes turning impossible the recording of the results, as they were below the equipment sensitivity. Using w=2000rpm and PL=2bar, full sealing was achieved in two of the three grades of the tested seals, under applied loads of Nt=0.438kN (grade with the lowest density) and Nt=0.420kN (grade with the highest density). PV (being P the effective pressure and V the linear speed) lower limiting conditions were PV=1.523MPa.m/s and PV=1.324MPa.m/s, respectively. For the first of the previous mentioned grades, the upper limit was also determined, being PV=4.200MPa.m/s with Nt=0.900kN. The surface analysis of the tested seals showed a well polished surface, due to the relative motion between the rings, with a lower roughness when compared to the nominal finishing. No delamination, fracture or any kind of destruction were observed. The tribological behaviour of the alumina rings was also characterized using olive oil, potentially more aggressive fluid, corroborating the adequateness of the present system. These results, combined to some of the intrinsic properties of alumina (corrosion resistance, chemical inertness, low density when compared with that of the most traditionally materials used in seals production) create the expectation that alumina could be a feasible alternative to the most widely used materials used in this kind of application.
Kayiplar, Burcu. "Microwave Sintering And Characterization Of Alumina And Alumina Matrix Ceramic Nanocomposites." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/3/12611854/index.pdf.
Full textC to 1600°
C with a constant soaking time of 1 hour. Based on the densification results on monolithic alumina, nanometer-sized SiC or stabilized ZrO2 particle-dispersed alumina matrix ceramic nanocomposites were sintered by both methods at 1300°
C and 1500°
C for 1 hour. Sintered ceramic materials were characterized in terms of densification, microstructural evolution, chemical composition and mechanical properties such as hardness and indentation fracture toughness. Microwave sintering was determined to be a remarkably effective method in the production of Al2O3 ceramics at considerably low temperatures (&
#8804
1400°
C) compared to conventional sintering in achieving enhanced relative densities reaching to ~97% with improved microstructural characteristics and mechanical properties. Usage of sintering additives at temperatures higher than 1400°
C was determined to be effective in densifiying Al2O3 by both methods. Second phase particle incorporation yielded poor densification resulting in a decrease of hardness of the fabricated ceramic nanocomposites
however, their fracture toughness improved considerably caused by the crack deflection at the dispersed particles and grain boundaries reaching to ~4 MPa·
m1/2 in the case of SiC particledispersed nanocomposites. Compared to conventional sintering, microwave sintering is more effective in the processing of alumina and alumina matrix nanocomposites leading to similar densification values along with improved microstructural and mechanical characteristics at lower temperatures in shorter soaking periods.
Meoto, Silo, and Marc-Olivier Coppens. "Anodic alumina-mesoporous silica hybrid membranes: a systematic study of alumina filling." Diffusion fundamentals 16 (2011) 34, S. 1-2, 2011. https://ul.qucosa.de/id/qucosa%3A12715.
Full textFranco, Jr Adolpho. "Erosive wear of alumina." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320591.
Full textHe, Jingyan. "Processing and characterisation of submicron/nanometre alumina ceramics and alumina matrix nanocomposite ceramics." Thesis, University of Birmingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.633127.
Full textGriffin, Jack M. "Combustion chemical vapor deposition of α-alumina, YSZ and multilayer α-alumina/YSZ films." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/20047.
Full textMubarak, Ahmed T. A. "Transition metals promoted alumina catalysts." Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312197.
Full textOliveira, Ricardo Vinicius Bof de. "Moldagem de alumina por injeção." Florianópolis, SC, 2004. http://repositorio.ufsc.br/xmlui/handle/123456789/87484.
Full textMade available in DSpace on 2012-10-21T20:48:56Z (GMT). No. of bitstreams: 1 211337.pdf: 3803188 bytes, checksum: fdfc18812ee709aa25e1af365ff772ce (MD5)
Atualmente, a moldagem de pós por injeção tem se tornado um processo de transformação altamente atrativo, por aliar as propriedades inerentes aos materiais metálicos e cerâmicos à versatilidade da moldagem por injeção. Neste processo, o material na forma de pó é misturado ao veículo orgânico (ligante), o qual possibilita a moldagem por injeção da mistura. Neste trabalho, avaliou-se a utilização de componentes poliméricos e surfactante na fabricação de peças de alumina por moldagem de pós por injeção, sendo as propriedades micro e macroscópicas caracterizadas. A temperatura do solvente produziu diferentes velocidades de remoção, devido a mudanças no parâmetro de solubilidade e difusividade dos componentes solúveis. Um modelo matemático foi proposto para o processo de remoção por solvente, apresentando boa correlação com os valores obtidos experimentalmente. O processo subseqüente de remoção térmica foi facilitado pela porosidade formada na solubilização, resultando em peças livres de defeitos. As decomposições do PP e do PVB produziram hidrocarbonetos alifáticos, compostos com insaturações, e aldeídos. A sinterização mostrou que as peças de alumina não possuíam defeitos grosseiros, sugerindo que o amplo conhecimento das etapas do processo pode tornar a moldagem de pós por injeção mais interessante economicamente.
Tuttle, Richard W. "ELECTROSPUN ALUMINA FIBERS:SYNTHESIS AND CHARACTERIZATION." University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1164040902.
Full textXu, Chen. "Alumina based nanocomposites by precipitation." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:2bc4b631-6b5e-4536-b842-63c591df2832.
Full textBooks on the topic "Aluwia"
Brandão, Maria do Carmo. Luz que alumia. Belo Horizonte: Assembléia Legislativa do Estado de Minas Gerais, 1995.
Find full textSulava, Nestan. "Vepʻxistqaosani": Metapʻora, simbolo, aluzia, enigma. Tʻbilisi: Gamomcʻemloba "Nekeri", 2009.
Find full text"Vepʻxistqaosani": Metapʻora, simbolo, aluzia, enigma. Tʻbilisi: Gamomcʻemloba "Nekeri", 2009.
Find full textLosic, Dusan, and Abel Santos, eds. Nanoporous Alumina. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20334-8.
Full textMisra, Chanakya. Industrial alumina chemicals. Washington, DC: American Chemical Society, 1986.
Find full textBook chapters on the topic "Aluwia"
Ling, Zhiyuan, and Yi Li. "Mechanisms of Nanoporous Alumina Formation and Self-organized Growth." In Nanoporous Alumina, 1–30. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20334-8_1.
Full textKumeria, Tushar, and Abel Santos. "Nanoporous Alumina Membranes for Chromatography and Molecular Transporting." In Nanoporous Alumina, 293–318. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20334-8_10.
Full textAw, Moom Sinn, Manpreet Bariana, and Dusan Losic. "Nanoporous Anodic Alumina for Drug Delivery and Biomedical Applications." In Nanoporous Alumina, 319–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20334-8_11.
Full textCheng, Chuan, and A. H. W. Ngan. "Theoretical Pore Growth Models for Nanoporous Alumina." In Nanoporous Alumina, 31–60. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20334-8_2.
Full textZaraska, Leszek, Ewa Wierzbicka, Elżbieta Kurowska-Tabor, and Grzegorz D. Sulka. "Synthesis of Nanoporous Anodic Alumina by Anodic Oxidation of Low Purity Aluminum Substrates." In Nanoporous Alumina, 61–106. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20334-8_3.
Full textLee, Woo. "Structural Engineering of Porous Anodic Aluminum Oxide (AAO) and Applications." In Nanoporous Alumina, 107–53. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20334-8_4.
Full textJani, Abdul Mutalib Md, Hanani Yazid, Anisah Shafiqah Habiballah, Abdul Hadi Mahmud, and Dusan Losic. "Soft and Hard Surface Manipulation of Nanoporous Anodic Aluminum Oxide (AAO)." In Nanoporous Alumina, 155–84. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20334-8_5.
Full textFerré-Borrull, Josep, Elisabet Xifré-Pérez, Josep Pallarès, and Lluis F. Marsal. "Optical Properties of Nanoporous Anodic Alumina and Derived Applications." In Nanoporous Alumina, 185–217. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20334-8_6.
Full textSantos, Abel, and Tushar Kumeria. "Nanoporous Anodic Alumina for Optical Biosensing." In Nanoporous Alumina, 219–47. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20334-8_7.
Full textUrteaga, Raúl, and Claudio L. A. Berli. "Nanoporous Anodic Alumina for Optofluidic Applications." In Nanoporous Alumina, 249–69. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20334-8_8.
Full textConference papers on the topic "Aluwia"
Golec, Joey. "Metamaterial Anti-Reflection Coating Alumina Optics for CMB-S4." In Metamaterial Anti-Reflection Coating Alumina Optics for CMB-S4. US DOE, 2021. http://dx.doi.org/10.2172/1827877.
Full textBianchi, L., A. Denoirjean, P. Fauchais, and O. Postel. "Generation of Alumina Plasma Sprayed Coatings on Alumina Substances." In ITSC 1996, edited by C. C. Berndt. ASM International, 1996. http://dx.doi.org/10.31399/asm.cp.itsc1996p0749.
Full textAlexey, Sinitsyn, and Spivak Yulia. "Alumina-based porous materials." In 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW). IEEE, 2016. http://dx.doi.org/10.1109/eiconrusnw.2016.7448124.
Full textEra, H., F. Otsubo, and K. Kishitake. "Improvement of Adhesion Strength and Formation of Veined Structure in Alumina Coating." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p0711.
Full textTalbi, Fatiha, Fadila Lalam, and David Malec. "Dielectric breakdown characteristics of alumina." In 2010 10th IEEE International Conference on Solid Dielectrics (ICSD). IEEE, 2010. http://dx.doi.org/10.1109/icsd.2010.5568235.
Full textWong, Kau-Fui, and Tarun Bhshkar. "Transport Properties of Alumina Nanofluids." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13282.
Full textMistura, G., L. Bruschi, and W. Lee. "Adsorption on Porous Anodized Alumina." In Sixth Biot Conference on Poromechanics. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480779.064.
Full textUzun, Erdem, and Yasemin Yarar. "Alumina as a Thermoluminescent Material." In SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733546.
Full textDandekar, D. P., and P. Bartkowski. "Shock response of AD995 alumina." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46437.
Full textChbabildas, L. C., M. D. Furnish, W. D. Reinhart, and D. E. Grady. "Impact of AD995 alumina rods." In The tenth American Physical Society topical conference on shock compression of condensed matter. AIP, 1998. http://dx.doi.org/10.1063/1.55663.
Full textReports on the topic "Aluwia"
Ternan, M. Large pore alumina. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/304490.
Full textJanney, M. A. Gelcasting polycrystalline alumina. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/494117.
Full textnone,. Alumina Technology Roadmap. Office of Scientific and Technical Information (OSTI), February 2002. http://dx.doi.org/10.2172/1218610.
Full textJanney, M. A., K. J. Zuk, and G. C. Wei. Gelcasting Polycrystalline Alumina. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/760507.
Full textMandell, D. A. Prediction of alumina penetration. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/6447668.
Full textWang, Paul. Alumina-catalyzed Cope rearrangement. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2402.
Full textBatcheller, Thomas Aquinas. Dissolution Kinetics of Alumina Calcine. Office of Scientific and Technical Information (OSTI), September 2001. http://dx.doi.org/10.2172/910675.
Full textDenham, H. B., J. III Cesarano, B. H. King, and P. Calvert. Mechanical behavior of robocast alumina. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/291158.
Full textChhabildas, L. C., M. D. Furnish, W. D. Reinhart, and D. E. Grady. Impact of AD995 alumina rods. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/541910.
Full textKapolnek, D. Synthesis of alumina-coated SiC whiskers for production of SiC whisker-reinforced alumina composite materials. Office of Scientific and Technical Information (OSTI), December 1989. http://dx.doi.org/10.2172/7152794.
Full text