Academic literature on the topic 'Analytics Application'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Analytics Application.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Analytics Application"
G, Aravind, Varun K, and Manjunath C. R. Soumya K. N. "Application of Big Data Analytics with Evidence Based Medicine." International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (June 30, 2018): 440–44. http://dx.doi.org/10.31142/ijtsrd12979.
Full textNagaraj, Samala. "Marketing Analytics for Customer Engagement." International Journal of Information Systems and Social Change 11, no. 2 (April 2020): 41–55. http://dx.doi.org/10.4018/ijissc.2020040104.
Full textAgrawal, Deepak. "Analytics based decision making." Journal of Indian Business Research 6, no. 4 (November 11, 2014): 332–40. http://dx.doi.org/10.1108/jibr-09-2014-0062.
Full textRuipérez-Valiente, José, Pedro Muñoz-Merino, Díaz Pijeira, Ruiz Santofimia, and Carlos Kloos. "Evaluation of a learning analytics application for open edX platform." Computer Science and Information Systems 14, no. 1 (2017): 51–73. http://dx.doi.org/10.2298/csis160331043r.
Full textPike, William, Joe Bruce, Bob Baddeley, Daniel Best, Lyndsey Franklin, Richard May, Douglas Rice, Rick Riensche, and Katarina Younkin. "The Scalable Reasoning System: Lightweight Visualization for Distributed Analytics." Information Visualization 8, no. 1 (January 2009): 71–84. http://dx.doi.org/10.1057/ivs.2008.33.
Full textGhosh, Siddhartha, Akshat Agrawal, B. Ramu, S. Kishore Kumar, and N. Tharun Reddy. "Application of C in Data Analytics." Journal of Engineering Education Transformations 33 (January 31, 2020): 600. http://dx.doi.org/10.16920/jeet/2020/v33i0/150128.
Full textKim, Jeong-ryeol, and Je-Young Lee. "English Learning Analytics and its Application." Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology 6, no. 9 (September 30, 2016): 321–30. http://dx.doi.org/10.14257/ajmahs.2016.09.15.
Full textGoncalves, Carlos, Luis Assuncao, and Jose C. Cunha. "Flexible MapReduce Workflows for Cloud Data Analytics." International Journal of Grid and High Performance Computing 5, no. 4 (October 2013): 48–64. http://dx.doi.org/10.4018/ijghpc.2013100104.
Full textKIM, JENNIFER, DAVID A. OSTROWSKI, HIROSHI YAMAGUCHI, and PHILLIP C. Y. SHEU. "SEMANTIC COMPUTING AND BUSINESS INTELLIGENCE." International Journal of Semantic Computing 07, no. 01 (March 2013): 87–117. http://dx.doi.org/10.1142/s1793351x13500013.
Full textWise, Alyssa, Yuting Zhao, and Simone Hausknecht. "Learning Analytics for Online Discussions: Embedded and Extracted Approaches." Journal of Learning Analytics 1, no. 2 (August 7, 2014): 48–71. http://dx.doi.org/10.18608/jla.2014.12.4.
Full textDissertations / Theses on the topic "Analytics Application"
Talevi, Iacopo. "Big Data Analytics and Application Deployment on Cloud Infrastructure." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14408/.
Full textAltskog, Tomas. "Customized Analytics Software : Investigating efficient development of an application." Thesis, Mittuniversitetet, Avdelningen för informations- och kommunikationssystem, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-27967.
Full textLee, Hock Guan. "A study on predictive analytics application to ship machinery maintenance." Thesis, Monterey California. Naval Postgraduate School, 2013. http://hdl.handle.net/10945/37659.
Full textEngine failures on ships are expensive, and affect operational readiness critically due to long turn-around times for maintenance. Prior to the engine failures, there are signs of engine characteristic changes, for example, exhaust gas temperature (EGT), to indicate that the engine is acting abnormally. This is used as a precursor towards the modeling of failures. There is a threshold limit of 520 degree Celsius for the EGT prior to the need for human intervention. With this knowledge, the use of time series forecasting technique, to predict the crossing over of threshold, is appropriate to model the EGT as a function of its operating running hours and load. This allows maintenance to be scheduled just in time. When there is a departure of result from the predictive model, Cumulative Sum (CUSUM) Control charts can then be used to monitor the change early before an actual problem arises. This paper discusses and demonstrates the proof of principle for one engine and a particular operating profile of a commercial vessel with the use of predictive analytics. The realization with time series forecasting coupled with CUSUM control chart allows this approach to be extended to other attributes beyond EGT.
Mathonat, Romain. "Rule discovery in labeled sequential data : Application to game analytics." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI080.
Full textIt is extremely useful to exploit labeled datasets not only to learn models and perform predictive analytics but also to improve our understanding of a domain and its available targeted classes. The subgroup discovery task has been considered for more than two decades. It concerns the discovery of rules covering sets of objects having interesting properties, e.g., they characterize a given target class. Though many subgroup discovery algorithms have been proposed for both transactional and numerical data, discovering rules within labeled sequential data has been much less studied. In that context, exhaustive exploration strategies can not be used for real-life applications and we have to look for heuristic approaches. In this thesis, we propose to apply bandit models and Monte Carlo Tree Search to explore the search space of possible rules using an exploration-exploitation trade-off, on different data types such as sequences of itemset or time series. For a given budget, they find a collection of top-k best rules in the search space w.r.t chosen quality measure. They require a light configuration and are independent from the quality measure used for pattern scoring. To the best of our knowledge, this is the first time that the Monte Carlo Tree Search framework has been exploited in a sequential data mining setting. We have conducted thorough and comprehensive evaluations of our algorithms on several datasets to illustrate their added-value, and we discuss their qualitative and quantitative results. To assess the added-value of one or our algorithms, we propose a use case of game analytics, more precisely Rocket League match analysis. Discovering interesting rules in sequences of actions performed by players and using them in a supervised classification model shows the efficiency and the relevance of our approach in the difficult and realistic context of high dimensional data. It supports the automatic discovery of skills and it can be used to create new game modes, to improve the ranking system, to help e-sport commentators, or to better analyse opponent teams, for example
Reising, Justin. "Function Space Tensor Decomposition and its Application in Sports Analytics." Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/etd/3676.
Full textBerky, Levente. "Vizualizace dat pro Ansible Automation Analytics." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445590.
Full textZhang, Liangwei. "Big Data Analytics for Fault Detection and its Application in Maintenance." Doctoral thesis, Luleå tekniska universitet, Drift, underhåll och akustik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-60423.
Full textRezai, Arash. "Evaluation of development methods for mobile applications : Soundhailer’s site and iOS application." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191124.
Full textFör att förbli konkurrenskraftiga och framgångsrika i dagens globaliserade marknad, behöver företagen en strategi för att se till att de ständigt är i framkant när det gäller produkter och tjänster. Att framställa en mobilapplikation är ett av många sätt för att nå upp till detta krav. Denna rapport ger en överblick över ämnet genom att först gå igenom dagens utvecklingsverktyg för mobilapplikationer och därefter fokusera på företaget Soundhailers mobilapplikation, eftersom denne har utvecklats av undertecknad. Problemet i fokus består av att ta reda på om en hårdvarukodad eller webbaserad applikation är att föredra för produktionsstrategin av en iOSapplikation för ett start-up-företag. Dessutom ger rapporten en inblick i en välstrukturerad metod som fungerar bra för att inrätta mätpunkter för en webbplats, med fokus på Soundhailers webbplats, samt det faktiska genomförandet av ett utvecklingsverktyg för iOS-utveckling. Denna insikt bygger på en hel del hjälp från en före detta elev på Kungliga Tekniska Högskolan som har tidigare erfarenheter inom området. För att sedan visa potentiella likheter och skillnader mellan teori och verklighet jämförs erfarenheterna med den teoretiska delen. Slutligen diskuteras resultaten kritiskt. Två versioner av applikationen har utvecklats, både en hårdvarukodad version och en webbaserad version, och resultaten visar att både hårdvarukodade och webbaserade applikationer kan vara praktiska lösningar som företag kan implementera och använda sig av. Resultaten ger också en grund på vilken andra kan bygga vidare på samt en bättre förståelse för hur en iOSapplikation kan användas och utvecklas
Raveneau, Vincent. "Interaction in Progressive Visual Analytics : an application to progressive sequential pattern mining." Thesis, Nantes, 2020. http://www.theses.fr/2020NANT4022.
Full textThe Progressive Visual Analytics (PVA) paradigm has been proposed to alleviate difficulties of Visual Analytics when dealing with large datasets or time-consuming algorithms, by using intermediate results and interactions between the human and the running algorithm. Our work is twofold. First, by considering that the notion of “interaction” was not well defined for PVA, we focused on providing a structured vision of what interacting with an algorithm in PVA means. Second, we focused on the design and implementation of a progressive sequential pattern mining algorithm and system, allowing to explore both the patterns and the underlying data, with a focus on the analyst/algorithm interactions. The perspectives opened by our work deal with 1/ assisting analysts in their interactions with algorithm in PVA settings; 2/ further exploring interaction in PVA ; 3/ creating natively progressive algorithms, for which progressiveness and interaction are at the core of the design
Abounia, Omran Behzad. "Application of Data Mining and Big Data Analytics in the Construction Industry." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu148069742849934.
Full textBooks on the topic "Analytics Application"
Ianchovichina, Elena. Inclusive growth analytics: Framework and application. [Washington, D.C: World Bank, 2009.
Find full textSugumaran, Vijayan, Zheng Xu, and Huiyu Zhou, eds. Application of Intelligent Systems in Multi-modal Information Analytics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-51556-0.
Full textSugumaran, Vijayan, Zheng Xu, and Huiyu Zhou, eds. Application of Intelligent Systems in Multi-modal Information Analytics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-51431-0.
Full textSugumaran, Vijayan, Zheng Xu, Shankar P., and Huiyu Zhou, eds. Application of Intelligent Systems in Multi-modal Information Analytics. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15740-1.
Full textSugumaran, Vijayan, Zheng Xu, and Huiyu Zhou, eds. Application of Intelligent Systems in Multi-modal Information Analytics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74814-2.
Full textSugumaran, Vijayan, Zheng Xu, and Huiyu Zhou, eds. Application of Intelligent Systems in Multi-modal Information Analytics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74811-1.
Full textKapur, P. K., Gurinder Singh, Yury S. Klochkov, and Uday Kumar, eds. Decision Analytics Applications in Industry. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3643-4.
Full textHaber, Peter, Thomas Lampoltshammer, and Manfred Mayr, eds. Data Science – Analytics and Applications. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-19287-7.
Full textHaber, Peter, Thomas Lampoltshammer, Manfred Mayr, and Kathrin Plankensteiner, eds. Data Science – Analytics and Applications. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-32182-6.
Full textR, Shriram, and Mak Sharma, eds. Data Science Analytics and Applications. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8603-8.
Full textBook chapters on the topic "Analytics Application"
Chatterjee, Ayan. "Application Analytics." In Building Apps for the Universal Windows Platform, 257–64. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2629-2_11.
Full textAgarwal, Reshu, Adarsh Dixit, and Shylaja Vinaykumar Karatangi. "Application of IoT in Water Supply Management." In Predictive Analytics, 199–212. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2021. | Series: Advanced research in reliability and system assurance engineering: CRC Press, 2020. http://dx.doi.org/10.1201/9781003083177-12.
Full textBadiru, Adedeji B. "Application of DEJI Systems Model to Data Integration." In Data Analytics, 233–42. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis: CRC Press, 2020. http://dx.doi.org/10.1201/9781003083146-8.
Full textMuhaisin, Mohammad Muhtady, and Taseef Rahman. "Application of Game Theory for Big Data Analytics." In Data Analytics, 199–210. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9780429446177-8.
Full textMohammad, Sheikh Suhail, Umar Maqbool, Aaquib Firdous, Tahleela Navid, Zahid Nazir Padder, and Shafqat Nabi Mughal. "Application of Demand-Side Management Techniques for Sustainable Energy." In Asset Analytics, 1–11. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3643-4_1.
Full textGail, William B. "Application of Virtual Worlds to Environmental Security." In GeoSpatial Visual Analytics, 345–56. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2899-0_27.
Full textBaru, Chaitanya, and Tilmann Rabl. "Application-Level Benchmarking of Big Data Systems." In Big Data Analytics, 189–99. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-3628-3_10.
Full textLee, Sharon X., Geoffrey McLachlan, and Saumyadipta Pyne. "Application of Mixture Models to Large Datasets." In Big Data Analytics, 57–74. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-3628-3_4.
Full textJayasekara, Charitha Subhashi, Malka N. Halgamuge, Asma Noor, and Ather Saeed. "Analysis of Traffic Offenses in Transportation: Application of Big Data Analysis." In Data Analytics, 343–69. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9780429446177-14.
Full textGuller, Mohammed. "Writing a Spark Application." In Big Data Analytics with Spark, 71–78. Berkeley, CA: Apress, 2015. http://dx.doi.org/10.1007/978-1-4842-0964-6_5.
Full textConference papers on the topic "Analytics Application"
Li, Ying, Ta-Hsin Li, Rong Liu, Jeaha Yang, and Juhnyoung Lee. "Application management services analytics." In 2013 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI). IEEE, 2013. http://dx.doi.org/10.1109/soli.2013.6611442.
Full textJain, Prachi, Praveen Kumar, and Seema Rawat. "SmartTech: An Email Analytics Application." In 2018 International Conference on System Modeling & Advancement in Research Trends (SMART). IEEE, 2018. http://dx.doi.org/10.1109/sysmart.2018.8746959.
Full textCordingly, Robert, Hanfei Yu, Varik Hoang, Zohreh Sadeghi, David Foster, David Perez, Rashad Hatchett, and Wes Lloyd. "The Serverless Application Analytics Framework." In Middleware '20: 21st International Middleware Conference. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3429880.3430103.
Full textVerma, Rakesh. "Security Analytics." In CODASPY '18: Eighth ACM Conference on Data and Application Security and Privacy. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3180445.3180456.
Full textTamez, Giovanni, Danytza Castillo, Aaron Colmenero, Jorge A. Ayala, and Colleen Bailey. "Machine learning application to hydraulic fracturing." In Big Data: Learning, Analytics, and Applications, edited by Fauzia Ahmad. SPIE, 2019. http://dx.doi.org/10.1117/12.2518996.
Full textBaggag, Abdelkader, Abdulaziz Yousuf Al-Homaid, Tahar Zanouda, and Michael Aupetit. "Deep Learning for Traffic Analytics Application FIFA2022." In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2018. http://dx.doi.org/10.5339/qfarc.2018.ictpd544.
Full text"Analytics Driven Application Development for Healthcare Organizations." In International Conference on Health Informatics. SCITEPRESS - Science and and Technology Publications, 2014. http://dx.doi.org/10.5220/0004705001350142.
Full textChicaiza, Janneth, Ma Carmen Cabrera-Loayza, Rene Elizalde, and Nelson Piedra. "Application of data anonymization in Learning Analytics." In APPIS 2020: 3rd International Conference on Applications of Intelligent Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3378184.3378229.
Full textTaluru, Danteswara Rao, and Rajendra Prasad Uppara Allabanda. "Application of Data Analytics in Gas Turbine Engines." In ASME 2019 Gas Turbine India Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gtindia2019-2557.
Full textSaranya, G., G. Geetha, and M. Safa. "E-Antenatal assistance care using decision tree analytics and cluster analytics based supervised machine learning." In 2017 International Conference on IoT and Application (ICIOT). IEEE, 2017. http://dx.doi.org/10.1109/iciota.2017.8073617.
Full textReports on the topic "Analytics Application"
Ansari, A., S. Mohaghegh, M. Shahnam, J. F. Dietiker, and T. Li. Data Driven Smart Proxy for CFD Application of Big Data Analytics & Machine Learning in Computational Fluid Dynamics, Report Two: Model Building at the Cell Level. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1431303.
Full textAnsari, A., S. Mohaghegh, M. Shahnam, J. F. Dietiker, T. Li, and A. Gel. Data Driven Smart Proxy for CFD Application of Big Data Analytics & Machine Learning in Computational Fluid Dynamics, Part Three: Model Building at the Layer Level. Office of Scientific and Technical Information (OSTI), May 2018. http://dx.doi.org/10.2172/1463895.
Full textRuch, Marc Lavi. Data Analytics for Nonproliferation Applications. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1529508.
Full textKramer, Mitchell. Comparing Customer-Centric Analytic Applications. Boston, MA: Patricia Seybold Group, May 2002. http://dx.doi.org/10.1571/ca5-2-02cc.
Full textKramer, Mitchell. Customer-Centric Analytic Application Feature Comparison Matrix. Boston, MA: Patricia Seybold Group, April 2002. http://dx.doi.org/10.1571/cm4-18-02cc.
Full textKramer, Mitchell. What Are Customer-Centric Analytic Applications? Boston, MA: Patricia Seybold Group, December 2001. http://dx.doi.org/10.1571/fw12-21-01cc.
Full textAnsari, A., S. Mohaghegh, M. Shahnam, J. F. Dietiker, A. Takbiri Borujeni, and E. Fathi. Data Driven Smart Proxy for CFD: Application of Big Data Analytics & Machine Learning in Computational Fluid Dynamics, Part One: Proof of Concept; NETL-PUB-21574; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2017. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1417305.
Full textKramer, Mitchell. Customer-Centric Analytic Applications within Teradata CRM. Boston, MA: Patricia Seybold Group, January 2002. http://dx.doi.org/10.1571/pr1-11-02cc.
Full textKramer, Mitchell. PSGroup Bull's-Eye: Customer–Centric Analytic Applications. Boston, MA: Patricia Seybold Group, June 2002. http://dx.doi.org/10.1571/psgb6-20-02cc.
Full textKramer, Mitchell. PSGroup Bull's-Eye: Customer–Centric Analytic Applications. Boston, MA: Patricia Seybold Group, July 2002. http://dx.doi.org/10.1571/psgb7-11-02cc.
Full text