Journal articles on the topic 'Amperometry (Instrumentation)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Amperometry (Instrumentation).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wang, Yang, Guojun Yao, Jie Tang, Chun Yang, Qin Xu, and Xiaoya Hu. "Online Coupling of Lab-on-Valve Format to Amperometry Based on Polyvinylpyrrolidone-Doped Carbon Paste Electrode and Its Application to the Analysis of Morin." Journal of Analytical Methods in Chemistry 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/257109.
Full textEl Achhab, Mhamed, and Klaus Schierbaum. "Gas sensors based on plasma-electrochemically oxidized titanium foils." Journal of Sensors and Sensor Systems 5, no. 2 (2016): 273–81. http://dx.doi.org/10.5194/jsss-5-273-2016.
Full textSzczesny, Szymon, Marek Kropidlowski та Mariusz Naumowicz. "0.50-V Ultra-Low-Power Σ Δ Modulator for Sub-nA Signal Sensing in Amperometry". IEEE Sensors Journal 20, № 11 (2020): 5733–40. http://dx.doi.org/10.1109/jsen.2020.2974701.
Full textChethan .G, Chethan G., Saurav Pratap Singh, Dr Padmaja K. V. Dr. Padmaja .K.V, and Dr Prasanna kumar S. C. Dr. Prasanna kumar .S.C. "Instrumentation system for amperometric biosensor." Indian Journal of Applied Research 1, no. 10 (2011): 49–51. http://dx.doi.org/10.15373/2249555x/jul2012/17.
Full textSzczęsny, Szymon, Damian Huderek, and Łukasz Przyborowski. "Spiking Neural Network with Linear Computational Complexity for Waveform Analysis in Amperometry." Sensors 21, no. 9 (2021): 3276. http://dx.doi.org/10.3390/s21093276.
Full textLópez-Ortiz, Manuel, Ricardo A. Zamora, Maria Elena Antinori, et al. "Fast Photo-Chrono-Amperometry of Photosynthetic Complexes for Biosensors and Electron Transport Studies." ACS Sensors 6, no. 2 (2021): 581–87. http://dx.doi.org/10.1021/acssensors.1c00179.
Full textNegahdary, Masoud, Mahnaz Jafarzadeh, Roya Rahimzadeh, Ghasem Rahimi, and Hamideh Dehghani. "A DNA biosensor for molecular diagnosis of <i>Aeromonas hydrophila</i> using zinc sulfide nanospheres." Journal of Sensors and Sensor Systems 6, no. 2 (2017): 259–67. http://dx.doi.org/10.5194/jsss-6-259-2017.
Full textSudarvizhi, A., K. Pandian, Oluwatobi Samuel Oluwafemi, and Subash C. B. Gopinath. "Amperometry detection of nitrite in food samples using tetrasulfonated copper phthalocyanine modified glassy carbon electrode." Sensors and Actuators B: Chemical 272 (November 2018): 151–59. http://dx.doi.org/10.1016/j.snb.2018.05.147.
Full textTakamatsu, Shouhei, Jinhee Lee, Ryutaro Asano, Wakako Tsugawa, Kazunori Ikebukuro, and Koji Sode. "Continuous electrochemical monitoring of L-glutamine using redox-probe-modified L-glutamine-binding protein based on intermittent pulse amperometry." Sensors and Actuators B: Chemical 346 (November 2021): 130554. http://dx.doi.org/10.1016/j.snb.2021.130554.
Full textHUNG, Y., P. CHEN, R. CHEN, and T. CHENG. "Determining the levels of tannin in tea by amperometry of ferricyanide pre-reaction with a sample in a flow-injection system." Sensors and Actuators B: Chemical 130, no. 1 (2008): 135–40. http://dx.doi.org/10.1016/j.snb.2007.07.109.
Full textNontawong, Nongyao, Maliwan Amatatongchai, Purim Jarujamrus, Duangjai Nacapricha, and Peter A. Lieberzeit. "Novel dual-sensor for creatinine and 8-hydroxy-2'-deoxyguanosine using carbon-paste electrode modified with molecularly imprinted polymers and multiple-pulse amperometry." Sensors and Actuators B: Chemical 334 (May 2021): 129636. http://dx.doi.org/10.1016/j.snb.2021.129636.
Full textEconomou, A. S., G. J. Volikakis, and C. E. Efstathiou. "Virtual instrumentation for electro–analytical measurements." Journal of Automated Methods and Management in Chemistry 21, no. 2 (1999): 33–38. http://dx.doi.org/10.1155/s1463924699000061.
Full textLi, Lin, Xiaowen Liu, Waqar A. Qureshi, and Andrew J. Mason. "CMOS Amperometric Instrumentation and Packaging for Biosensor Array Applications." IEEE Transactions on Biomedical Circuits and Systems 5, no. 5 (2011): 439–48. http://dx.doi.org/10.1109/tbcas.2011.2171339.
Full textCoutinho, Cláudia F. B., Lincoln F. M. Coutinho, Fernando M. Lanças, Carlos A. P. Câmara, Suzana L. Nixdorf, and Luiz H. Mazo. "Development of instrumentation for amperometric and coulometric detection using ultramicroelectrodes." Journal of the Brazilian Chemical Society 19, no. 1 (2008): 131–39. http://dx.doi.org/10.1590/s0103-50532008000100019.
Full textPatre, B. M., and V. G. Sangam. "Mathematical model of an amperometric biosensor for the design of an appropriate instrumentation system." Journal of Medical Engineering & Technology 31, no. 5 (2007): 351–60. http://dx.doi.org/10.1080/03091900600926898.
Full textMontes-Cebrián, Yaiza, Albert Álvarez-Carulla, Jordi Colomer-Farrarons, Manel Puig-Vidal, and Pere Ll Miribel-Català. "Self-Powered Portable Electronic Reader for Point-of-Care Amperometric Measurements." Sensors 19, no. 17 (2019): 3715. http://dx.doi.org/10.3390/s19173715.
Full textNeupane, Shova, Suresh Bhusal, Vivek Subedi, et al. "Preparation of an Amperometric Glucose Biosensor on Polyaniline-Coated Graphite." Journal of Sensors 2021 (January 28, 2021): 1–7. http://dx.doi.org/10.1155/2021/8832748.
Full textAliramezani, Masoud, Charles Robert Koch, and Ron Patrick. "A Variable-Potential Amperometric Hydrocarbon Sensor." IEEE Sensors Journal 19, no. 24 (2019): 12003–10. http://dx.doi.org/10.1109/jsen.2019.2938920.
Full textCiriello, Rosanna, and Antonio Guerrieri. "A Crosstalk- and Interferent-Free Dual Electrode Amperometric Biosensor for the Simultaneous Determination of Choline and Phosphocholine." Sensors 21, no. 10 (2021): 3545. http://dx.doi.org/10.3390/s21103545.
Full textKang, Yu Ri, Kyung Hoon Hwang, Ju Hwan Kim, Chang Hoon Nam, and Soo Won Kim. "Disposable amperometric biosensor based on nanostructured bacteriophages for glucose detection." Measurement Science and Technology 21, no. 10 (2010): 105804. http://dx.doi.org/10.1088/0957-0233/21/10/105804.
Full textKang, Yu Ri, Kyung Hoon Hwang, Ju Hwan Kim, Chang Hoon Nam, and Soo Won Kim. "Disposable amperometric biosensor based on nanostructured bacteriophages for glucose detection." Measurement Science and Technology 22, no. 2 (2010): 029801. http://dx.doi.org/10.1088/0957-0233/22/2/029801.
Full textPirog, V. P., A. M. Gaba, A. K. Semchevskii, and G. M. Murzin. "Study of amperometric diffusion solid-state electrolyte cell operating regimes." Measurement Techniques 51, no. 10 (2008): 1143–46. http://dx.doi.org/10.1007/s11018-009-9176-8.
Full textda Silva, Rejane M. P., Javier Izquierdo, Mariana X. Milagre, Abenchara M. Betancor-Abreu, Isolda Costa, and Ricardo M. Souto. "Use of Amperometric and Potentiometric Probes in Scanning Electrochemical Microscopy for the Spatially-Resolved Monitoring of Severe Localized Corrosion Sites on Aluminum Alloy 2098-T351." Sensors 21, no. 4 (2021): 1132. http://dx.doi.org/10.3390/s21041132.
Full textQuinn, C. P., J. G. Wagner, A. Heller, and C. N. Yarnitzky. "Battery-Powered Miniature Bipotentiostats for Amperometric Biosensors." Instrumentation Science & Technology 24, no. 4 (1996): 263–75. http://dx.doi.org/10.1080/10739149608001212.
Full textJalukse, Lauri, and Ivo Leito. "Model-based measurement uncertainty estimation in amperometric dissolved oxygen concentration measurement." Measurement Science and Technology 18, no. 7 (2007): 1877–86. http://dx.doi.org/10.1088/0957-0233/18/7/013.
Full textRoumenin, Ch, D. Nikolov, and I. Ivanov. "Amperometric circuit for high accuracy 2D and 3D magnetic-field measurements." Measurement Science and Technology 14, no. 6 (2003): 851–57. http://dx.doi.org/10.1088/0957-0233/14/6/321.
Full textHoilett, Orlando S., Jenna F. Walker, Bethany M. Balash, Nicholas J. Jaras, Sriram Boppana, and Jacqueline C. Linnes. "KickStat: A Coin-Sized Potentiostat for High-Resolution Electrochemical Analysis." Sensors 20, no. 8 (2020): 2407. http://dx.doi.org/10.3390/s20082407.
Full textCastaño‐Álvarez, Mario, M. Teresa Fernández‐Abedul, and Agustín Costa‐García. "Analytical Performance of CE Microchips with Amperometric Detection." Instrumentation Science & Technology 34, no. 6 (2006): 697–710. http://dx.doi.org/10.1080/10739140600964069.
Full textSok, Vibol, and Alex Fragoso. "Carbon Nano-Onion Peroxidase Composite Biosensor for Electrochemical Detection of 2,4-D and 2,4,5-T." Applied Sciences 11, no. 15 (2021): 6889. http://dx.doi.org/10.3390/app11156889.
Full textSteinberg, Matthew D., and Christopher R. Lowe. "A micropower amperometric potentiostat." Sensors and Actuators B: Chemical 97, no. 2-3 (2004): 284–89. http://dx.doi.org/10.1016/j.snb.2003.09.002.
Full textCoillard, Véronique, Laurence Juste, Claude Lucat, and Francis Ménil. "Nitrogen-monoxide sensing with a commercial zirconia lambda gauge biased in amperometric mode." Measurement Science and Technology 11, no. 3 (2000): 212–20. http://dx.doi.org/10.1088/0957-0233/11/3/307.
Full textFu, Chonggang, and Lixin Wang. "Low-Noise Amperometric Detector for Use in Capillary Electrophoresis." Instrumentation Science & Technology 27, no. 3 (1999): 199–205. http://dx.doi.org/10.1080/10739149908085850.
Full textSantha, H., R. Dobay, and G. Harsanyi. "Amperometric uric acid biosensors fabricated of various types of uricase enzymes." IEEE Sensors Journal 3, no. 3 (2003): 282–87. http://dx.doi.org/10.1109/jsen.2003.814655.
Full textMaskell, William C., Daniel J. L. Brett, and Nigel P. Brandon. "Thick-film amperometric zirconia oxygen sensors: influence of cobalt oxide as a sintering aid." Measurement Science and Technology 25, no. 6 (2014): 065104. http://dx.doi.org/10.1088/0957-0233/25/6/065104.
Full textAndriukonis, Eivydas, Raimonda Celiesiute-Germaniene, Simonas Ramanavicius, Roman Viter, and Arunas Ramanavicius. "From Microorganism-Based Amperometric Biosensors towards Microbial Fuel Cells." Sensors 21, no. 7 (2021): 2442. http://dx.doi.org/10.3390/s21072442.
Full textKalyakin, A., A. Demin, E. Gorbova, A. Volkov, and P. Tsiakaras. "Combined amperometric-potentiometric oxygen sensor." Sensors and Actuators B: Chemical 313 (June 2020): 127999. http://dx.doi.org/10.1016/j.snb.2020.127999.
Full textPavoni, S., C. Sundermeier, J. Perdomo, and H. Hinkers. "Evaluation of amperometric microsensors for protein screening tasks." Measurement 40, no. 6 (2007): 708–16. http://dx.doi.org/10.1016/j.measurement.2006.07.002.
Full textYang, Wei, Zhiyong Zhang, Haiyan Song, Xiaoping Han, and Yueming Zuo. "Label-free Amperometric Immunosensor for Quantitative Detection of Low-concentration Brucellapositive Standard Serum." Sensors and Materials 31, no. 2 (2019): 661. http://dx.doi.org/10.18494/sam.2019.2180.
Full textChamjangali, Mansour Arab, Samira Boroumand, Ghadamali Bagherian, Nasser Goudarzi, and Amir Hossein Momeni. "Application of Allura Red in the construction of a novel amperometric flow sensor for the automatic determination of hydroquinone and catechol using a two-line flow injection manifold with a single-sensor/double-pulse amperometric detection." Measurement Science and Technology 30, no. 2 (2019): 025801. http://dx.doi.org/10.1088/1361-6501/aaf4e4.
Full textChakraborty, Parthojit, Yu-An Chien, Wan-Ting Chiu, et al. "Design and Development of Amperometric Gas Sensor With Atomic Au–Polyaniline/Pt Composite." IEEE Sensors Journal 20, no. 21 (2020): 12479–87. http://dx.doi.org/10.1109/jsen.2020.3002822.
Full textWard, W. Kenneth, Stephen Van Albert, Michael Bodo, et al. "Design and Assessment of a Miniaturized Amperometric Oxygen Sensor in Rats and Pigs." IEEE Sensors Journal 10, no. 7 (2010): 1259–65. http://dx.doi.org/10.1109/jsen.2009.2037017.
Full textYin, Heyu, Ehsan Ashoori, Xiaoyi Mu, and Andrew J. Mason. "A Compact Low-Power Current-to-Digital Readout Circuit for Amperometric Electrochemical Sensors." IEEE Transactions on Instrumentation and Measurement 69, no. 5 (2020): 1972–80. http://dx.doi.org/10.1109/tim.2019.2922053.
Full textPentari, J. G., and C. E. Efstathiou. "Construction and Applications of a Microcomputer Controlled Pulsed Amperometric Detector System." Instrumentation Science & Technology 15, no. 4 (1986): 329–45. http://dx.doi.org/10.1080/10739148608543620.
Full textPerez, Elizabeth Fátima, Graciliano de Oliveira Neto, and Lauro Tatsuo Kubota. "Bi-enzymatic amperometric biosensor for oxalate." Sensors and Actuators B: Chemical 72, no. 1 (2001): 80–85. http://dx.doi.org/10.1016/s0925-4005(00)00637-7.
Full textChen, Zhencheng, Cheng Fang, Hongyan Wang, Jishan He, and Zhencheng Deng. "A novel disposable amperometric UA strip." Sensors and Actuators B: Chemical 129, no. 2 (2008): 710–15. http://dx.doi.org/10.1016/j.snb.2007.09.061.
Full textWang, Peng, Min Liu, and Jinqing Kan. "Amperometric phenol biosensor based on polyaniline." Sensors and Actuators B: Chemical 140, no. 2 (2009): 577–84. http://dx.doi.org/10.1016/j.snb.2009.05.005.
Full textAleeva, Yana, Giovanni Maira, Michelangelo Scopelliti, et al. "Amperometric Biosensor and Front-End Electronics for Remote Glucose Monitoring by Crosslinked PEDOT-Glucose Oxidase." IEEE Sensors Journal 18, no. 12 (2018): 4869–78. http://dx.doi.org/10.1109/jsen.2018.2831779.
Full textEconomou, Anastasios, and Maria Nika. "A Fully Automated Sequential-Injection Analyser for Dual Electrogenerated Chemiluminescence/Amperometric Detection." Journal of Automated Methods and Management in Chemistry 2006 (2006): 1–9. http://dx.doi.org/10.1155/jammc/2006/67571.
Full textJiang, Xingxing, Shuping Liu, Minghui Yang, and Avraham Rasooly. "Amperometric genosensor for culture independent bacterial count." Sensors and Actuators B: Chemical 299 (November 2019): 126944. http://dx.doi.org/10.1016/j.snb.2019.126944.
Full textArora, Kamal, and Nitin K. Puri. "Electrophoretically deposited nanostructured PdO thin film for room temperature amperometric H2 sensing." Vacuum 154 (August 2018): 302–8. http://dx.doi.org/10.1016/j.vacuum.2018.04.023.
Full text