Academic literature on the topic 'Anak Krakatau'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Anak Krakatau.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Anak Krakatau"

1

Whittaker, R. J., and M. B. Bush. "Anak Krakatau and old Krakatau: a reply." GeoJournal 29, no. 4 (April 1993): 417–20. http://dx.doi.org/10.1007/bf00807545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thornton, I. W. B., S. A. Ward, R. A. Zann, and T. R. New. "The Anak Krakatau question." GeoJournal 29, no. 4 (April 1993): 421–25. http://dx.doi.org/10.1007/bf00807546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Setiawati, Astriana Rahmi, Jamalam Lumbanraja, Septi Nurul Aini, Dermiyati Dermiyati, Henrie Buchari, and Zuldadan Naspendra. "Texture and Chemical Properties of Two Depth Soils in a Toposequence of Anak Krakatau Before December 2018 Eruption." JOURNAL OF TROPICAL SOILS 25, no. 2 (May 28, 2020): 71. http://dx.doi.org/10.5400/jts.2020.v25i2.71-81.

Full text
Abstract:
Anak Krakatau volcano is one of the famous volcanic mountains located in the sea to the south part of the Province of Lampung, Indonesia. The volcano was derived from the active Krakatau caldera that first appeared on the surface in 1930 or 47 years after the eruption of Krakatau in 1883. The materials produced by the Anak Krakatau eruption were very interesting related to soil forming materials, especially their physical and chemical properties. The objectives of this study were to present information about the texture and chemical properties of soil from Anak Krakatau Mountain taken at the southeast slope before the December 2018 eruption at two different depths. This study was conducted in March to September 2019 which consisted of two parts: (1) soil survey in the field and (2) soil analysis in the laboratory. Soil samples were taken from a toposequence at seven points with an interval about 15m above sea level (asl) on the southeast slope (approaching northeast) of the Anak Krakatau in July 2018 at the depth of 0-20 cm and 20-40 cm. The soil texture of Anak Krakatau mountain before eruption in December 2018 was sandy with the percentage of sand 98.82 - 99.59%; silt 0 - 0.59%; and clay 0.41 - 0.74%. The soil chemical properties of Anak Krakatau mountain were soil pH (H2O) 4.95 – 6.27; soil pH (KCl) 4.75 – 5.89; Cation Exchange Capacity 0.41 – 2.02 cmol(+) kg-1; Base Saturation 117.24 – 514.63%; CaO 2.63 – 6.34%; MgO 3.06 – 6.13%; K2O 0.019 – 0.034%; Na2O 0.035 – 0.080%; P-retention 82.10 – 84.74%; and organic carbon 0.06 – 0.72%. The SEM-EDX analysis showed that the amounts of Mg and Na were more than 1% and there were several trace elements present in Anak Krakatau soil, namely Sb (Stibium), Nb (Niobium), Y (Yttrium), F (Flour), Co (Cobalt), and Ba (Barium).
APA, Harvard, Vancouver, ISO, and other styles
4

Wirasetiyawan, Dedy, Nawanto Budi Sukoco, Nur Riyadi, and Dikdik Satria Mulyadi. "Identifikasi Perubahan Kontur Kedalaman Laut Diperairan Sekitar Anak Gunung Krakatau Pasca Erupsi Tahun 2018." Jurnal Chart Datum 6, no. 2 (December 30, 2020): 1–11. http://dx.doi.org/10.37875/chartdatum.v6i2.184.

Full text
Abstract:
Krakatau (Rakata) adalah kepulauan vulkanik yang masih aktif yang terletak di Selat Sunda, antara Pulau Jawa dan Sumatera. Pada tahun 1927 atau kurang lebih 40 tahun setelah meletusnya Gunung Krakatau, muncul gunung api yang dikenal sebagai Anak Krakatau dari kawasan kaldera purba tersebut yang masih aktif dan tetap bertambah tingginya. Penyebab semakin tingginya gunung itu disebabkan oleh material yang keluar dari perut gunung baru itu. Pada penelitian ini dititik beratkan pada identifikasi perbandingan perubahan kontur kedalaman perairan disekitar Anak Gunung Krakatau sebelum dan pasca erupsi tahun 2018. Data penelitian ini berupa data sekunder Multibeam Echosounder (MBES) yang diperoleh dari hasil survei KRI Spica-934 di Perairan Selat Sunda atau di sekitar Anak Gunung Krakatau pasca erupsi tahun 2018 menggunakan MBES EM 2040 dan EM 302. Data yang diperoleh kemudian diolah menggunakan software Charis Hips and Sips selanjutnya dioverlay dengan Lembar Lukis Teliti (LLT) tahun 2016. Dari hasil penelitian didapatkan bahwa terjadi perubahan kontur kedalaman laut di area sekitar Anak Gunung Krakatau pasca erupsi tahun 2018 yang mengakibatkan pendangkalan hampir diseluruh area Anak Gunung Krakatau, terutama di bagian selatan dan barat dimana terdapat garis pantai yang menyempit akibat longsoran, selain itu berdasar data hasil olahan terdapat pola garis kontur kedalaman laut yang mendekati garis pantai.
APA, Harvard, Vancouver, ISO, and other styles
5

Novriadi, Novriadi, Endang Linirin Widiastuti, and Rikha Aryanie Surya. "EVALUASI KOMUNITAS TERUMBU KARANG DI PERAIRAN CAGAR ALAM LAUT KRAKATAU." Jurnal Ilmiah Biologi Eksperimen dan Keanekaragaman Hayati 1, no. 1 (March 1, 2013): 30–34. http://dx.doi.org/10.23960/jbekh.v1i1.96.

Full text
Abstract:
Cagar Alam Laut Krakatau berada di daerah vulkanik Gunung Anak Krakatu. Aktivitas seismik yang diakibatkan oleh magma chamber Anak Krakatau menyebabkan goncangan pada dasar laut yang memungkinkan bergesernya substrat yang menjadi tempat terumbu karang tumbuh, Selain itu debu vulkanik akan mempengaruhi kalsifikasi dan pertumbuhan karang sehingga karang yang terbentuk akan rapuh dan rentan terhadap pengaruh lingkungan, seperti arus dan goncangan. Tujuan penelitian ini adalah untuk mengetahui kondisi terkini komunitas serta keanekaragaman terumbu karang di Cagar Alam Laut Krakatau. Penelitian dilakukan dari bulan Juli sampai Oktober 2012. Perairan yang menjadi stasiun penelitian adalah perairan Pulau Rakata. Metode manta tow digunakan pada saat survei pendahuluan dan metode Line Intercept Transect (LIT) digunakan dalam pengambilan data terumbu karang. Stasiun penelitian yang berda di perairan Pulau Rakata dibagi menjadi empat titik pengambilan sampel. pada kedalaman 5 meter dengan panjang transek 50 meter searah garis pantai. Hasil pengamatan menunjukkan bahwa dari 27 spesies dalam 7 famili terumbu karang yang ditemukan pada stasiun penelitian kondisinya bervariasi dari baik sekali hingga rusak dengan tingkat tutupan berkisar antara 90,88%, 56,54%,dan 38,32 %.
APA, Harvard, Vancouver, ISO, and other styles
6

Rikha, A. S., E. L. Widiastuti, N. Nurcahyani, and M. Kanedi. "RECENT BIODIVERSITY IN ANAK KRAKATAU ISLAND." KnE Life Sciences 2, no. 1 (September 20, 2015): 245. http://dx.doi.org/10.18502/kls.v2i1.151.

Full text
Abstract:
<p>Anak Krakatau Island is a volcanic island in the Krakatau preservation complex. With its regular explosions, ranging from2 80 times/day in the year 2013, it was expected that the biodiversity would experience many changes. In orderto determine the recent condition of the biodiversity, especially animal inhabitants, a survey was conducted within the island in June, 2013. The survey was made for mammal, bird, reptile, and invertebrate(ground, aerial, and arboreal) diversity. For mammals, 10 live traps were used along 100 m of line transect, birds and reptiles were adopted faced encountered method, while the invertebrate survey was conducted with visual techniques with a sweep net, pit-fall traps, and light traps. The result from the inventory (especially invertebrate) was followed by determining the diversity and dominance of species. Relative abundancewas also determined for mammals only. The survey indicated that there was 1 species of mammal with 20% of relativeabundance, 13 species of birds within 11 families, 2 species of reptiles, 58 species of insect, and 10 species of non-insect invertebrates, which consisted of 6 species of Araneae, 2 species of Scorpiones, 2 species of Chilopoda. The diversity indexfor insects was 4.011 with Bothriamyrmex sp. as subdominantin which its index of 2.86, and index for non-insects was 2.079. The result also was compared with the other 3 islands of the Krakatau complex and data collected in the last 10 years.</p><p><br /><strong>Keywords</strong>: Anak Krakatau, volcanic, biodiversity</p>
APA, Harvard, Vancouver, ISO, and other styles
7

Hoffman-Rothe, Arne, Malte Ibs-von Seht, Rudolf Knieβ, Eckhard Faber, Klaus Klinge, Christian Reichert, Mas Atje Purbawinata, and Cathy Patria. "Monitoring Anak Krakatau Volcano in Indonesia." Eos, Transactions American Geophysical Union 87, no. 51 (2006): 581. http://dx.doi.org/10.1029/2006eo510002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Simanjuntak, Eduardo Meyrianso, Juventus Welly Radianta Ginting, and Ida Ayu Irawati Diah Ratna Putra. "WAVE FORCE OF TSUNAMI KRAKATAU 1883 ON THE OUTER SEA DIKE IN JAKARTA BAY." JURNAL TEKNIK HIDRAULIK 11, no. 2 (December 30, 2020): 103–18. http://dx.doi.org/10.32679/jth.v11i2.639.

Full text
Abstract:
Volcanic activity of Mount Anak Krakatau has been increased in the recent years. One of the consequences was Tsunami Sunda Strait in 2018. This heightened the awareness of the potential impact of a tsunami induced by Anak Krakatau for the construction of NCICD Project. This research is aimed to calculate the potential impact in the terms of wave force. Tsunami Krakatau 1883 was used as reference for two reasons. First, the comprehensive research has been conducted for this event. Second, the magnitude of Mount Anak Krakatau-induced tsunami will not be higher than that of Tsunami Krakatau 1883. Non shallow water equation-based numerical model is applied to simulate the tsunami. Time series from the model result is extracted as an input to calculate the wave force. There are four different method used such as Rule of Thumb, Linear Theory, Sainflou Method and Goda Method. The results show that the tsunami will hit the outer sea dike with a minimal force of 100 kN and a maximum force of 400 kN. OSD1-A is the safest sea dike since the tsunami only will hit the structure with a half force.
APA, Harvard, Vancouver, ISO, and other styles
9

Triyangoro, A. P., and B. Ontowirjo. "Anak Krakatau Landslide Tsunami Relapse Potential Hazard." IOP Conference Series: Earth and Environmental Science 698, no. 1 (March 1, 2021): 012025. http://dx.doi.org/10.1088/1755-1315/698/1/012025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Esteban, Miguel, Hendra AchiariTomoyuki Takabatake, Ryota Nakamura, Takahito Mikami, Satriyo Panalaran, Mustarakh Gelfi, Naoto Inagaki, et al. "FIELD SURVEY OF 2018 KRAKATAU TSUNAMI." Coastal Engineering Proceedings, no. 36v (December 28, 2020): 6. http://dx.doi.org/10.9753/icce.v36v.currents.6.

Full text
Abstract:
At 21:30 local time (UTC+7h) on the 22nd of December 2018 the shorelines of the Sunda Strait, Indonesia, were flooded by tsunami waves. As a result there was widespread destruction and there were 437 casualties, 31,943 injuries, 10 still missing and over 16,000 people displaced (as of the 14th January 2019 National Disaster Management Agency (BNBP), 2019). The tsunami was caused by the flank collapse of the Anak Krakatau volcano (Robertson et al. 2018), located roughly at the centre of the Sunda Strait, which separates eastern Sumatra and western Java islands. Takabatake et al. (2019) performed a field survey of the affected areas. The survey results showed that inundation heights were more than 4 m high along the coastline of Sumatra island (situated to the north-north-east of Anak Krakatau), while less than 4 m were measured along the north-western direction. In Java island Inundation heights of over 10 m were measured at Cipenyu Beach (south-south-eastern direction from Anak Krakatau). However, at the time it was not possible to survey the actual vicinity of Anak Krakatau.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/d6hOT352fj4
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Anak Krakatau"

1

Dahrén, Börje. "Investigating Magma Plumbing Beneath Anak Krakatau Volcano, Indonesia : Evidence for Multiple Magma Storage Regions." Thesis, Uppsala universitet, Berggrundsgeologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-137309.

Full text
Abstract:
Improving our understanding of magma plumbing and storage remains one of the majorchallenges for petrologists and volcanologists today. This is especially true for explosivevolcanoes, where constraints on magma plumbing are essential for predicting dynamicchanges in future activity and thus for hazard mitigation. This study aims to investigate themagma plumbing system at Anak Krakatau; the post-collapse cone situated on the rim of the1883 Krakatau caldera. Since 1927, Anak Krakatau has been highly active, growing at a rateof ~8 cm/week. The methods employed are a.) clinopyroxene-melt thermo-barometry (Putirkaet al., 2003; Putirka, 2008), b.) plagioclase-melt thermo-barometry (Putirka, 2005), c.)clinopyroxene composition barometry (Nimis & and Ulmer, 1998; Nimis, 1999; Putirka,2008) and d.) olivine-melt thermometry (Putirka et al., 2007). Previously, both seismic(Harjono et al., 1989) and petrological studies (Camus et al., 1987; Mandeville et al., 1996a;Gardner et al., in review, J. Petrol.) have addressed the magma plumbing beneath AnakKrakatau. Interestingly, petrological studies indicate shallow magma storage in the region of2-8 km, while the seismic evidence points towards a mid-crustal and a deep storage, at 9 and22 km respectively.This study shows that clinopyroxene presently crystallizes in a mid-crustal storage region(8-12 km), a previously identified depth level for magma storage, using seismic methods(Harjono et al., 1989). Plagioclases, in turn, form at shallower depths (4-6 km), in concertwith previous petrological studies (Camus et al., 1987; Mandeville et al., 1996a; Gardner etal., in review, J. Petrol.). Pre-1981 clinopyroxenes record deeper levels of storage (8-22 km),indicating that there may have been an overall shallowing of the plumbing system over thelast ~40 years. The magma storage regions detected coincide with major lithologicalboundaries in the crust, implying that magma ascent and storage at Anak Krakatau is probablycontrolled by crustal discontinuities and/or density contrasts. Therefore, this study shows thatpetrology has the sensitivity to detect magma bodies in the crust where seismic surveys faildue to limited resolution. Combined geophysical and petrological surveys offer an increasedpotential for the thorough characterization of magma plumbing at active volcanic complexes.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Anak Krakatau"

1

Goff, James, and Walter Dudley. "Saved by the Baguette." In Tsunami, 136–50. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197546123.003.0012.

Full text
Abstract:
Volcanoes are an important cause of catastrophic tsunamis, none more so than Santorini (Thera) that erupted with devastating power approximately 1600 BC. This Late Bronze Age eruption generated a tsunami that rampaged throughout the Mediterranean and saw the beginning of the end for the Minoan civilization at the time. In more recent times, the 1883 eruption of Krakatau in Indonesia caused similar mayhem. However, the recent eruption of Krakatau’s child, Anak Krakatau, shows the disturbing ability of volcanoes to rebuild and repeat. In this chapter, these events and several more are charted through their local and distant effects, concluding with a salutary tale about the man in Martinique who was saved by a stolen baguette.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Anak Krakatau"

1

Abdurrahman, Nunun, Didit Adytia, Nugrahinggil Subasita, and Adiwijaya. "Supervised Artificial Neural Network approach for Tsunami Inversion: A Case Study from 2018 Gunung Anak Krakatau." In 2020 International Conference on Data Science and Its Applications (ICoDSA). IEEE, 2020. http://dx.doi.org/10.1109/icodsa50139.2020.9212984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Badriana, M. R., H. Bachtiar, D. Adytia, L. Sembiring, Andonowati, and E. van Groesen. "Wave run-up of a possible Anak-Krakatau tsunami on planned and optimized Jakarta Sea Dike." In INTERNATIONAL SYMPOSIUM ON EARTH HAZARD AND DISASTER MITIGATION (ISEDM) 2016: The 6th Annual Symposium on Earthquake and Related Geohazard Research for Disaster Risk Reduction. Author(s), 2017. http://dx.doi.org/10.1063/1.4987103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Agustan, Agustan, and Estu Kriswati. "Ground Deformation of Anak Krakatau Volcano Before and After the December 2018 Eruptions Observed by SAR Images." In 2019 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS). IEEE, 2019. http://dx.doi.org/10.1109/agers48446.2019.9034446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Paris, Alexandre, Philippe Heinrich, Raphael Paris, Cyrielle Guerin, Helene Hebert, and Audrey Gailler. "Numerical modeling of the December 22, 2018 Anak Krakatau landslide and the following tsunami in Sunda Strait, Indonesia." In OCEANS 2019 - Marseille. IEEE, 2019. http://dx.doi.org/10.1109/oceanse.2019.8867270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ulvan, Ardian, Muhamad Rifky Maulana, Mona Arif Muda Batubara, Nora Aditiyan, and Melvi. "The Technical Concept of Differential Optical Absorption Spectroscopy for SO2 Gas Spectrum Monitoring on Volcanic Ash of Gunung Anak Krakatau volcano." In International Conference on Sustainable Biomass (ICSB 2019). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/aer.k.210603.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography