Academic literature on the topic 'Analysis of directionality'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Analysis of directionality.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Analysis of directionality"

1

Iyun, Oluwatope Ebenezer. "Plant-wide diagnosis : cause-and-effect analysis using process connectivity and directionality information." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9296.

Full text
Abstract:
Production plants used in modern process industry must produce products that meet stringent environmental, quality and profitability constraints. In such integrated plants, non-linearity and strong process dynamic interactions among process units complicate root-cause diagnosis of plant-wide disturbances because disturbances may propagate to units at some distance away from the primary source of the upset. Similarly, implemented advanced process control strategies, backup and recovery systems, use of recycle streams and heat integration may hamper detection and diagnostic efforts. It is important to track down the root-cause of a plant-wide disturbance because once corrective action is taken at the source, secondary propagated effects can be quickly eliminated with minimum effort and reduced down time with the resultant positive impact on process efficiency, productivity and profitability. In order to diagnose the root-cause of disturbances that manifest plant-wide, it is crucial to incorporate and utilize knowledge about the overall process topology or interrelated physical structure of the plant, such as is contained in Piping and Instrumentation Diagrams (P&IDs). Traditionally, process control engineers have intuitively referred to the physical structure of the plant by visual inspection and manual tracing of fault propagation paths within the process structures, such as the process drawings on printed P&IDs, in order to make logical conclusions based on the results from data-driven analysis. This manual approach, however, is prone to various sources of errors and can quickly become complicated in real processes. The aim of this thesis, therefore, is to establish innovative techniques for the electronic capture and manipulation of process schematic information from large plants such as refineries in order to provide an automated means of diagnosing plant-wide performance problems. This report also describes the design and implementation of a computer application program that integrates: (i) process connectivity and directionality information from intelligent P&IDs (ii) results from data-driven cause-and-effect analysis of process measurements and (iii) process know-how to aid process control engineers and plant operators gain process insight. This work explored process intelligent P&IDs, created with AVEVA® P&ID, a Computer Aided Design (CAD) tool, and exported as an ISO 15926 compliant platform and vendor independent text-based XML description of the plant. The XML output was processed by a software tool developed in Microsoft® .NET environment in this research project to computationally generate connectivity matrix that shows plant items and their connections. The connectivity matrix produced can be exported to Excel® spreadsheet application as a basis for other application and has served as precursor to other research work. The final version of the developed software tool links statistical results of cause-and-effect analysis of process data with the connectivity matrix to simplify and gain insights into the cause and effect analysis using the connectivity information. Process knowhow and understanding is incorporated to generate logical conclusions. The thesis presents a case study in an atmospheric crude heating unit as an illustrative example to drive home key concepts and also describes an industrial case study involving refinery operations. In the industrial case study, in addition to confirming the root-cause candidate, the developed software tool was set the task to determine the physical sequence of fault propagation path within the plant. This was then compared with the hypothesis about disturbance propagation sequence generated by pure data-driven method. The results show a high degree of overlap which helps to validate statistical data-driven technique and easily identify any spurious results from the data-driven multivariable analysis. This significantly increase control engineers confidence in data-driven method being used for root-cause diagnosis. The thesis concludes with a discussion of the approach and presents ideas for further development of the methods.
APA, Harvard, Vancouver, ISO, and other styles
2

Martineau, Eugénie. "Linking single cell directionality to dynamic multicellular transitions in Myxococcus xanthus : a multiscale analysis." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0089.

Full text
Abstract:
La δ-proteobactérie Myxococcus xanthus est étudiée depuis des décennies pour sa capacité à s’auto-organiser en réponse à des stimuli environnementaux. Cette bactérie colonise des niches écologiques favorables grâce à sa capacité à se mouvoir sur des surfaces. Cette motilité lui permet d’avoir un comportement prédateur envers des organismes proies, alors qu’en absence de nutriments, elle met en place un processus développemental permettant la formation de corps fructifères contenant des myxospores résistant aux stress environnementaux. Tous ces comportements multicellulaires requièrent un contrôle dynamique de la polarité de la cellule, établi par trois protéines polaires : MglA, MglB et RomR. Ensemble, elles définissent la direction de la cellule, qui peut être rapidement inversée sous l’action du système chimiotactique Frz (réversion). Dans ce travail de thèse, à travers une approche expérimentale et computationnelle, nous avons mis en évidence que le système de régulation forme un nouveau type d’oscillateur protéique, contrôlé par deux protéines RomR et FrzX, qui agissent ensemble et de manière complémentaire pour déclencher la réversion à l’arrière des cellules. L’architecture unique de ce système permet une réponse très large à différents stimuli, essentielle pour de nombreux comportements multicellulaires. Afin de comprendre l’importance de ces transitions, nous avons mis au point un outil à haute résolution spatiale et temporelle afin de connecter les cellules individuelles aux comportements multicellulaires, et ainsi comprendre le rôle du système Frz dans un modèle multicellulaire de prédation<br>The δ-proteobacteria Myxococcus xanthus has been a model of study for decades for its self-organized behavior as a response of environmental stimuli. It colonizes favorable ecological niches by using surface motility. In particular, this motility allows M.xanthus to predate collectively over prey microorganisms, while under starvation they start a developmental process to form macroscopic fruiting bodies, filled with environmental resistant myxospores. All these multicellular behaviors require a dynamic control of the cell polarity established by the polarity proteins MglA, MglB and RomR. Together, they define the direction of movement of the cell, which can be rapidly inverted by the Frz chemosensory system (reversion). In this thesis work, through combined computational/experimental approaches, we highlight that the regulation system forms a new type of biochemical oscillator, controlled by two proteins RomR and FrzX, which act together through complementary action to trigger the reversion at the lagging pole. The unique architecture of this system allows a wide response to various stimuli, which could be very beneficial for collective cell behaviors. To understand the importance of these transitions, we have developed a new high-resolution single cell assay linking single cMARTINEAU EUGENIE 2018AIXM0089/016ED62 2018/03/21 62 SCES SCHell behaviors to multicellular structures at unprecedented spatial and temporal resolutions. This way, we have investigated the role of the newly identified biochemical oscillator in the multicellular model of predation
APA, Harvard, Vancouver, ISO, and other styles
3

Parsa, Amanullah. "EFFECT OF BUILDING ORIENTATION ON STRUCTURAL RESPONSE OF REINFORCED CONCRETE MOMENT RESISTING FRAME STRUCTURES." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/theses/2698.

Full text
Abstract:
In time history analysis of structures, the geometric mean of two orthogonal horizontal components of ground motion in the as-recorded direction of sensors, have been used as measure of ground motion intensity prior to the 2009 NEHRP provision. The 2009 NEHRP Provisions and accordingly the seismic design provisions of the ASCE/SEI 7-10, modified the definition of ground motion intensity measure from geometric mean to the maximum direction ground motion, corresponding to the direction that results in peak response of the oscillator. Maximum direction response spectra are assumed to envelope the range of maximum possible responses over all nonredundant rotation angles. Two assumptions are made in the use maximum ground motion as the intensity measure: (1) the structure’s strength and stiffness properties are identical in all directions and (2) azimuth of the maximum spectral acceleration coincides with the one of the principal axes of the structure. The implications of these assumptions are examined in this study, using 3D computer models of multi-story structures having symmetric and asymmetric layouts and elastic vibration period of 0.2 second and 1.0 second subjected to a set of 25 ground-motion pairs recorded at a distance of more than 20 km from the fault. The influence of the ground-motion rotation angle on structural response (here lateral displacement and story drift) is examined to form benchmarks for evaluating the use of the maximum direction (MD) ground motions. The results of this study suggest that while MD ground motions do not always result in largest structural response, they tend to produce larger response than the as-recorded ground motions. On the other hand, more research on non-linear seismic time history analysis is recommended, especially for asymmetric layout plan buildings.
APA, Harvard, Vancouver, ISO, and other styles
4

Henebry, Michael Lee. "Biological and Ecological Trait Associations and Analysis of Spatial and Intraspecific Variation in Fish Traits." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/33894.

Full text
Abstract:
Traits provide an informative approach to examine species-environment interactions. Often, species-by-species approaches are inefficient to generate generalizable ecological relationships and do not predict species responses to environmental changes based on specific traits species possess. Multiple lines of inquiry and multi-scale approaches are best for assessing environment-trait responses. This thesis examines important questions not specifically addressed before in traits-based research. Chapter one explores biological and ecological trait associations incorporating ontogenetic diet shifts for New River fishes. Niche shift analysis as a chapter one sub-objective quantitatively support where species-specific diet shifts likely occur. Strong biological-ecological trait associations, some intuitive and others not so intuitive, were found that relate biological structure to ecological function. Improved understanding of trait associations, including what factors influence others, supports inference of ecology of fishes. Chapters two and three examine spatial and intraspecific trait variability. Chapter two specifically examines large-scale life history trait variability along latitudinal gradients for twelve widely distributed fish species, including directionality of trait variation, and hypothesizing how optimal traits change with large-scale environmental factors. Strong positive and negative patterns found include average total length of newly hatched larvae, average total length at maturation, average spawning temperature, average egg diameter, and maximum length. These five traits are correlated with other adaptive attributes (i.e. growth rate, reproductive output, and longevity/population turnover rate). In contrast to latitudinal scale, Chapter three examines trait variability of white sucker (Catostomus commersonii) and fantail darter (Etheostoma flabellare) as a function of small-watershed scale spatial factors and anthropogenic disturbance. Toms Creek and Chestnut Creek white sucker and fantail darter displayed positive response to disturbance, contrary to past studies. Lower resource competition, and / or competitive exclusion of fishes with similar niche requirements are possible mechanisms. All three objectives support understanding of trait association and variability as a useful foundation in ecological applications and for formulating plans for conservation and management of species.<br>Master of Science
APA, Harvard, Vancouver, ISO, and other styles
5

Appel, Jan Kristoffer [Verfasser]. "Particle Flux Directionality and other Aspects of the Martian Radiation Environment: An Analysis of MSL/RAD Observation Data and Simulation Data / Jan Kristoffer Appel." Kiel : Universitätsbibliothek Kiel, 2019. http://d-nb.info/1176518895/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Plišková, Diana. "Analýza směrovosti neuritů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442501.

Full text
Abstract:
Práca je zameraná na navrhnutie vhodnej metódy analýzy smerovosti neuritov. Využité boli snímky neurónov z fluorescenčnej mikroskopie. Pred samotnou segmentáciou bolo potrebné snímky predspracovať, pričom sa postupne využila úprava kontrastu, ostrenie a adaptívna filtrácia pomocou Weinerovského filtru. Jednotlivé návrhy metód segmentácie pozostávali z prostého prahovania, narastaním oblastí a využitím morfologických operácií. Následná analýza smerovosti využívala smer gradientov v obraze. Navrhnutá metóda bola využitá aj ako klasifikátor, ktorý dokázal rozdeliť jednotlivé snímky do skupín podľa smeru rastu.
APA, Harvard, Vancouver, ISO, and other styles
7

Jeong, Sang Min. "Analysis of Vibration of 2-D Periodic Cellular Structures." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7122.

Full text
Abstract:
The vibration of and wave propagation in periodic cellular structures are analyzed. Cellular structures exhibit a number of desirable multifunctional properties, which make them attractive in a variety of engineering applications. These include ultra-light structures, thermal and acoustic insulators, and impact amelioration systems, among others. Cellular structures with deterministic architecture can be considered as example of periodic structures. Periodic structures feature unique wave propagation characteristics, whereby elastic waves propagate only in specific frequency bands, known as "pass band", while they are attenuated in all other frequency bands, known as "stop bands". Such dynamic properties are here exploited to provide cellular structures with the capability of behaving as directional, pass-band mechanical filters, thus complementing their well documented multifunctional characteristics. This work presents a methodology for the analysis of the dynamic behavior of periodic cellular structures, which allows the evaluation of location and spectral width of propagation and attenuation regions. The filtering characteristics are tested and demonstrated for structures of various geometry and topology, including cylindrical grid-like structures, Kagom and eacute; and tetrhedral truss core lattices. Experimental investigations is done on a 2-D lattice manufactured out of aluminum. The complete wave field of the specimen at various frequencies is measured using a Scanning Laser Doppler Vibrometer (SLDV). Experimental results show good agreement with the methodology and computational tools developed in this work. The results demonstrate how wave propagation characteristics are defined by cell geometry and configuration. Numerical and experimental results show the potential of periodic cellular structures as mechanical filters and/or isolators of vibrations.
APA, Harvard, Vancouver, ISO, and other styles
8

Vecchi, Pierpaolo. "Defect analysis in directionally solidified multicrystalline silicon." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21177/.

Full text
Abstract:
This project studies how the microstructure and metallic impurities affect the electrical properties of mc-Si wafers, to improve the efficiency and the production yield of photovoltaic solar cells. Dislocations and impurities in silicon are recombination centres that reduce free carrier lifetime and thus efficiency of solar cells. The quality of the material can be improved by finding optimal growth conditions and a threshold value for the contamination that does not compromise the device efficiency. Two sets of p-type mc-Si wafers located at different heights and lateral positions of two directionally solidified ingots, one contaminated with iron and one with aluminum, were analysed with several characterization techniques. The two ingots show similar microstructure, but the top of the iron contaminated ingot has a significantly lower lifetime, as it contains more dislocation clusters decorated with segregated iron. Aluminum is less detrimental at this low concentration level and it is more homogeneously distributed along the ingot height. A Mott-Schottky analysis after evaporation of aluminum contacts confirmed the p-type nature of the samples and estimated the free charge carrier concentration. Current profiles and local I-V curves measured with Conductive Atomic Force Microscopy show that decorated grain boundaries are a preferential path for electrical conduction compared to the grain regions and iron precipitates affect more heavily the electrical properties of the wafer compared to aluminum precipitates. The shape of the current profile at the boundary was justified with a theoretical model that assumes a redistribution of charge density due to a Coulombic potential introduced by a spherical and positively charged precipitate, that can be identified with b-FeSi2. The results from this characterization show that metallic contamination at grain boundaries in Si is responsible for enhanced free carrier recombination and thus efficiency reduction in mc-Si cells.
APA, Harvard, Vancouver, ISO, and other styles
9

Angart, Samuel Gilbert. "Microstructure Analysis Of Directionally Solidified Aluminum Alloy Aboard The International Space Station." Thesis, The University of Arizona, 2015. http://hdl.handle.net/10150/595975.

Full text
Abstract:
This thesis entails a detailed microstructure analysis of directionally solidified (DS) Al-7Si alloys processed in microgravity aboard the International Space Station and similar duplicate ground based experiments at Cleveland State University. In recent years, the European Space Agency (ESA) has conducted experiments on alloy solidification in microgravity. NASA and ESA have collaborated for three DS experiments with Al- 7 wt. % Si alloy, aboard the International Space Station (ISS) denoted as MICAST6, MICAST7 and MICAST12. The first two experiments were processed on the ISS in 2009 and 2010. MICAST12 was processed aboard the ISS in the spring of 2014; the resulting experimental results of MICAST12 are not discussed in this thesis. The primary goal of the thesis was to understand the effect of convection in primary dendrite arm spacings (PDAS) and radial macrosegregation within DS aluminum alloys. The MICAST experiments were processed with various solidification speeds and thermal gradients to produce alloy with differences in microstructure features. PDAS and radial macrosegregation were measured in the solidified ingot that developed during the transition from one solidification speed to another. To represent PDAS in DS alloy in the presence of no convection, the Hunt-Lu model was used to represent diffusion-controlled growth. By sectioning cross-sections throughout the entire length of solidified samples, PDAS was measured and calculated. The ground-based (1-g) experiments done at Cleveland State University CSU were also analyzed for comparison to the ISS experiments (0-g). During steady state in the microgravity environment, there was a reasonable agreement between the measured and calculated PDAS. In ground-based experiments, transverse sections exhibited obvious radial macrosegregation caused by thermosolutal convection resulting in a non-agreement with the Hunt- Lu model. Using a combination of image processing techniques and Electron Microprobe Analysis, the extent of radial macrosegregation was found to be a function of processing conditions and PDAS.
APA, Harvard, Vancouver, ISO, and other styles
10

McAllister, Mark Laing. "Analysis of laboratory and field measurements of directionally spread nonlinear ocean waves." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28762.

Full text
Abstract:
Surface gravity waves exist in the oceans as multi-directional nonlinear phenomena. Understanding how these two properties interact is intrinsically important in itself. Furthermore, an understanding of this relationship may be used to gain insight into other oceanic phenomena. This thesis first describes an experimental investigation into the relationship between directionality and non-linearity (Part I). This relationship was then used as a tool to estimate the directional spreading of field data (Part II). Experiments have been conducted in which directionally spread focused wave groups were created in a wave tank. The relationship between the degree of directional spreading and the second-order bound harmonics of the wave groups was examined, in particular the formation of a `set-up'. These measurements were then compared to predictions from second-order theories, finding good agreement. The two-dimensional structure of the bound waves was explored giving new insight into the underlying physics. Experiments were then carried out for directionally spread crossing wave groups. It is believed that the crossing of two sufficiently separated wave groups may be the cause of an anomalous set-up in the second-order bound waves observed for some extreme and potentially freak waves. This set-up is reproduced experimentally. Again, the results of these test agreed very well when compared to second-order theory. The insight gained from the foregoing experiments was then utilised in the analysis of field data. A method, which requires only a single measurement to estimate the observed degree of directional spreading, was applied to a large dataset of field measurements from the North Alwyn platform in the North Sea. This method was then compared to conventional approaches, which require multiple concurrent measurements. The method that requires only a single measurement was shown to be effective, and presents a promising approach to gaining additional insight about the directional spreading of point observations.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!