Academic literature on the topic 'Amplitude equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Amplitude equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Amplitude equation"
Rauf, S., and J. A. Tataronis. "Resonant four-wave mixing of finite-amplitude Alfvén waves." Journal of Plasma Physics 55, no. 2 (1996): 173–80. http://dx.doi.org/10.1017/s0022377800018766.
Full textZhang, Yu, Guanquan Zhang, and Norman Bleistein. "Theory of true-amplitude one-way wave equations and true-amplitude common-shot migration." GEOPHYSICS 70, no. 4 (2005): E1—E10. http://dx.doi.org/10.1190/1.1988182.
Full textVivas, Flor A., and Reynam C. Pestana. "True-amplitude one-way wave equation migration in the mixed domain." GEOPHYSICS 75, no. 5 (2010): S199—S209. http://dx.doi.org/10.1190/1.3478574.
Full textFeng, Zongcai, and Gerard Schuster. "True-amplitude linearized waveform inversion with the quasi-elastic wave equation." GEOPHYSICS 84, no. 6 (2019): R827—R844. http://dx.doi.org/10.1190/geo2019-0116.1.
Full textKovachev, Lubomir M. "Optical vortices in dispersive nonlinear Kerr-type media." International Journal of Mathematics and Mathematical Sciences 2004, no. 18 (2004): 949–67. http://dx.doi.org/10.1155/s0161171204301018.
Full textMOSLEM, W. M. "Propagation of ion acoustic waves in a warm multicomponent plasma with an electron beam." Journal of Plasma Physics 61, no. 2 (1999): 177–89. http://dx.doi.org/10.1017/s0022377898007429.
Full textHutahaean, Syawaluddin. "Wavelength and Wave Period Relationship with Wave Amplitude: A Velocity Potential Formulation." International Journal of Advanced Engineering Research and Science 9, no. 8 (2022): 387–93. http://dx.doi.org/10.22161/ijaers.98.44.
Full textMeis, Constantin, and Pierre Richard Dahoo. "Vector potential quantization and the photon intrinsic electromagnetic properties: Towards nondestructive photon detection." International Journal of Quantum Information 15, no. 08 (2017): 1740003. http://dx.doi.org/10.1142/s0219749917400032.
Full textAngus, D. A. "True amplitude corrections for a narrow-angle one-way elastic wave equation." GEOPHYSICS 72, no. 2 (2007): T19—T26. http://dx.doi.org/10.1190/1.2430694.
Full textZhang, Yu, Guanquan Zhang, and Norman Bleistein. "True amplitude wave equation migration arising from true amplitude one-way wave equations." Inverse Problems 19, no. 5 (2003): 1113–38. http://dx.doi.org/10.1088/0266-5611/19/5/307.
Full textDissertations / Theses on the topic "Amplitude equation"
Klepel, Konrad Verfasser], and Dirk [Akademischer Betreuer] [Blömker. "Amplitude equations for the generalised Swift-Hohenberg equation with noise / Konrad Klepel. Betreuer: Dirk Blömker." Augsburg : Universität Augsburg, 2015. http://d-nb.info/107770562X/34.
Full textHarris, Derek. "A study of a nonlinear amplitude equation modelling spherical couette flow." Thesis, University of Exeter, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367377.
Full textPunekar, Jyothika Narasimha. "Numerical simulation of nonlinear random noise." Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243151.
Full textBlockley, Edward William. "Nonlinear solutions of the amplitude equations governing fluid flow in rotating spherical geometries." Thesis, University of Exeter, 2008. http://hdl.handle.net/10036/41950.
Full textPetrovic, Milena. "Effects of the Object’s Mass and Distance on the Location of Preferred Critical Boundary, Discomfort, and Muscle Activation during a Seated Reaching Task." Miami University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=miami1343567265.
Full textBelayouni, Nidhal. "Nouveaux algorithmes efficaces de modélisation 2D et 3D : Temps des premières arrivées, angles à la source et amplitudes." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2013. http://pastel.archives-ouvertes.fr/pastel-00871200.
Full textBelayouni, Nidhal. "Nouveaux algorithmes efficaces de modélisation 2D et 3D : Temps des premières arrivées, angles à la source et amplitudes." Electronic Thesis or Diss., Paris, ENMP, 2013. http://www.theses.fr/2013ENMP0012.
Full textTanré, Etienne. "Étude probabiliste des équations de SmoluchowskiSchéma d'Euler pour des fonctionnellesAmplitude du mouvement brownien avec dérive." Nancy 1, 2001. http://www.theses.fr/2001NAN10178.
Full textSunny, Danish Ali [Verfasser], and Guido [Akademischer Betreuer] Schneider. "Failure of amplitude equations / Danish Ali Sunny ; Betreuer: Guido Schneider." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2016. http://d-nb.info/1124465987/34.
Full textNINET, ALAIN. "Amplitude de diffusion pour les equations de l'elasticite et de maxwell." Reims, 1998. http://www.theses.fr/1998REIMS019.
Full textBooks on the topic "Amplitude equation"
Amplitude Equations for Stochastic Partial Differential Equations. World Scientific Publishing Co Pte Ltd, 2007.
Find full textSteane, Andrew M. Relativity Made Relatively Easy Volume 2. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895646.001.0001.
Full textHoring, Norman J. Morgenstern. Retarded Green’s Functions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0005.
Full textMann, Peter. Hamilton-Jacobi Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0019.
Full textAmplitude Equations for Stochastic Partial Differential Equations. Interdisciplinary Mathematical Sciences, Volume 3. World Scientific Publishing Co Pte Ltd, 2007.
Find full textAmplitude Equations for Stochastic Partial Differential Equations (Interdisciplinary Mathematical Sciences) (Interdisciplinary Mathematical Sciences). World Scientific Publishing Company, 2007.
Find full textEl Karoui, Noureddine. Algebraic geometry and matrix models. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.29.
Full textNonlinear interaction of detuned instability waves in boundary-layer transition: Amplitude equations. National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textPhase characteristics and time responses of unknown linear systems determined from measured CW amplitude data. U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1991.
Find full textBook chapters on the topic "Amplitude equation"
Elmer, F. J., and T. Christen. "The Nonlocal Amplitude Equation." In Partially Intergrable Evolution Equations in Physics. Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0591-7_26.
Full textNorris, Andrew N. "Finite-Amplitude Waves in Solids." In Nonlinear Acoustics. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-58963-8_9.
Full textGurbatov, Sergey N., and Oleg V. Rudenko. "Statistical Phenomena." In Nonlinear Acoustics. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-58963-8_13.
Full textMisbah, Chaouqi. "Universal Amplitude Equation in the Neighborhood of a Hopf Bifurcation." In Complex Dynamics and Morphogenesis. Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-1020-4_6.
Full textPandey, Neeraj, M. P. Singh, Amitava Ghsoh, and Kedar Khare. "Amplitude Object Reconstruction at Multiple Planes Using Transport of Intensity Equation." In Springer Proceedings in Physics. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9259-1_147.
Full textBlackstock, David T., Mark F. Hamilton, and Allan D. Pierce. "Progressive Waves in Lossless and Lossy Fluids." In Nonlinear Acoustics. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-58963-8_4.
Full textHamilton, Mark F. "Sound Beams." In Nonlinear Acoustics. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-58963-8_8.
Full textChadan, K., P. C. Sabatier, and R. G. Newton. "Potentials from the Scattering Amplitude at Fixed Energy: General Equation and Mathematical Tools." In Inverse Problems in Quantum Scattering Theory. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83317-5_11.
Full textNewton, P. K., and R. M. Axel. "Amplitude Equation Models for the Interaction of Shocks with Nonlinear Dispersive Wave Envelopes." In Selected Topics in Nonlinear Wave Mechanics. Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0095-6_2.
Full textSoumekh, Mehrdad. "Phase Reconstruction from Amplitude Based on the Rytov Transformation of the Wave Equation." In Acoustical Imaging. Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0791-4_33.
Full textConference papers on the topic "Amplitude equation"
Joncour, F., J. Svay-Lucas, G. Lumbare, and B. Duquet. "True Amplitude Wave Equation Migration." In 67th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2005. http://dx.doi.org/10.3997/2214-4609-pdb.1.f046.
Full textKiyashchenko, D., R. E. Plessix, B. Kashtan, and V. Troyan. "Improved Amplitude Multi-One-Way Wave-Equation Migration." In 67th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2005. http://dx.doi.org/10.3997/2214-4609-pdb.1.f047.
Full textPu, Yu, Gang Liu, Diancheng Wang, Hui Huang, and Ping Wang. "Wave-equation traveltime and amplitude for Kirchhoff migration." In First International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists, 2021. http://dx.doi.org/10.1190/segam2021-3583642.1.
Full textDakova, A., D. Dakova, and L. Kovachev. "Comparison of soliton solutions of the nonlinear Schrödinger equation and the nonlinear amplitude equation." In Eighteenth International School on Quantum Electronics: Laser Physics and Applications, edited by Tanja Dreischuh, Sanka Gateva, and Alexandros Serafetinides. SPIE, 2015. http://dx.doi.org/10.1117/12.2177906.
Full textSava, Paul, Biondo Biondi, and Sergey Fomel. "Amplitude‐preserved common image gathers by wave‐equation migration." In SEG Technical Program Expanded Abstracts 2001. Society of Exploration Geophysicists, 2001. http://dx.doi.org/10.1190/1.1816598.
Full textAngus, Doug. "Amplitude corrections for a narrow‐angle elastic wave equation." In SEG Technical Program Expanded Abstracts 2006. Society of Exploration Geophysicists, 2006. http://dx.doi.org/10.1190/1.2372481.
Full textVivas, Flor A., and Reynam C. Pestana. "True-amplitude one-way wave equation migration in heterogenoues media." In 10th International Congress of the Brazilian Geophysical Society & EXPOGEF 2007, Rio de Janeiro, Brazil, 19-23 November 2007. Society of Exploration Geophysicists and Brazilian Geophysical Society, 2007. http://dx.doi.org/10.1190/sbgf2007-327.
Full textAmazonas, D., R. Aleixo, J. Schleicher, J. Costa, A. Novais, and G. Melo. "Including lateral velocity variations into true-amplitude wave-equation migration." In 11th International Congress of the Brazilian Geophysical Society & EXPOGEF 2009, Salvador, Bahia, Brazil, 24-28 August 2009. Society of Exploration Geophysicists and Brazilian Geophysical Society, 2009. http://dx.doi.org/10.1190/sbgf2009-315.
Full textFeng, Zongcai, and Gerard Schuster. "True-amplitude waveform inversion with the quasi-elastic wave equation." In SEG Technical Program Expanded Abstracts 2019. Society of Exploration Geophysicists, 2019. http://dx.doi.org/10.1190/segam2019-3214072.1.
Full textJin, Hu, and John Etgen. "Evaluating Kirchhoff migration using wave-equation generated maximum amplitude traveltimes." In SEG Technical Program Expanded Abstracts 2020. Society of Exploration Geophysicists, 2020. http://dx.doi.org/10.1190/segam2020-3425618.1.
Full textReports on the topic "Amplitude equation"
Tzenov, S. I. Formation of patterns in intense hadron beams. The amplitude equation approach. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/753290.
Full textLindesay, James V. Non-Perturbative, Unitary Quantum-Particle Scattering Amplitudes from Three-Particle Equations. Office of Scientific and Technical Information (OSTI), 2002. http://dx.doi.org/10.2172/799023.
Full text