Journal articles on the topic 'Amber suppression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Amber suppression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Park, Ho-Jin, and Uttam L. RajBhandary. "Tetracycline-Regulated Suppression of Amber Codons in Mammalian Cells." Molecular and Cellular Biology 18, no. 8 (1998): 4418–25. http://dx.doi.org/10.1128/mcb.18.8.4418.
Full textBhattacharya, Arpita, Caroline Köhrer, Debabrata Mandal, and Uttam L. RajBhandary. "Nonsense suppression in archaea." Proceedings of the National Academy of Sciences 112, no. 19 (2015): 6015–20. http://dx.doi.org/10.1073/pnas.1501558112.
Full textHodgkin, Jonathan. "NOVEL NEMATODE AMBER SUPPRESSORS." Genetics 111, no. 2 (1985): 287–310. http://dx.doi.org/10.1093/genetics/111.2.287.
Full textLi, Ling, Rob M. Linning, Kazunori Kondo, and Barry M. Honda. "Differential Expression of Individual Suppressor tRNATrp Gene Family Members In Vitro and In Vivo in the Nematode Caenorhabditis elegans." Molecular and Cellular Biology 18, no. 2 (1998): 703–9. http://dx.doi.org/10.1128/mcb.18.2.703.
Full textGarza, D., M. M. Medhora, and D. L. Hartl. "Drosophila nonsense suppressors: functional analysis in Saccharomyces cerevisiae, Drosophila tissue culture cells and Drosophila melanogaster." Genetics 126, no. 3 (1990): 625–37. http://dx.doi.org/10.1093/genetics/126.3.625.
Full textHerring, Christopher D., and Frederick R. Blattner. "Global Transcriptional Effects of a Suppressor tRNA and the Inactivation of the Regulator frmR." Journal of Bacteriology 186, no. 20 (2004): 6714–20. http://dx.doi.org/10.1128/jb.186.20.6714-6720.2004.
Full textNeumann, Heinz, Petra Neumann-Staubitz, Anna Witte, and Daniel Summerer. "Epigenetic chromatin modification by amber suppression technology." Current Opinion in Chemical Biology 45 (August 2018): 1–9. http://dx.doi.org/10.1016/j.cbpa.2018.01.017.
Full textSingaravelan, B., B. R. Roshini, and M. Hussain Munavar. "Evidence that the supE44 Mutation of Escherichia coli Is an Amber Suppressor Allele of glnX and that It Also Suppresses Ochre and Opal Nonsense Mutations." Journal of Bacteriology 192, no. 22 (2010): 6039–44. http://dx.doi.org/10.1128/jb.00474-10.
Full textKondo, K., J. Hodgkin, and R. H. Waterston. "Differential expression of five tRNA(UAGTrp) amber suppressors in Caenorhabditis elegans." Molecular and Cellular Biology 8, no. 9 (1988): 3627–35. http://dx.doi.org/10.1128/mcb.8.9.3627.
Full textKondo, K., J. Hodgkin, and R. H. Waterston. "Differential expression of five tRNA(UAGTrp) amber suppressors in Caenorhabditis elegans." Molecular and Cellular Biology 8, no. 9 (1988): 3627–35. http://dx.doi.org/10.1128/mcb.8.9.3627-3635.1988.
Full textPhoenix, Pauline, Michel Gravel, Muriel B. Herrington, and Léa Brakier-Gingras. "Neomycin is more efficient than streptomycin in suppressing frameshift mutations." Canadian Journal of Genetics and Cytology 27, no. 6 (1985): 776–79. http://dx.doi.org/10.1139/g85-115.
Full textBartoschek, Michael D., Enes Ugur, Tuan-Anh Nguyen, et al. "Identification of permissive amber suppression sites for efficient non-canonical amino acid incorporation in mammalian cells." Nucleic Acids Research 49, no. 11 (2021): e62-e62. http://dx.doi.org/10.1093/nar/gkab132.
Full textBrabham, Robin, and Martin A. Fascione. "Pyrrolysine Amber Stop-Codon Suppression: Development and Applications." ChemBioChem 18, no. 20 (2017): 1973–83. http://dx.doi.org/10.1002/cbic.201700148.
Full textBi, Xiaobao, Kalyan Kumar Pasunooti, Ahmad Hussen Tareq, John Takyi-Williams, and Chuan-Fa Liu. "Genetic incorporation of 1,2-aminothiol functionality for site-specific protein modification via thiazolidine formation." Organic & Biomolecular Chemistry 14, no. 23 (2016): 5282–85. http://dx.doi.org/10.1039/c6ob00854b.
Full textDrabkin, H. J., H. J. Park, and U. L. RajBhandary. "Amber suppression in mammalian cells dependent upon expression of an Escherichia coli aminoacyl-tRNA synthetase gene." Molecular and Cellular Biology 16, no. 3 (1996): 907–13. http://dx.doi.org/10.1128/mcb.16.3.907.
Full textTuley, Alfred, Yane-Shih Wang, Xinqiang Fang, Yadagiri Kurra, Yohannes H. Rezenom, and Wenshe R. Liu. "The genetic incorporation of thirteen novel non-canonical amino acids." Chem. Commun. 50, no. 20 (2014): 2673–75. http://dx.doi.org/10.1039/c3cc49068h.
Full textWidder, Pia, Julian Schuck, Daniel Summerer, and Malte Drescher. "Combining site-directed spin labeling in vivo and in-cell EPR distance determination." Physical Chemistry Chemical Physics 22, no. 9 (2020): 4875–79. http://dx.doi.org/10.1039/c9cp05584c.
Full textEdwards, H., and P. Schimmel. "A bacterial amber suppressor in Saccharomyces cerevisiae is selectively recognized by a bacterial aminoacyl-tRNA synthetase." Molecular and Cellular Biology 10, no. 4 (1990): 1633–41. http://dx.doi.org/10.1128/mcb.10.4.1633.
Full textEdwards, H., and P. Schimmel. "A bacterial amber suppressor in Saccharomyces cerevisiae is selectively recognized by a bacterial aminoacyl-tRNA synthetase." Molecular and Cellular Biology 10, no. 4 (1990): 1633–41. http://dx.doi.org/10.1128/mcb.10.4.1633-1641.1990.
Full textBarker, Andrew, Stefan Oehler, and Benno Müller-Hill. "“Cold-Sensitive” Mutants of the Lac Repressor." Journal of Bacteriology 189, no. 5 (2006): 2174–75. http://dx.doi.org/10.1128/jb.01462-06.
Full textG�lugne, Jean-Paul, and John B. Belle. "Modifiers of ochre suppressors in Saccharomyces cerevisiae that exhibit ochre suppressor-dependent amber suppression." Current Genetics 14, no. 4 (1988): 345–54. http://dx.doi.org/10.1007/bf00419992.
Full textOh, Mi-young, Hyun-yoo Joo, Byung-ung Hur, Yeon-ho Jeong, and Sang-hoon Cha. "Enhancing phage display of antibody fragments using gIII-amber suppression." Gene 386, no. 1-2 (2007): 81–89. http://dx.doi.org/10.1016/j.gene.2006.08.009.
Full textSchwark, David, Margaret Schmitt, and John Fisk. "Dissecting the Contribution of Release Factor Interactions to Amber Stop Codon Reassignment Efficiencies of the Methanocaldococcus jannaschii Orthogonal Pair." Genes 9, no. 11 (2018): 546. http://dx.doi.org/10.3390/genes9110546.
Full textRennell, D., and A. R. Poteete. "Genetic analysis of bacteriophage P22 lysozyme structure." Genetics 123, no. 3 (1989): 431–40. http://dx.doi.org/10.1093/genetics/123.3.431.
Full textBourdeau, V., S. V. Steinberg, G. Ferbeyre, R. Emond, N. Cermakian, and R. Cedergren. "Amber suppression in Escherichia coli by unusual mitochondria-like transfer RNAs." Proceedings of the National Academy of Sciences 95, no. 4 (1998): 1375–80. http://dx.doi.org/10.1073/pnas.95.4.1375.
Full textWang, Qian, Tingting Sun, Jianfeng Xu, et al. "Response and Adaptation ofEscherichia colito Suppression of the Amber Stop Codon." ChemBioChem 15, no. 12 (2014): 1744–49. http://dx.doi.org/10.1002/cbic.201402235.
Full textAgafonov, Dmitry E., Yiwei Huang, Michael Grote, and Mathias Sprinzl. "Efficient suppression of the amber codon inE. coliin vitro translation system." FEBS Letters 579, no. 10 (2005): 2156–60. http://dx.doi.org/10.1016/j.febslet.2005.03.004.
Full textLovett, S. T., and V. A. Sutera. "Suppression of recJ exonuclease mutants of Escherichia coli by alterations in DNA helicases II (uvrD) and IV (helD)." Genetics 140, no. 1 (1995): 27–45. http://dx.doi.org/10.1093/genetics/140.1.27.
Full textOgawa, Atsushi, Yasunori Doi, and Nobuto Matsushita. "Improvement of in vitro-transcribed amber suppressor tRNAs toward higher suppression efficiency in wheat germ extract." Organic & Biomolecular Chemistry 9, no. 24 (2011): 8495. http://dx.doi.org/10.1039/c1ob06351k.
Full textHerring, Christopher D., Jeremy D. Glasner, and Frederick R. Blattner. "Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli." Gene 311 (June 2003): 153–63. http://dx.doi.org/10.1016/s0378-1119(03)00585-7.
Full textPott, Moritz, Moritz Johannes Schmidt, and Daniel Summerer. "Evolved Sequence Contexts for Highly Efficient Amber Suppression with Noncanonical Amino Acids." ACS Chemical Biology 9, no. 12 (2014): 2815–22. http://dx.doi.org/10.1021/cb5006273.
Full textBetzner, Andreas S., Marie P. Oakes, and Eric Huttner. "Transfer RNA-mediated suppression of amber stop codons in transgenic Arabidopsis thaliana." Plant Journal 11, no. 3 (1997): 587–95. http://dx.doi.org/10.1046/j.1365-313x.1997.11030587.x.
Full textMichaels, M. L., C. W. Kim, D. A. Matthews, and J. H. Miller. "Escherichia coli thymidylate synthase: amino acid substitutions by suppression of amber nonsense mutations." Proceedings of the National Academy of Sciences 87, no. 10 (1990): 3957–61. http://dx.doi.org/10.1073/pnas.87.10.3957.
Full textvan Kasteren, Sander. "Synthesis of post-translationally modified proteins." Biochemical Society Transactions 40, no. 5 (2012): 929–44. http://dx.doi.org/10.1042/bst20120144.
Full textCapone, J. P., J. M. Sedivy, P. A. Sharp, and U. L. RajBhandary. "Introduction of UAG, UAA, and UGA nonsense mutations at a specific site in the Escherichia coli chloramphenicol acetyltransferase gene: use in measurement of amber, ochre, and opal suppression in mammalian cells." Molecular and Cellular Biology 6, no. 9 (1986): 3059–67. http://dx.doi.org/10.1128/mcb.6.9.3059.
Full textCapone, J. P., J. M. Sedivy, P. A. Sharp, and U. L. RajBhandary. "Introduction of UAG, UAA, and UGA nonsense mutations at a specific site in the Escherichia coli chloramphenicol acetyltransferase gene: use in measurement of amber, ochre, and opal suppression in mammalian cells." Molecular and Cellular Biology 6, no. 9 (1986): 3059–67. http://dx.doi.org/10.1128/mcb.6.9.3059-3067.1986.
Full textRodriguez, E. A., H. A. Lester, and D. A. Dougherty. "Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 2: Evaluating suppression efficiency." RNA 13, no. 10 (2007): 1715–22. http://dx.doi.org/10.1261/rna.667607.
Full textKamijo, S., A. Fujii, K. Onodera, K. Wakabayashi, T. Kobayashi, and K. Sakamoto. "Improvement of Orthogonality Between the Amber Suppression System and the Translation System of Ecoli." Journal of Proteomics & Bioinformatics S2, no. 01 (2008): 181. http://dx.doi.org/10.4172/jpb.s1000134.
Full textLesjak, Sonja, and Ivana Weygand-Durasevic. "Recognition between tRNASerand archaeal seryl-tRNA synthetases monitored by suppression of bacterial amber mutations." FEMS Microbiology Letters 294, no. 1 (2009): 111–18. http://dx.doi.org/10.1111/j.1574-6968.2009.01560.x.
Full textChakrabarti, Lina, Li Zhuang, Gargi Roy, et al. "Amber suppression coupled with inducible surface display identifies cells with high recombinant protein productivity." Biotechnology and Bioengineering 116, no. 4 (2019): 793–804. http://dx.doi.org/10.1002/bit.26892.
Full textLin, John P., Mari Aker, Karen C. Sitney, and Robert K. Mortimer. "First position wobble in codon-anticodon pairing: amber suppression by a yeast glutamine tRNA." Gene 49, no. 3 (1986): 383–88. http://dx.doi.org/10.1016/0378-1119(86)90375-6.
Full textSyroid, D. E., R. I. Tapping, and J. P. Capone. "Regulated expression of a mammalian nonsense suppressor tRNA gene in vivo and in vitro using the lac operator/repressor system." Molecular and Cellular Biology 12, no. 10 (1992): 4271–78. http://dx.doi.org/10.1128/mcb.12.10.4271.
Full textSyroid, D. E., R. I. Tapping, and J. P. Capone. "Regulated expression of a mammalian nonsense suppressor tRNA gene in vivo and in vitro using the lac operator/repressor system." Molecular and Cellular Biology 12, no. 10 (1992): 4271–78. http://dx.doi.org/10.1128/mcb.12.10.4271-4278.1992.
Full textWang, Jinfan, Marek Kwiatkowski, and Anthony C. Forster. "Kinetics of tRNAPyl-mediated amber suppression inEscherichia colitranslation reveals unexpected limiting steps and competing reactions." Biotechnology and Bioengineering 113, no. 7 (2016): 1552–59. http://dx.doi.org/10.1002/bit.25917.
Full textWashburn, T., and J. E. O'Tousa. "Nonsense suppression of the major rhodopsin gene of Drosophila." Genetics 130, no. 3 (1992): 585–95. http://dx.doi.org/10.1093/genetics/130.3.585.
Full textSchwark, David G., Margaret A. Schmitt, and John D. Fisk. "Directed Evolution of the Methanosarcina barkeri Pyrrolysyl tRNA/aminoacyl tRNA Synthetase Pair for Rapid Evaluation of Sense Codon Reassignment Potential." International Journal of Molecular Sciences 22, no. 2 (2021): 895. http://dx.doi.org/10.3390/ijms22020895.
Full textPatel, A. H., J. H. Subak-Sharpe, N. D. Stow, H. S. Marsden, J. B. Maclean, and D. J. Dargan. "Suppression of amber nonsense mutations of herpes simplex virus type 1 in a tissue culture system." Journal of General Virology 77, no. 2 (1996): 199–209. http://dx.doi.org/10.1099/0022-1317-77-2-199.
Full textVolkwein, Wolfram, Christopher Maier, Ralph Krafczyk, Kirsten Jung та Jürgen Lassak. "A Versatile Toolbox for the Control of Protein Levels UsingNε-Acetyl-l-lysine Dependent Amber Suppression". ACS Synthetic Biology 6, № 10 (2017): 1892–902. http://dx.doi.org/10.1021/acssynbio.7b00048.
Full textDorus, Steve, Haruo Mimura, and Wolfgang Epstein. "Substrate-binding Clusters of the K+-transporting Kdp ATPase ofEscherichia coliInvestigated by Amber Suppression Scanning Mutagenesis." Journal of Biological Chemistry 276, no. 13 (2000): 9590–98. http://dx.doi.org/10.1074/jbc.m009365200.
Full textO'Donoghue, Patrick, Laure Prat, Ilka U. Heinemann, et al. "Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPylfor genetic code expansion." FEBS Letters 586, no. 21 (2012): 3931–37. http://dx.doi.org/10.1016/j.febslet.2012.09.033.
Full text