Academic literature on the topic 'Analyse convexe'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Analyse convexe.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Analyse convexe"
Granas, Andrzej. "Sur un principe géométrique en analyse convexe." Studia Mathematica 101, no. 1 (1991): 1–18. http://dx.doi.org/10.4064/sm-101-1-1-18.
Full textDeguire, Paul, and Andrzej Granas. "Sur une certaine alternative non-linéaire en analyse convexe." Studia Mathematica 83, no. 2 (1986): 127–38. http://dx.doi.org/10.4064/sm-83-2-127-138.
Full textBarré, C., J. M. André, P. Jonnard, and C. Bonnelle. "Analyse spatiale d'une source X à l'aide d'un spectromètre à cristal convexe." X-Ray Spectrometry 24, no. 5 (September 1995): 260–66. http://dx.doi.org/10.1002/xrs.1300240510.
Full textClément, Benoît. "Analyse par intervalles et optimisation convexe pour résoudre un problème général de faisabilité d’une contrainte robuste." Journal Européen des Systèmes Automatisés 46, no. 4-5 (July 30, 2012): 381–95. http://dx.doi.org/10.3166/jesa.46.381-395.
Full textPopovici, Nicolae. "Convexité au sens direct ou inverse et applications dans l'optimisation vectorielle." Journal of Numerical Analysis and Approximation Theory 29, no. 1 (February 1, 2000): 75–82. http://dx.doi.org/10.33993/jnaat291-656.
Full textJin, Chi, Praneeth Netrapalli, Rong Ge, Sham M. Kakade, and Michael I. Jordan. "On Nonconvex Optimization for Machine Learning." Journal of the ACM 68, no. 2 (March 2021): 1–29. http://dx.doi.org/10.1145/3418526.
Full textKlaričić Bakula, Milica, and Kazimierz Nikodem. "Converse Jensen inequality for strongly convex set-valued maps." Journal of Mathematical Inequalities, no. 2 (2018): 545–50. http://dx.doi.org/10.7153/jmi-2018-12-40.
Full textAcu, Ana-Maria, Margareta Heilmann, and Ioan Rasa. "Strong Converse Results for Linking Operators and Convex Functions." Journal of Function Spaces 2020 (December 5, 2020): 1–5. http://dx.doi.org/10.1155/2020/4049167.
Full textCeng, Lu-Chuan, and Ching-Feng Wen. "Hybrid Gradient-Projection Algorithm for Solving Constrained Convex Minimization Problems with Generalized Mixed Equilibrium Problems." Journal of Function Spaces and Applications 2012 (2012): 1–26. http://dx.doi.org/10.1155/2012/678353.
Full textKlaričić Bakula, Milica, and Kazimierz Nikodem. "On the converse Jensen inequality for strongly convex functions." Journal of Mathematical Analysis and Applications 434, no. 1 (February 2016): 516–22. http://dx.doi.org/10.1016/j.jmaa.2015.09.032.
Full textDissertations / Theses on the topic "Analyse convexe"
DANIILIDIS, Aris. "Analyse convexe et quasi-convexe ; applications en optimisation." Habilitation à diriger des recherches, Université de Pau et des Pays de l'Adour, 2002. http://tel.archives-ouvertes.fr/tel-00001355.
Full textThomasse, Rémy. "Analyse de complexité d'enveloppes convexes aléatoires." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4116/document.
Full textIn this thesis, we give some new results about the average size of convex hulls made of points chosen in a convex body. This size is known when the points are chosen uniformly (and independently) in a convex polytope or in a "smooth" enough convex body. This average size is also known if the points are independently chosen according to a centered Gaussian distribution. In the first part of this thesis, we introduce a technique that will give new results when the points are chosen arbitrarily in a convex body, and then noised by some random perturbations. This kind of analysis, called smoothed analysis, has been initially developed by Spielman and Teng in their study of the simplex algorithm. For an arbitrary set of point in a ball, we obtain a lower and a upper bound for this smoothed complexity, in the case of uniform perturbation in a ball (in arbitrary dimension) and in the case of Gaussian perturbations in dimension 2. The asymptotic behavior of the expected size of the convex hull of uniformly random points in a convex body is polynomial for a "smooth" body and polylogarithmic for a polytope. In the second part, we construct a convex body so that the expected size of the convex hull of points uniformly chosen in that body oscillates between these two behaviors when the number of points increases. In the last part, we present an algorithm to generate efficiently a random convex hull made of points chosen uniformly and independently in a disk. We also compute its average time and space complexity. This algorithm can generate a random convex hull without explicitly generating all the points. It has been implemented in C++ and integrated in the CGAL library
SAADA, DIANE. "Modelisation stochastique, analyse convexe et finance." Paris 6, 1994. http://www.theses.fr/1994PA066255.
Full textGuillaume, Sophie. "Problèmes d'optimisation et d'évolution en analyse non convexe de type convexe composite." Montpellier 2, 1996. http://www.theses.fr/1996MON20224.
Full textMelliani, Mohamed. "Analyse numérique d'algorithmes proximaux généralisés en optimisation convexe." Rouen, 1997. http://www.theses.fr/1997ROUES030.
Full textCadoux, Florent. "Optimisation et analyse convexe pour la dynamique non-régulière." Phd thesis, Grenoble 1, 2009. http://www.theses.fr/2009GRE10231.
Full textThe aim of this work is to propose a new approach to the solution of 3D unilateral contact problems with Coulomb friction in solid mechanics. We consider dynamical systems composed of several bodies with a finite number of degrees of freedom: rigid bodies, or deformable bodies which are spatial approximations of continuous models. Friction between bodies is modelled using a classical formulation of Coulomb's law. After time discretization (or quasi-static approximation), we get at each time step a problem containing complementarity equations posed on a product of second order cones, plus other equations. Several methods have been proposed in the literature for different equivalent formulations of this problem, in particular by Moreau, Alart and Curnier, and De Saxcé. Considering the complementarity equations as optimality conditions (KKT) of an optimization problem, we propose a new equivalent reformulation as a parametric convex minimization problem coupled with a fixed point problem. Thanks to this viewpoint, we prove the existence of solutions under a quite mild assumption which can be checked in practice. Moreover, we can practically compute one of these solutions by solving numerically the fixed point equation. The performance of this approach is compared with existing methods
Cadoux, Florent. "Optimisation et analyse convexe pour la dynamique non-régulière." Phd thesis, Université Joseph Fourier (Grenoble), 2009. http://tel.archives-ouvertes.fr/tel-00440798.
Full textHbaïeb, Slim. "Analyse de cahier des charges en automatique par optimisation convexe." Paris 11, 2002. http://www.theses.fr/2002PA112137.
Full textThis PhD thesis deals with the analysis of specifications for linear continuous time control design. Two complementary approaches are developed: the first uses the input output trajectories as parameters and allows to study the limits of performances reachable by a given system; the second uses closed loop transfers as parameters and allows to analyze compatibility of several input output demands in time and frequency domains. A physical interpretation of Youla parameterization, used in this approach, is introduced too. A mathematical framework for finite dimensional approximation problems is developed. Tow kind of approximations were formulated: the first has simple convergence properties and the second has uniform convergence properties. Both allow to solve effectively the considered optimization problems. Advantages and drawbacks of each approach are presented and compared. Finite dimensional formulation in term of linear, quadratic or LM constrained optimization problems are developed for numerical application. These techniques are applied to an industrial case: "the steam generator water level control of a pressurized water reactor". This study was realized in collaboration with the department of "controle commande EDF Chatou". Keywords: feasibility, specifications, convex optimization, linear system, Youla parameterization, finite dimensional approximation, steam generator
Lassoued, Rym. "Comportement hivernal des chaussées : modélisation thermique." Marne-la-Vallée, ENPC, 2000. http://www.theses.fr/2000ENPC0019.
Full textDaldoul, Mabrouk. "Contribution aux méthodes proximales et applications à la régression linéaire l1." Dijon, 1995. http://www.theses.fr/1995DIJOS042.
Full textBooks on the topic "Analyse convexe"
Willem, Michel. Analyse convexe et optimisation. 3rd ed. Louvain-la-Neuve: CIACO, 1989.
Find full textHiriart-Urruty, Jean-Baptiste. Optimisation et analyse convexe: Exercices et problèmes corrigés, avec rappels de cours. Les Ulis: EDP sciences, 2009.
Find full textAndrzej, Granas, Université de Montréal. Département de mathématiques et de statistique., and NATO Advanced Study Institute, eds. Méthodes topologiques en analyse convexe: Partie 3 des comptes rendus du cours d'été OTAN "Variational methods in nonlinear problems". Montréal: Presses de l'Université de Montréal, 1990.
Find full textRockafellar, Ralph Tyrell. Convex Analysis. Princeton, NJ, USA: Princeton University Press, 1997.
Find full textBhooshan, Upadhyay Balendu, ed. Pseudolinear functions and optimization. Boca Raton: CRC Press, Taylor & Francis Group, 2015.
Find full text1944-, Lemaréchal Claude, ed. Fundamentals of convex analysis. Berlin: Springer, 2001.
Find full textBook chapters on the topic "Analyse convexe"
Hiriart-Urruty, Jean-Baptiste. "ANALYSE CONVEXE OPÉRATOIRE." In Bases, outils et principes pour l'analyse variationnelle, 85–116. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30735-5_4.
Full textGiaquinta, Mariano, and Giuseppe Modica. "Convex Sets and Convex Functions." In Mathematical Analysis, 67–148. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8310-8_2.
Full textBorwein, Jonathan M., and Adrian S. Lewis. "Convex Analysis." In Convex Analysis and Nonlinear Optimization, 65–96. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-9859-3_4.
Full textVanderbei, Robert J. "Convex Analysis." In International Series in Operations Research & Management Science, 161–71. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-74388-2_10.
Full textKutateladze, S. S. "Convex Analysis." In Fundamentals of Functional Analysis, 20–39. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8755-6_3.
Full textVanderbei, Robert J. "Convex Analysis." In International Series in Operations Research & Management Science, 159–69. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39415-8_10.
Full textBagirov, Adil, Napsu Karmitsa, and Marko M. Mäkelä. "Convex Analysis." In Introduction to Nonsmooth Optimization, 11–60. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08114-4_2.
Full textVanderbei, Robert J. "Convex Analysis." In International Series in Operations Research & Management Science, 161–71. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-5662-3_10.
Full textVanderbei, Robert J. "Convex Analysis." In International Series in Operations Research & Management Science, 141–50. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-1-4614-7630-6_10.
Full textSolomon, Indu, and Uttam Kumar. "Convex Analysis." In Encyclopedia of Mathematical Geosciences, 1–5. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-26050-7_67-1.
Full textConference papers on the topic "Analyse convexe"
Gonzalez, Germanico, Hugo I. Medellin, Theodore Lim, James M. Ritchie, and Raymond C. W. Sung. "3D Object Representation for Physics Simulation Engines and its Effect on Virtual Assembly Tasks." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71120.
Full textFelgueiras, Miguel, João Martins, and Rui Santos. "Pseudo-convex mixtures." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756346.
Full textAlonso-Gutiérrez, David, and Jesús Bastero. "Convex inequalities, isoperimetry and spectral gap." In VI International Course of Mathematical Analysis in Andalusia. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813147645_0001.
Full textVlachkova, Krassimira. "Interpolation of convex scattered data in ℝ3 using edge convex minimum L∞-norm networks." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0162400.
Full textSulaiman, W. T. "On Integral Inequalities Concerning Convex and Concave Functions." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990974.
Full textKarakuş, Mahmut. "On generalized quasi-convex bounded sequences." In INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4959679.
Full textWang, Qi, Pinghua Gong, Shiyu Chang, Thomas S. Huang, and Jiayu Zhou. "Robust Convex Clustering Analysis." In 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016. http://dx.doi.org/10.1109/icdm.2016.0170.
Full textOle, Yesaya Putra Dappa, Sofihara Al Hazmy, and Al Azhary Masta. "Geometric interpretation of S-convex function on ℝ." In INTERNATIONAL CONFERENCE ON MATHEMATICAL ANALYSIS AND ITS APPLICATIONS 2022 (IConMAA 2022): Analysis, Uncertainty, and Optimization. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0198870.
Full textSulaiman, W. T. "Hardy‐Hilbert’s Integral Inequalities for Convex and Concave Functions." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990975.
Full textDing, Hua, Ninggang Shen, Keqin Li, Wu Bo, Chelsey N. Pence, and Hongtao Ding. "Experimental and Numerical Analysis of Laser Peen Forming Mechanisms of Sheet Metal." In ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-4210.
Full textReports on the topic "Analyse convexe"
Robinson, Adam. Helly's Theorem and Its Equivalences via Convex Analysis. Portland State University Library, January 2014. http://dx.doi.org/10.15760/honors.62.
Full textBriones, Roehlano, Ivory Myka Galang, Isabel Espineli, Aniceto Jr Orbeta, and Marife Ballesteros. Endline Study Report and Policy Study for the ConVERGE Project. Philippine Institute for Development Studies, September 2023. http://dx.doi.org/10.62986/dp2023.13.
Full textMichael, Chris J., Elias Z. Ioup, and David W. Dobson. Customized Architecture for Complex Routing Analysis: Case Study for the Convey Hybrid-Core Computer. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada596742.
Full textValev, Radoslav. Resurgence of Expansionist Tsarism: Populist Autocracy in Russia. European Center for Populism Studies (ECPS), June 2024. http://dx.doi.org/10.55271/rp0057.
Full textIzhar, Hylmun, and Turkhan Abdul Manap. Saudi Arabia Poised to Become a Global Leader in Islamic Finance. Islamic Development Bank Institute, December 2020. http://dx.doi.org/10.55780/re24014.
Full textNassiri-Ansari, Tiffany, and Emma Rhule. Enabling Environments to Advance Gender Equality in Health. United Nations University - International Institute for Global Health, 2023. http://dx.doi.org/10.37941/mr/2023/1.
Full textButler, John M. Bitemark Analysis. Gaithersburg, MD: National Institute of Standards and Technology, 2022. http://dx.doi.org/10.6028/nist.ir.8352-draft.
Full textAbbott Galvão, Luísa. Reporting on Violence against Women: A Case Study of Select News Media in Seven Countries in Latin America and the Caribbean. Inter-American Development Bank, December 2015. http://dx.doi.org/10.18235/0007964.
Full textP. D. Mattie, J. A. McNeish, D. S. Sevougian, and R. W. Andrews. Methods and Techniques Used to Convey Total System Performance Assessment Analyses and Results for Site Recommendation at Yucca Mountain, Nevada, USA. Office of Scientific and Technical Information (OSTI), April 2001. http://dx.doi.org/10.2172/786563.
Full textRamírez, Miguel Ángel, and Felicia Marie Knaul. Family Violence and Child Abuse in Latin America and the Caribbean: The Case of Colombia and Mexico. Inter-American Development Bank, February 2005. http://dx.doi.org/10.18235/0008959.
Full text