Books on the topic 'Analysis of Hash Functions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Analysis of Hash Functions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Mittelbach, Arno, and Marc Fischlin. The Theory of Hash Functions and Random Oracles. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63287-8.
Full textSchmidt, Jeanette. The spatial complexity of oblivious k-probe hash functions. New York: Courant Institute of Mathematical Sciences, New York University, 1988.
Find full textKolawole, Ishola Taofiq. Investigation on one-way hash functions and their common uses. London: University of East London, 2004.
Find full textF, Beckenbach Edwin, ed. Analysis of elementary functions. Boston: Houghton Mifflin, 1990.
Find full textHoskins, R. F. Delta functions: An introduction to generalised functions. 2nd ed. Chichester, UK: Horwood Pub., 2009.
Find full text1917-, Botts Truman Arthur, ed. Real analysis. Mineola, N.Y: Dover Publications, 2005.
Find full textL, Lavoine J., ed. Transform analysis of generalized functions. Amsterdam: North-Holland, 1986.
Find full textFlajolet, Philippe. Singularity analysis of generating functions. Stanford, Calif: Dept. of Computer Science, Stanford University, 1988.
Find full textStrange functions in real analysis. 2nd ed. Boca Raton, FL: Chapman & Hall/CRC, 2006.
Find full textKramosil, Ivan. Probabilistic Analysis of Belief Functions. Boston, MA: Springer US, 2001.
Find full textKramosil, Ivan. Probabilistic analysis of belief functions. New York: Kluwer Academic/Plenum Publishers, 2001.
Find full textKramosil, Ivan. Probabilistic Analysis of Belief Functions. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0587-7.
Full textOberguggenberger, Michael, Joachim Toft, Jasson Vindas, and Patrik Wahlberg, eds. Generalized Functions and Fourier Analysis. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51911-1.
Full textHoskins, R. F. Delta functions: An introduction to generalised functions. 2nd ed. Chichester, UK: Horwood Pub., 2009.
Find full textF, Hoskins R., ed. Delta functions: An introduction to generalised functions. Chichester, England: Horwood Pub., 1999.
Find full textGeneralized functions. 2nd ed. Providence, Rhode Island: American Mathematical Society, 2016.
Find full textIntroduction to complex analysis. 2nd ed. New York: Cambridge University Press, 2002.
Find full textPotter, Simon M. Nonlinear impulse response functions. [New York, N.Y.]: Federal Reserve Bank of New York, 1999.
Find full textPotential energy functions in conformational analysis. Berlin: Springer-Verlag, 1985.
Find full textGiaquinta, Mariano. Mathematical Analysis: Functions of One Variable. Boston, MA: Birkhäuser Boston, 2003.
Find full textS, Belinsky Eduard, ed. Fourier analysis and approximation of functions. Boston: Kluwer Academic Publishers, 2004.
Find full textNumbers and functions: Steps into analysis. Cambridge: Cambridge University Press, 1993.
Find full textTensor analysis and nonlinear tensor functions. Dordrecht: Kluwer Academic Publishers, 2002.
Find full textBurn, R. P. Numbers and functions: Steps into analysis. Cambridge [England]: Cambridge University Press, 1992.
Find full textBudaghyan, Lilya. Construction and Analysis of Cryptographic Functions. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12991-4.
Full textRasmussen, Kjeld. Potential Energy Functions in Conformational Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-45591-9.
Full textTrigub, Roald M., and Eduard S. Bellinsky. Fourier Analysis and Approximation of Functions. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2876-2.
Full textSzymkowiak, Magdalena. Lifetime Analysis by Aging Intensity Functions. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-12107-5.
Full textDimitrienko, Yu I. Tensor Analysis and Nonlinear Tensor Functions. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-3221-5.
Full textBanerjee, Santo, D. Easwaramoorthy, and A. Gowrisankar. Fractal Functions, Dimensions and Signal Analysis. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62672-3.
Full textBurn, R. P. Numbers and functions: Steps into analysis. 2nd ed. Cambridge: Cambridge University Press, 2000.
Find full textGoldstein, Allen A. Constructive real analysis. Mineola, N.Y: Dover Publications, 2012.
Find full textJ, Hoffman Michael, ed. Basic complex analysis. 3rd ed. New York: W.H. Freeman, 1999.
Find full textMarsden, Jerrold E. Basic complex analysis. 2nd ed. New York, N.Y: W.H. Freeman, 1987.
Find full textAdams, William J. Elements of complex analysis. New York: Mathematics Dept., Pace University, 1987.
Find full textDaniel, Waterman, and American Mathematical Society, eds. Classical real analysis. Providence, R.I: American Mathematical Society, 1985.
Find full text