Academic literature on the topic 'Analysis on metric spaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Analysis on metric spaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Analysis on metric spaces"
Beg, Ismat. "Ordered Convex Metric Spaces." Journal of Function Spaces 2021 (October 25, 2021): 1–4. http://dx.doi.org/10.1155/2021/7552451.
Full textLu, Yufeng, Dachun Yang, and Wen Yuan. "Morrey-Sobolev Spaces on Metric Measure Spaces." Potential Analysis 41, no. 1 (September 11, 2013): 215–43. http://dx.doi.org/10.1007/s11118-013-9370-9.
Full textBonk, Mario, Luca Capogna, Piotr Hajlasz, Nageswari Shanmugalingam, and Jeremy T. Tyson. "Analysis in Metric Spaces." Notices of the American Mathematical Society 67, no. 02 (February 1, 2020): 1. http://dx.doi.org/10.1090/noti2030.
Full textHussain, Aftab, Hamed Al Sulami, and Umar Ishtiaq. "Some New Aspects in the Intuitionistic Fuzzy and Neutrosophic Fixed Point Theory." Journal of Function Spaces 2022 (March 3, 2022): 1–14. http://dx.doi.org/10.1155/2022/3138740.
Full textEASWARAMOORTHY, D., and R. UTHAYAKUMAR. "ANALYSIS ON FRACTALS IN FUZZY METRIC SPACES." Fractals 19, no. 03 (September 2011): 379–86. http://dx.doi.org/10.1142/s0218348x11005543.
Full textNaimpally, S. A., Z. Piotrowski, and E. J. Wingler. "Plasticity in metric spaces." Journal of Mathematical Analysis and Applications 313, no. 1 (January 2006): 38–48. http://dx.doi.org/10.1016/j.jmaa.2005.04.070.
Full textHussain, Aftab, Umar Ishtiaq, Khalil Ahmed, and Hamed Al-Sulami. "On Pentagonal Controlled Fuzzy Metric Spaces with an Application to Dynamic Market Equilibrium." Journal of Function Spaces 2022 (January 11, 2022): 1–8. http://dx.doi.org/10.1155/2022/5301293.
Full textYonghui, Cao, and Zhou Jiang. "Morrey Spaces for Nonhomogeneous Metric Measure Spaces." Abstract and Applied Analysis 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/196459.
Full textPuvar, Sejal V., and R. G. Vyas. "´CIRI´C-TYPE RESULTS IN QUASI-METRIC SPACES AND 𝐺-METRIC SPACES USING SIMULATION FUNCTION." Issues of Analysis 29, no. 2 (June 2022): 72–90. http://dx.doi.org/10.15393/j3.art.2022.11230.
Full textLi, Shu-Fang, Fei He, and Shu-Min Lu. "Kaleva-Seikkala’s Type Fuzzy b -Metric Spaces and Several Contraction Mappings." Journal of Function Spaces 2022 (July 23, 2022): 1–13. http://dx.doi.org/10.1155/2022/2714912.
Full textDissertations / Theses on the topic "Analysis on metric spaces"
Paulik, Gustav. "Gluing spaces and analysis." Bonn : Mathematisches Institut der Universität, 2005. http://catalog.hathitrust.org/api/volumes/oclc/62770010.html.
Full textCapolli, Marco. "Selected Topics in Analysis in Metric Measure Spaces." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/288526.
Full textTirado, Peláez Pedro. "Contractive Maps and Complexity Analysis in Fuzzy Quasi-Metric Spaces." Doctoral thesis, Universitat Politècnica de València, 2008. http://hdl.handle.net/10251/2961.
Full textTirado Peláez, P. (2008). Contractive Maps and Complexity Analysis in Fuzzy Quasi-Metric Spaces [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/2961
Palancia
Chowdhury, Samir. "Metric and Topological Approaches to Network Data Analysis." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555420352147114.
Full textLopez, Marcos D. "Discrete Approximations of Metric Measure Spaces with Controlled Geometry." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439305529.
Full textLe, Brigant Alice. "Probability on the spaces of curves and the associated metric spaces via information geometry; radar applications." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0640/document.
Full textWe are concerned with the comparison of the shapes of open smooth curves that take their values in a Riemannian manifold M. To this end, we introduce a reparameterization invariant Riemannian metric on the infinite-dimensional manifold of these curves, modeled by smooth immersions in M. We derive the geodesic equation and solve the boundary value problem using geodesic shooting. The quotient structure induced by the action of the reparametrization group on the space of curves is studied. Using a canonical decomposition of a path in a principal bundle, we propose an algorithm that computes the horizontal geodesic between two curves and yields an optimal matching. In a second step, restricting to base manifolds of constant sectional curvature, we introduce a detailed discretization of the Riemannian structure on the space of smooth curves, which is itself a Riemannian metric on the finite-dimensional manifold Mn+1 of "discrete curves" given by n + 1 points. We show the convergence of the discrete model to the continuous model, and study the induced geometry. We show results of simulations in the sphere, the plane, and the hyperbolic halfplane. Finally, we give the necessary framework to apply shape analysis of manifold-valued curves to radar signal processing, where locally stationary radar signals are represented by curves in the Poincaré polydisk using information geometry
Peske, Wendy Ann. "A topological approach to nonlinear analysis." CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2779.
Full textMalý, Lukáš. "Newtonian Spaces Based on Quasi-Banach Function Lattices." Licentiate thesis, Linköpings universitet, Matematik och tillämpad matematik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-79166.
Full textTamanini, Luca. "Analysis and Geometry of RCD spaces via the Schrödinger problem." Thesis, Paris 10, 2017. http://www.theses.fr/2017PA100082/document.
Full textMain aim of this manuscript is to present a new interpolation technique for probability measures, which is strongly inspired by the Schrödinger problem, an entropy minimization problem deeply related to optimal transport. By means of the solutions to the Schrödinger problem, we build an efficient approximation scheme, robust up to the second order and different from Brenier-McCann's classical one. Such scheme allows us to prove the second order differentiation formula along geodesics in finite-dimensional RCD* spaces. This formula is new even in the context of Alexandrov spaces and we provide some applications.The proof relies on new, even in the smooth setting, estimates concerning entropic interpolations which we believe are interesting on their own. In particular we obtain:- equiboundedness of the densities along the entropic interpolations,- equi-Lipschitz continuity of the Schrödinger potentials,- a uniform weighted L2 control of the Hessian of such potentials. These tools are very useful in the investigation of the geometric information encoded in entropic interpolations. The techniques used in this work can be also used to show that the viscous solution of the Hamilton-Jacobi equation can be obtained via a vanishing viscosity method, in accordance with the smooth case. Throughout the whole manuscript, several remarks on the physical interpretation of the Schrödinger problem are pointed out. Hopefully, this will allow the reader to better understand the physical and probabilistic motivations of the problem as well as to connect them with the analytical and geometric nature of the dissertation
Don, Sebastiano. "Functions of bounded variation in Carnot-Carathéodory spaces." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3426813.
Full textAnalizziamo alcune proprietà di funzioni a variazione limitata in spazi di Carnot-Carathéodory. Nel Capitolo 2 dimostriamo che esse sono approssimativamente differenziabili quasi ovunque, esaminiamo il loro insieme di discontinuità approssimata e la decomposizione della loro derivata distribuzionale. Assumendo un'ipotesi addizionale sullo spazio, che chiamiamo proprietà R, mostriamo che quasi tutti i punti di discontinuità approssimata sono di salto e studiamo una formula per la parte di salto della derivata. Nel Capitolo 3 dimostriamo un teorema di rango uno à la G. Alberti per la derivata distribuzionale di funzioni vettoriali a variazione limitata in una classe di gruppi di Carnot che contiene tutti i gruppi di Heisenberg H^n con n ≥ 2. Uno strumento chiave nella dimostrazione è costituito da alcune proprietà che legano le derivate orizzontali di una funzione a variazione limitata con il suo sottografico. Nel Capitolo 4 dimostriamo un risultato di compattezza per succesioni (u_j) equi-limitate in spazi metrici (X, d_j) quando lo spazio X è fissato ma la metrica può variare con j. Mostriamo inoltre un'applicazione agli spazi di Carnot-Carathéodory. I risultati del Capitolo 4 sono fondamentali per la dimostrazione di alcuni fatti contenuti nel Capitolo 2.
Books on the topic "Analysis on metric spaces"
Heinonen, Juha. Lectures on Analysis on Metric Spaces. New York, NY: Springer New York, 2001.
Find full textHeinonen, Juha. Lectures on Analysis on Metric Spaces. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0131-8.
Full textPaolo, Tilli, ed. Topics on analysis in metric spaces. Oxford: Oxford University Press, 2004.
Find full textIntroduction to the analysis of metric spaces. Cambridge [Cambridgeshire]: Cambridge University Press, 1987.
Find full textEndre, Pap, ed. Fixed point theory in probabilistic metric spaces. Dordrecht: Kluwer Academic, 2001.
Find full textBačák, Miroslav. Convex analysis and optimization in Hadamard spaces. Berlin: Walter de Gruyter GmbH & Co. KG, 2014.
Find full textBaudoin, Fabrice, Séverine Rigot, Giuseppe Savaré, and Nageswari Shanmugalingam. New Trends on Analysis and Geometry in Metric Spaces. Edited by Luigi Ambrosio, Bruno Franchi, Irina Markina, and Francesco Serra Cassano. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-84141-6.
Full textKigami, Jun. Geometry and Analysis of Metric Spaces via Weighted Partitions. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54154-5.
Full textLakshmikantham, V. Theory of set differential equations in metric spaces. Cambridge, UK: Cambridge Scientific Publishers, 2006.
Find full textAuscher, Pascal, Thierry Coulhon, and Alexander Grigor’yan, eds. Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces. Providence, Rhode Island: American Mathematical Society, 2003. http://dx.doi.org/10.1090/conm/338.
Full textBook chapters on the topic "Analysis on metric spaces"
Şuhubi, Erdoğan S. "Metric Spaces." In Functional Analysis, 261–356. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0141-9_5.
Full textGasiński, Leszek, and Nikolaos S. Papageorgiou. "Metric Spaces." In Exercises in Analysis, 1–191. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06176-4_1.
Full textSohrab, Houshang H. "Metric Spaces." In Basic Real Analysis, 157–207. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-0-8176-8232-3_5.
Full textSohrab, Houshang H. "Metric Spaces." In Basic Real Analysis, 181–239. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1841-6_5.
Full textKane, Jonathan M. "Metric Spaces." In Writing Proofs in Analysis, 295–340. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30967-5_10.
Full textBotelho, Fabio Silva. "Metric Spaces." In Real Analysis and Applications, 51–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78631-5_2.
Full textHowes, Norman R. "Metric Spaces." In Modern Analysis and Topology, 1–42. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0833-4_1.
Full textMontesinos, Vicente, Peter Zizler, and Václav Zizler. "Metric Spaces." In An Introduction to Modern Analysis, 283–338. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12481-0_6.
Full textRolewicz, Stefan. "Metric spaces." In Functional Analysis and Control Theory, 1–54. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-015-7758-8_1.
Full textSchinazi, Rinaldo B. "Metric Spaces." In From Classical to Modern Analysis, 115–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94583-5_7.
Full textConference papers on the topic "Analysis on metric spaces"
Altintas, Ismet, Dagistan Simsek, and Kemal Taskopru. "Topology of soft cone metric spaces." In INTERNATIONAL CONFERENCE “FUNCTIONAL ANALYSIS IN INTERDISCIPLINARY APPLICATIONS” (FAIA2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5000605.
Full textGoleţ, Ioan, Ciprian Hedrea, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "On Generalized Contractions in Probabilistic Metric Spaces." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636943.
Full textCastro-Company, Francisco, and Pedro Tirado. "The bicompletion of intuitionistic fuzzy quasi-metric spaces." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756271.
Full textCastro-Company, Francisco, and Pedro Tirado. "Some classes of t-norms and fuzzy metric spaces." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756272.
Full textGoleţ, Ioan, and Ionuţ Goleţ. "On Fixed Point Theorems in Probabilistic Metric Spaces and Applications." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990900.
Full textWU, JIONG-QI. "ON Ψ-MODULUS AND Ψ-CAPACITIES EQUALITIES IN METRIC MEASURE SPACES." In Proceedings of the 13th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773159_0027.
Full textAuwalu, Abba, and Ali Denker. "Chatterjea-type fixed point theorem on cone rectangular metric spaces with banach algebras." In INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0040595.
Full textKunze, Lucas Felipe, Thábata Amaral, Leonardo Mauro Pereira Moraes, Jadson José Monteiro Oliveira, Altamir Gomes Bispo Junior, Elaine Parros Machado de Sousa, and Robson Leonardo Ferreira Cordeiro. "Classification Analysis of NDVI Time Series in Metric Spaces for Sugarcane Identification." In 20th International Conference on Enterprise Information Systems. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0006709401620169.
Full textAuwalu, Abba. "A note on some fixed point theorems for generalized expansive mappings in cone metric spaces over Banach algebras." In INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5048998.
Full textRistianti, Dita Fadma, Sugiyrto Surono, and Joko Eliyanto. "Optimization of Fuzzy Support Vector Machine (FSVM) Model in Multiple Metric Spaces." In 2021 International Conference on Artificial Intelligence and Big Data Analytics (ICAIBDA). IEEE, 2021. http://dx.doi.org/10.1109/icaibda53487.2021.9689703.
Full textReports on the topic "Analysis on metric spaces"
Ganti, Venkatesh, Raghu Ramakrishnan, Johannes Gehrke, Allison Powell, and James French. Clustering Large Datasets in Arbitrary Metric Spaces. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada447010.
Full textClayton, John D., David L. McDowell, and Douglas J. Bammann. Anholonomic Configuration Spaces and Metric Tensors in Finite Elastoplasticity. Fort Belvoir, VA: Defense Technical Information Center, February 2006. http://dx.doi.org/10.21236/ada445112.
Full textMatei, Ion, Christoforos Somarakis, and John S. Baras. A Randomized Gossip Consenus Algorithm on Convex Metric Spaces. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada588967.
Full textCowlin, Shannon, Donna Heimiller, Jordan Macknick, Margaret Mann, Jacquelyn Pless, and David Munoz. Multi-Metric Sustainability Analysis. Office of Scientific and Technical Information (OSTI), December 2014. http://dx.doi.org/10.2172/1167056.
Full textPersily, Andrew K. Indoor Carbon Dioxide Metric Analysis Tool. Gaithersburg, MD: National Institute of Standards and Technology, 2022. http://dx.doi.org/10.6028/nist.tn.2213.
Full textHowe, Adele, and L. D. Whitley. Landscape Analysis and Algorithm Development for Plateau Plagued Search Spaces. Fort Belvoir, VA: Defense Technical Information Center, February 2011. http://dx.doi.org/10.21236/ada547002.
Full textDe Boor, Carl, and Amos Ron. Fourier Analysis of the Approximation Power of Principal Shift-Invariant Spaces. Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada246713.
Full textPerdigão, Rui A. P. Information physics and quantum space technologies for natural hazard sensing, modelling and prediction. Meteoceanics, September 2021. http://dx.doi.org/10.46337/210930.
Full textHall, J. Analysis of a Gross Counting Decision Metric for use in Threat Detection During Cargo Container Inspection. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/889431.
Full text. Slawianowski, Jan J. Slawianowski, and Barbara Golubowska Golubowska. Bertrand Systems on Spaces of Constant Sectional Curvature. The Action-Angle Analysis. Classical, Quasi-Classical and Quantum Problems. GIQ, 2015. http://dx.doi.org/10.7546/giq-16-2015-110-138.
Full text