Academic literature on the topic 'Ammonia/water'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ammonia/water.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ammonia/water"
ISHIDA, Kenji, Issa MAHMOUD, and Masanori MONDE. "Ammonia vapor absorption into ammonia-water mixture." Proceedings of thermal engineering conference 2002 (2002): 435–36. http://dx.doi.org/10.1299/jsmeptec.2002.0_435.
Full textKim, Hahn, and Han Myoung Lee. "Ammonia−Water Cation and Ammonia Dimer Cation." Journal of Physical Chemistry A 113, no. 25 (June 25, 2009): 6859–64. http://dx.doi.org/10.1021/jp903093a.
Full textDobeš, Josef, and Milada Kozubková. "Modelling of Cavitation of Wash-Out Water, Ammonia Water, Ammonia Water with Increased Content Ammonia and Hydrogen Sulphide, Tar Condensate." Transactions of the VŠB - Technical University of Ostrava, Mechanical Series 59, no. 2 (December 30, 2013): 39–50. http://dx.doi.org/10.22223/tr.2013-2/1955.
Full textTrypuć, Mieczysław, and Katarzyna Białowicz. "Solubility of NH4VO3in Water + Ammonia." Journal of Chemical & Engineering Data 42, no. 2 (March 1997): 318–20. http://dx.doi.org/10.1021/je960259q.
Full textAbovsky, V. "Thermodynamics of ammoniawater mixture." Fluid Phase Equilibria 116, no. 1-2 (March 1996): 170–76. http://dx.doi.org/10.1016/0378-3812(95)02884-6.
Full textGoncharova, N. V., E. A. Nikitina, V. D. Khavryuchenko, and E. F. Sheka. "Computational chemistry of the silicon nitride surface. 1. Water, ammonia, and water-ammonia complex." Journal of Structural Chemistry 36, no. 1 (January 1995): 50–59. http://dx.doi.org/10.1007/bf02577749.
Full textSalavera, Daniel, Simona Libotean, Kashinath R. Patil, Xavier Esteve, and Alberto Coronas. "Densities and Heat Capacities of the Ammonia + Water + NaOH and Ammonia + Water + KOH Solutions." Journal of Chemical & Engineering Data 51, no. 3 (May 2006): 1020–25. http://dx.doi.org/10.1021/je050512z.
Full textYamaguchi, Masakuni, Tomoyuki Ichikawa, Hikaru Miyaoka, Tengfei Zhang, Hiroki Miyaoka, and Yoshitsugu Kojima. "Proton-based solid acids for ammonia absorption in ammonia water." International Journal of Hydrogen Energy 45, no. 41 (August 2020): 22189–94. http://dx.doi.org/10.1016/j.ijhydene.2020.05.255.
Full textRollinson, Andrew N., Gavin L. Rickett, Amanda Lea-Langton, Valerie Dupont, and Martyn V. Twigg. "Hydrogen from urea–water and ammonia–water solutions." Applied Catalysis B: Environmental 106, no. 3-4 (August 2011): 304–15. http://dx.doi.org/10.1016/j.apcatb.2011.05.031.
Full textAnkley, G. T., M. K. Schubauer-Berigan, and P. D. Monson. "Influence of pH and hardness on toxicity of ammonia to the amphipod Hyalella azteca." Canadian Journal of Fisheries and Aquatic Sciences 52, no. 10 (October 1, 1995): 2078–83. http://dx.doi.org/10.1139/f95-801.
Full textDissertations / Theses on the topic "Ammonia/water"
Golden, James Hollis. "Ammonia - water desorption in flooded columns." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44884.
Full textBittner, Andrew (Andrew Benjamin) 1974. "Nepal drinking water quality assessment : nitrates and ammonia." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/80930.
Full textGriffiths, Gareth Ivor Goulbourn. "First-principles studies of the ammonia-water system." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610671.
Full textThorin, Eva. "Power cycles with ammonia-water mixtures as working fluid." Doctoral thesis, KTH, Chemical Engineering and Technology, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2976.
Full textIt is of great interest to improve the efficiency of powergenerating processes, i.e. to convert more of the energy in theheat source to power. This is favorable from an environmentalpoint of view and can also be an economic advantage. To use anammonia-water mixture instead of water as working fluid is apossible way to improve the efficiency of steam turbineprocesses.
This thesis includes studies of power cycles withammonia-water mixtures as working fluid utilizing differentkinds of heat sources for power and heat generation. Thethermophysical properties of the mixture are also studied. Theyplay an important role in the calculations of the processperformance and for the design of its components, such as heatexchangers. The studies concern thermodynamic simula-tions ofprocesses in applications suitable for Swedish conditions.Available correla-tions for the thermophysical properties arecompared and their influence on simula-tions and heat exchangerarea predictions is investigated. Measurements of ammonia-watermixture viscosities using a vibrating wire viscometer are alsodescribed.
The studies performed show that power cycles withammonia-water mixtures as the working fluid are well suited forutilization of waste heat from industry and from gas engines.The ammonia-water power cycles can give up to 32 % more powerin the industrial waste heat application and up to 54 % morepower in the gas engine bottoming cycle application compared toa conventional Rankine steam cycle. However, ammonia-waterpower cycles in small direct-fired biomass-fueled cogene-rationplants do not show better performance than a conventionalRankine steam cycle.
When different correlations for the thermodynamic propertiesare used in simulations of a simple ammonia-water power cyclethe difference in efficiency is not larger than 4 %,corresponding to about 1.3 percentage points. The differencesin saturation properties between the correlations are, however,considerable at high pressures, high temperatures and high massfractions of ammonia. The use of different correlations for thethermodynamic and transport properties causes a noticeabledifference in the predicted heat exchanger areas required fordifferent processes.
Keywords:ammonia-water mixture, cogeneration,correlation, direct-fired power cycle, gas engine, Kalinacycle, power cycle, thermophysical properties, waste heat
Viswanathan, Vinodh Kumar. "Dynamic model for small-capacity ammonia-water absorption chiller." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/48939.
Full textMolyneaux, Glenn Arthur. "Resorption cycle heat pump with ammonia-water working fluid." Thesis, University of Ulster, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326335.
Full textMichalsky, Ronald. "Thermochemical production of ammonia using sunlight, air, water and biomass." Diss., Kansas State University, 2012. http://hdl.handle.net/2097/13823.
Full textDepartment of Chemical Engineering
Peter H. Pfromm
Approximately 45% of the global hydrogen production (from fossil fuels such as natural gas or coal totaling 2% of the global energy generation) is absorbed as feedstock in the synthesis of over 130 million metric tons ammonia (NH[subscript]3) annually. To achieve food security for a growing world population and to allow for additional uses of the nitrogen-fertilizer for production of bio-energy feedstock or as combustion fuel or H[subscript]2 carrier - demand for NH[subscript]3 is projected to increase. This work pursues the synthesis of ammonia at atmospheric pressure and without fossil fuel. Conceptually, concentrated solar radiation is utilized to transfer electrons from the lattice oxygen of a transition metal oxide to the metal ion. This yields a metallic reactant that provides the reducing power for the subsequent six-electron reductive cleavage of N[subscript]2 forming a transition metal nitride. In a second reaction, the generated lattice nitrogen is hydrogenated with hydrogen from H[subscript]2O to NH[subscript]3. This furnishes the transition metal oxide for perpetuated NH[subscript]3 synthesis. Theory and experimentation identified manganese nitride as a promising reactant with fast diffusion characteristics (8 ± 4 x 10[superscript]-9 cm[superscript]2 s [superscript]-1 apparent nitrogen diffusion constant at 750 degree C) and efficient liberation of 89 ± 1 mol% nitrogen via hydrolysis at 500 degree C. Opposed to only 2.9 ± 0.2 mol% NH[subscript]3 from manganese nitride, 60 ± 8 mol% of the nitrogen liberated from molybdenum nitride could be recovered as NH[subscript]3. Process simulation of a Mo-based NH[subscript]3 synthesis at 500-1200 degree C estimates economically attractive production under fairly conservative process and market conditions. To aid the prospective design of a Mn or Mo-based reactant, correlating the diffusion constants for the hydrolysis of seven nitrides with the average lattice nitrogen charge (9.96-68.83%, relative to an ideal ionic solid) indicates the utility of first-principle calculations for developing an atomic-scale understanding of the reaction mechanism in the future.
Mizak, Constance Anne. "Ammonia flux at the air/water interface of Tampa Bay." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000273.
Full textBerdasco, Ruiz Miguel Ángel. "Study of the ammonia absorption process into ammonia/water solutions using polymeric membranes for absorption-resorption refrigeration systems." Doctoral thesis, Universitat Rovira i Virgili, 2018. http://hdl.handle.net/10803/586260.
Full textEn esta tesis se estudia el proceso de absorción de amoniaco en disoluciones de amoniaco/agua utilizando membranas poliméricas como contactores para su integración en los sistemas de refrigeración por absorción-resorción. La elevada relación superficie/volumen proporcionada por las membranas permite reducir el tamaño de los absorbedores y así poder diseñar equipos de refrigeración más compactos y ligeros. Se propone utilizar sistemas de refrigeración por absorción-resorción de amoniaco/agua debido a que permiten reducir la elevada presión de trabajo de los sistemas de absorción convencionales, haciendo viable la utilización de materiales poliméricos. Inicialmente se presenta un estudio del ciclo de refrigeración por absorción-resorción de amoniaco/agua mediante modelos termodinámicos, así como el análisis del funcionamiento de una planta de refrigeración por absorción-resorción de 25 kW. Para el estudio experimental del proceso de absorción adiabático de amoniaco en disoluciones de amoniaco/agua se construyó un banco de ensayos en el que se probaron dos módulos diferentes: membrana plana y fibras huecas. En ambos casos se desarrollaron modelos teóricos que fueron validados con los resultados experimentales. Fruto del estudio con la membrana plana se determinaron las características requeridas por una membrana polimérica para su utilización en el proceso de absorción de amoniaco. Dichas características se tuvieron en cuenta a la hora de seleccionar el módulo comercial de fibras huecas. Finalmente, se desarrolló un modelo teórico de un absorbedor de membranas de fibra hueca con intercambiador de calor integrado. Este modelo se utilizó para diseñar un absorbedor y un resorbedor para el sistema de refrigeración por absorción-resorción de 25 kW. Los resultados obtenidos confirman el potencial de reducción de tamaño que ofrecen las membranas ya que se obtuvieron relaciones de carga térmica/volumen de hasta 10000 kW/m3, muy superiores a las proporcionadas por los absorbedores de placas (2000 kW/m3) o los de carcasa y tubos (300 kW/m3).
This thesis studies the ammonia absorption process into ammonia/water solutions using polymeric membranes as contactors in order to be used in the absorption-resorption refrigeration systems. The high surface/volume ratio provided by the membranes enable to reduce the size of the absorbers and, therefore, more compact and lighter designs can be made. The use of absorption-resorption refrigeration systems is proposed because they allow to reduce the typically high working pressure of the conventional absorption systems, making feasible the use of polymeric materials. Initially, the thesis presents a study of the ammonia/water absorption-resorption refrigeration cycle by means of thermodynamic models, as well as the analysis of the performance of a 25-kW absorption-resorption refrigeration plant. A test bench was designed and built for the experimental study of the adiabatic ammonia absorption process into ammonia/water solutions. Two different membrane modules were tested: a flat-sheet and a hollow fibre membrane module. In both cases, theoretical models were developed and validated with the experimental results. As a result of the study with the flat-sheet membrane, the characteristics required by a polymeric membrane to be used in the ammonia absorption process were determined. These characteristics were considered for the selection of the commercial hollow fibre membrane module. Finally, a theoretical model of a hollow fibre membrane absorber with heat exchanger integrated was developed. This model was used to design an absorber and a resorber for the 25-kW absorption-resorption refrigeration system. The results obtained confirm the potential in terms of size reduction provided by the membrane modules because heat duties/volume ratio up to 10000 kW/m3 were obtained, much higher than those provided by the plate absorbers (2000 kW/m3) or the shell and tube absorbers (300 kW/m3).
Yang, Xin. "DBP formation from chlorination of water containing ammonia, bromide and organic nitrogen /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202004%20YANG.
Full textIncludes bibliographical references (leaves 100-118). Also available in electronic version. Access restricted to campus users.
Books on the topic "Ammonia/water"
Environmental Research Laboratory (Duluth, Minn.) and United States. Environmental Protection Agency. Office of Water Regulations and Standards. Criteria & Standards Division., eds. Ambient aquatic life water quality criteria for ammonia. [Washington, D.C: U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Criteria and Standards Division, 1985.
Find full textRussell, Stephen. Ammonia: A guide to measurements in water applications. Swindon: WRc, 1994.
Find full textEnvironmental Research Laboratory (Narragansett, R.I.) and United States. Environmental Protection Agency. Office of Water Regulations and Standards. Criteria & Standards Division., eds. Ambient aquatic life water quality criteria for ammonia (saltwater). [Washington, D.C: U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Criteria and Standards Division, 1989.
Find full textMolyneaux, Glenn Arthur. Resorption cycle heat pump with ammonia-water working fluid. [s.l: The Author], 2000.
Find full textAquatic life: Ammonia fact sheet--1999 update. Washington, D.C.]: United States Environmental Protection Agency, Office of Water, 1999.
Find full textW, Moore David, and U.S. Army Engineer Waterways Experiment Station, eds. Risk of pore water ammonia toxicity in dredged material bioassays. Vicksburg, Miss: US Army Corps of Engineers, Waterways Experiment Station, 1995.
Find full textW, Moore David, and U.S. Army Engineer Waterways Experiment Station., eds. Risk of pore water ammonia toxicity in dredged material bioassays. Vicksburg, Miss: US Army Corps of Engineers, Waterways Experiment Station, 1995.
Find full textMike, Linhart S. Ammonia in ground water from the Mississippi River alluvium, Fort Madison, Iowa. Iowa City, Iowa: U.S. Dept. of the Interior, U.S. Geological Survey, 2001.
Find full textMike, Linhart S. Ammonia in ground water from the Mississippi River alluvium, Fort Madison, Iowa. Iowa City, Iowa: U.S. Dept. of the Interior, U.S. Geological Survey, 2001.
Find full textLinhart, S. Mike. Ammonia in ground water from the Mississippi River alluvium, Fort Madison, Iowa. Iowa City, Iowa: U.S. Dept. of the Interior, U.S. Geological Survey, 2001.
Find full textBook chapters on the topic "Ammonia/water"
Warnock, Robert E. "Ammonia Application in Irrigation Water." In Agricultural Anhydrous Ammonia Technology and Use, 115–24. Madison, WI, USA: American Society of Agronomy, Soil Science Society of America, 2015. http://dx.doi.org/10.2134/1966.nh3agricultural.c6.
Full textWinkelmann, J. "Diffusion of ammonia (1); water (2)." In Gases in Gases, Liquids and their Mixtures, 2025. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-49718-9_1553.
Full textWinkelmann, Jochen. "Diffusion coefficient of ammonia in water." In Diffusion in Gases, Liquids and Electrolytes, 1869–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54089-3_1298.
Full textSarbatly, Rosalam, and Chel-Ken Chiam. "Ammonia Removal from Saline Water by Direct Contact Membrane Distillation." In Sustainable Membrane Technology for Energy, Water, and Environment, 309–17. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118190180.ch27.
Full textSnodgrass, W. J., and A. Klapwijk. "Lake Oxygen Model 1: Modelling Sediment Water Transport of Ammonia, Nitrate, and Oxygen." In Sediments and Water Interactions, 243–50. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4932-0_21.
Full textde Gregorio-Monsalvo, Itziar, Claire J. Chandler, José F. Gómez, Thomas B. H. Kuiper, José M. Torrelles, and Guillem Anglada. "High-Resolution Observations in B1-IRS: Ammonia, CCS and Water Masers." In Dense Molecular Gas Around Protostars and in Galactic Nuclei, 65–70. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3831-3_7.
Full textPanwar, Deepak, and Akhilesh Arora. "Energy Analysis of Double Evaporator Ammonia Water Vapour Absorption Refrigeration System." In Lecture Notes in Mechanical Engineering, 619–34. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8542-5_54.
Full textFort, Ada, Anna Lo Grasso, Elia Landi, Marco Mugnaini, Enza Panzardi, Valerio Vignoli, Luigi Talarico, Marco Consumi, and Agnese Magnani. "A High Accuracy QCM Based Sensing System for in Water Ammonia Monitoring." In Lecture Notes in Electrical Engineering, 64–70. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-25706-3_11.
Full textSteffes, Paul G., Thomas R. Hanley, Bryan M. Karpowicz, Kiruthika Devaraj, Sahand Noorizadeh, Danny Duong, Garrett Chinsomboon, Amadeo Bellotti, Michael A. Janssen, and Scott J. Bolton. "High-Precision Laboratory Measurements Supporting Retrieval of Water Vapor, Gaseous Ammonia, and Aqueous Ammonia Clouds with the Juno Microwave Radiometer (MWR)." In The Juno Mission, 627–44. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-1560-5_14.
Full textRoutray, Pratyush, Pintu D. Masalkar, and Daniel M. Roberts. "Nodulin Intrinsic Proteins: Facilitators of Water and Ammonia Transport across the Symbiosome Membrane." In Biological Nitrogen Fixation, 695–704. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781119053095.ch69.
Full textConference papers on the topic "Ammonia/water"
Zandanel, Amber, Roland Hellmann, and Laurent Truche. "Mineral alteration in ammonia-water solutions." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.6920.
Full textAmir Masoud Samani Majd, Ahmad Kalbasi, Saqib Mukhtar, and Gerald Riskowski. "Ammonia Scrubbing Using Electrolyzed Water Spray Scrubber." In 2013 Kansas City, Missouri, July 21 - July 24, 2013. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2013. http://dx.doi.org/10.13031/aim.20131605985.
Full textKong, Dingfeng, Jianhua Liu, Liang Zhang, and Zhiyun Fang. "Investigation of a Ammonia-Water Absorption Chiller Performance." In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5448881.
Full textChen, Cheng, Sandra Heimel, and Patric Young. "Produced Water Ammonia Removal using RO Membrane Process." In SPE Canada Heavy Oil Technical Conference. Society of Petroleum Engineers, 2018. http://dx.doi.org/10.2118/189761-ms.
Full textLeidinger, Bernhard J. G., Carola Goehre, and Peter L. Müller-Remmers. "Ammonia Boiler Concepts for Hermes ATCS - Water Loop." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/921207.
Full textBecker, Leonard, and José Luis Corrales Ciganda. "Fundamental EoS Implementation for {Water+Ammonia} in Modelica." In The 11th International Modelica Conference. Linköping University Electronic Press, 2015. http://dx.doi.org/10.3384/ecp15118647.
Full textfneer, M., J. Kurata, W. J. O. Boyle, and K. T. V. Grattan. "Optical Fiber Ammonia Sensor For Water Quality Measurement." In Optical Fiber Sensors. Washington, D.C.: OSA, 1996. http://dx.doi.org/10.1364/ofs.1996.th35.
Full textAboabboud, M., H. Ibrahim, and A. Awad. "Biological ammonia removal from drinking water in fluidized bed reactors." In WATER POLLUTION 2008. Southampton, UK: WIT Press, 2008. http://dx.doi.org/10.2495/wp080441.
Full textTakeshita, Keisuke, Yoshiharu Amano, and Takumi Hashizume. "Demonstration of a Hybrid Power and Refrigeration Ammonia-Water Cycle." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-91319.
Full textKim, Lo Po, Ooi Zi Xen, Ho Hooi Eng, Tan Xin Yee, Wong Vin Yean, and Humaira Nisar. "Estimation of Ammonia in Water Samples Using Image Analysis." In 2020 IEEE Conference on Open Systems (ICOS). IEEE, 2020. http://dx.doi.org/10.1109/icos50156.2020.9293648.
Full textReports on the topic "Ammonia/water"
Anheier, N. C. Jr, C. E. McDonald, J. M. Cuta, F. M. Cuta, and K. B. Olsen. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/86305.
Full textLi, S., and E. R. Bernstein. Benzyl Alcohol-Water and -Ammonia Clusters: Ion Fragmentation and Chemistry. Fort Belvoir, VA: Defense Technical Information Center, September 1992. http://dx.doi.org/10.21236/ada255745.
Full textKalman, Joseph, and Maryam Haddad. Wastewater-derived Ammonia for a Green Transportation Fuel. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2021.2041.
Full textKalman, Joseph, and Maryam Haddad. Wastewater-derived Ammonia for a Green Transportation Fuel. Mineta Transportation Institute, July 2022. http://dx.doi.org/10.31979/mti.2022.2041.
Full textGupta, Ashish. DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES. Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/804914.
Full textVan Rijn, Jaap, Harold Schreier, and Yossi Tal. Anaerobic ammonia oxidation as a novel approach for water treatment in marine and freshwater aquaculture recirculating systems. United States Department of Agriculture, December 2006. http://dx.doi.org/10.32747/2006.7696511.bard.
Full textKim, S. K., S. Li, and E. R. Bernstein. Excited State Intermolecular Proton Transfer in Isolated Clusters: 1- Naphthol/Ammonia and Water. Fort Belvoir, VA: Defense Technical Information Center, March 1991. http://dx.doi.org/10.21236/ada233637.
Full textAshish Gupta. THERMODYNAMIC ANALYSIS OF AMMONIA-WATER-CARBON DIOXIDE MIXTURES FOR DESIGNING NEW POWER GENERATION CYCLES. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/836708.
Full textSims, Jerre G., and David W. Moore. Risk of Pore Water Ammonia Toxicity in Dredged Material Bioassays. Dredging Operations Technical Support Program. Fort Belvoir, VA: Defense Technical Information Center, November 1995. http://dx.doi.org/10.21236/ada303532.
Full textDesiderati, Christopher. Carli Creek Regional Water Quality Project: Assessing Water Quality Improvement at an Urban Stormwater Constructed Wetland. Portland State University, 2022. http://dx.doi.org/10.15760/mem.78.
Full text