To see the other types of publications on this topic, follow the link: And biomechanics.

Journal articles on the topic 'And biomechanics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'And biomechanics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Waters, Amy, Elissa Phillips, Derek Panchuk, and Andrew Dawson. "The coach–scientist relationship in high-performance sport: Biomechanics and sprint coaches." International Journal of Sports Science & Coaching 14, no. 5 (June 25, 2019): 617–28. http://dx.doi.org/10.1177/1747954119859100.

Full text
Abstract:
It is common for sport science practitioners, including sport biomechanists, to interact with high-performance coaches in the daily training environment. These relationships are beneficial for both scientist and coach, as well as the athletes. However, as indicated by difficulties in transferring new research into coaching practice, these relationships are not functioning as well as they could. The aim of this paper is to examine the various factors that influence the coach–biomechanist relationship in the elite sprinting context and gain an understanding of what impedes and enhances this, which will ultimately maximise an athlete's performance. Sprint coaches ( n = 56) and applied sport biomechanists ( n = 12) were surveyed to determine the participants' experiences working with each other and use of biomechanics in the training environment. Semi-structured interviews with coaches ( n = 8) and biomechanists ( n = 8) were conducted to further explore these ideas. From the biomechanists perspective, the relationship appeared to be less effective than from the coaches' perspective and both groups identified areas for improvement. The coaches had an inconsistent understanding of biomechanics theory and the support a biomechanist could provide in the training environment, while it was acknowledged that biomechanists needed to improve their communication skills. Coach and practitioner education were identified as where these improvements could be facilitated. There are many aspects of the coach–biomechanist relationship that could contribute to establishing optimal practice in the high-performance environment and enhance the transfer of knowledge from scientist to coach. This paper proposes a number of directions that could be taken.
APA, Harvard, Vancouver, ISO, and other styles
2

Fan, Yubo, Bo Wang, Kaihua Xiu, Xiang Dong, and Ming Zhang. "Biomechanical Animal Experimental Research on Osseointegration(Orthopaedic Biomechanics)." Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 175–76. http://dx.doi.org/10.1299/jsmeapbio.2004.1.175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Jun Qian. "Study on Knee Movement Mechanical Simulation in Basketball Shooting." Applied Mechanics and Materials 536-537 (April 2014): 1351–54. http://dx.doi.org/10.4028/www.scientific.net/amm.536-537.1351.

Full text
Abstract:
Application of sports biomechanics, sports biomechanics analyses of technical action shots, biomechanical characteristics obtained the basketball shooting skill and summarize the influencing factors of sports biomechanics shooting rate, especially for the shot before the body, lower limbs of each part of the action process were studied.
APA, Harvard, Vancouver, ISO, and other styles
4

Higham, Timothy E., Sean M. Rogers, R. Brian Langerhans, Heather A. Jamniczky, George V. Lauder, William J. Stewart, Christopher H. Martin, and David N. Reznick. "Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation." Proceedings of the Royal Society B: Biological Sciences 283, no. 1838 (September 14, 2016): 20161294. http://dx.doi.org/10.1098/rspb.2016.1294.

Full text
Abstract:
Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator–prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process.
APA, Harvard, Vancouver, ISO, and other styles
5

Yokobori, Takeo. "What are Biomechanics and Biomechanical Behaviour?" Bio-Medical Materials and Engineering 4, no. 2 (1994): 69–76. http://dx.doi.org/10.3233/bme-1994-4202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Bo. "Research on Biomechanical Simulation and Simulation of Badminton Splitting and Hanging Action Based on Edge Computing." Mobile Information Systems 2021 (April 27, 2021): 1–8. http://dx.doi.org/10.1155/2021/5527879.

Full text
Abstract:
Sports biomechanics refers to the science of the laws of mechanical motion produced in the process of biological movement. Its essence is to systematically and digitally reconstruct the fundamental attributes and characteristics of motion. At present, the research of sports biomechanics mainly focuses on the theoretical research of basic aspects and lacks the new technology of sports biomechanics digital simulation innovation and data measurement. This article takes the badminton chopping action as the research object and carries out biomechanical simulation and simulation research with the help of edge computing and genetic algorithm. First of all, this paper constructs a badminton chopping and hanging action system framework based on edge computing, so as to facilitate simulation and improve data transmission efficiency. Secondly, genetic algorithm is used in biomechanics simulation and simulation optimization and data analysis process. System testing and simulation verify the excellent performance of the biomechanical simulation of badminton chopping and hanging action established in this paper. The research will provide a reference for the academic circles to explore the field of sports biomechanics.
APA, Harvard, Vancouver, ISO, and other styles
7

Roberts, Cynthia J., and William J. Dupps. "Biomechanics of corneal ectasia and biomechanical treatments." Journal of Cataract & Refractive Surgery 40, no. 6 (June 2014): 991–98. http://dx.doi.org/10.1016/j.jcrs.2014.04.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

IVANCEVIC, TIJANA T. "JET-RICCI GEOMETRY OF TIME-DEPENDENT HUMAN BIOMECHANICS." International Journal of Biomathematics 03, no. 01 (March 2010): 79–91. http://dx.doi.org/10.1142/s179352451000088x.

Full text
Abstract:
We propose the time-dependent generalization of an "ordinary" autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds derived from the extended musculo-skeletal configuration manifold. The corresponding Riemannian geometrical evolution follows the Ricci flow diffusion. In particular, we show that the exponential-like decay of total biomechanical energy (due to exhaustion of biochemical resources) is closely related to the Ricci flow on the biomechanical configuration manifold.
APA, Harvard, Vancouver, ISO, and other styles
9

Fice, Jason B., Gunter P. Siegmund, and Jean-Sébastien Blouin. "Neck muscle biomechanics and neural control." Journal of Neurophysiology 120, no. 1 (July 1, 2018): 361–71. http://dx.doi.org/10.1152/jn.00512.2017.

Full text
Abstract:
The mechanics, morphometry, and geometry of our joints, segments, and muscles are fundamental biomechanical properties intrinsic to human neural control. The goal of our study was to investigate whether the biomechanical actions of individual neck muscles predict their neural control. Specifically, we compared the moment direction and variability produced by electrical stimulation of a neck muscle (biomechanics) to the preferred activation direction and variability (neural control). Subjects sat upright with their head fixed to a six-axis load cell and their torso restrained. Indwelling wire electrodes were placed into the sternocleidomastoid (SCM), splenius capitis (SPL), and semispinalis capitis (SSC) muscles. The electrically stimulated direction was defined as the moment direction produced when a current (2–19 mA) was passed through each muscle’s electrodes. Preferred activation direction was defined as the vector sum of the spatial tuning curve built from root mean squared electromyogram when subjects produced isometric moments at 7.5% and 15% of their maximum voluntary contraction (MVC) in 26 three-dimensional directions. The spatial tuning curves at 15% MVC were well defined (unimodal, P < 0.05), and their preferred directions were 23°, 39°, and 21° different from their electrically stimulated directions for the SCM, SPL, and SSC, respectively ( P < 0.05). Intrasubject variability was smaller in electrically stimulated moment directions compared with voluntary preferred directions, and intrasubject variability decreased with increased activation levels. Our findings show that the neural control of neck muscles is not based solely on optimizing individual muscle biomechanics but, as activation increases, biomechanical constraints in part dictate the activation of synergistic neck muscles. NEW & NOTEWORTHY Biomechanics are an intrinsic part of human neural control. In this study, we found that the biomechanics of individual neck muscles cannot fully predict their neural control. Consequently, physiologically based computational neck muscle controllers cannot calculate muscle activation schemes based on the isolated biomechanics of muscles. Furthermore, by measuring biomechanics we showed that the intrasubject variability of the neural control was lower for electrical vs. voluntary activation of the neck muscles.
APA, Harvard, Vancouver, ISO, and other styles
10

Kroemer, Karl H. E. "Standardization in Anthropometry and Biomechanics." Proceedings of the Human Factors Society Annual Meeting 30, no. 14 (September 1986): 1405–8. http://dx.doi.org/10.1177/154193128603001414.

Full text
Abstract:
Describing body size (anthropometry) and physical properties of the body (biomechanics) are areas of interest both in research and in application. The human factors engineer needs anthropometric and biomechanical information primarily for designing the operator/equipment interface. Available information is piecemeal, incomplete, and often not compatible since researched and provided in various scientific disciplines. However, even the researcher is hindered by the “scatter” of data, measuring techniques, and research objectives. Hence, an effort to standardize in the areas of anthropometry and biomechanics would, if done properly, help both scientists and engineers.
APA, Harvard, Vancouver, ISO, and other styles
11

Chen, Junning, Rohana Ahmad, Wei Li, Michael Swain, and Qing Li. "Biomechanics of oral mucosa." Journal of The Royal Society Interface 12, no. 109 (August 2015): 20150325. http://dx.doi.org/10.1098/rsif.2015.0325.

Full text
Abstract:
The prevalence of prosthodontic treatment has been well recognized, and the need is continuously increasing with the ageing population. While the oral mucosa plays a critical role in the treatment outcome, the associated biomechanics is not yet fully understood. Using the literature available, this paper provides a critical review on four aspects of mucosal biomechanics, including static, dynamic, volumetric and interactive responses, which are interpreted by its elasticity, viscosity/permeability, apparent Poisson's ratio and friction coefficient, respectively. Both empirical studies and numerical models are analysed and compared to gain anatomical and physiological insights. Furthermore, the clinical applications of such biomechanical knowledge on the mucosa are explored to address some critical concerns, including stimuli for tissue remodelling (interstitial hydrostatic pressure), pressure–pain thresholds, tissue displaceability and residual bone resorption. Through this review, the state of the art in mucosal biomechanics and their clinical implications are discussed for future research interests, including clinical applications, computational modelling, design optimization and prosthetic fabrication.
APA, Harvard, Vancouver, ISO, and other styles
12

Oh, Mujin, Taeoh Tak, and Jiyeon LEE. "66847 Biomechanical Analysis of Steering Motion Using Motion Analysis Technique(Biomechanics)." Proceedings of the Asian Conference on Multibody Dynamics 2010.5 (2010): _66847–1_—_66847–7_. http://dx.doi.org/10.1299/jsmeacmd.2010.5._66847-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tai, Ching-Lung, Weng-Pin Chen, Mel S. Lee, and Lan-Li Lian. "The Biomechanical Study of A Modified Intertrochanteric Valgus Osteotomy(Orthopaedic Biomechanics)." Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 179–80. http://dx.doi.org/10.1299/jsmeapbio.2004.1.179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hochmuth, Robert M. "Cell Biomechanics: A Brief Overview." Journal of Biomechanical Engineering 112, no. 3 (August 1, 1990): 233–34. http://dx.doi.org/10.1115/1.2891177.

Full text
Abstract:
In this issue of the JOURNAL OF BIOMECHANICAL ENGINEERING, there are eleven papers and one technical brief in the general area of “Cell Biomechanics.” In general, the work in these papers focuses on measuring and characterizing the mechanical and adhesive properties of cells and membranes. Included are studies of lipid membranes, erythrocytes, endothelial cells, and neutrophils. Characterizing and measuring the properties and behavior of cells in both passive and active states present a major challenge to investigators in this field. In this paper in the comments to follow, a simple overview of the field is presented and the principles and techniques used in the studies of cell biomechanics are discussed.
APA, Harvard, Vancouver, ISO, and other styles
15

Seeley, Matthew K., Seong Jun Son, Hyunsoo Kim, and J. Ty Hopkins. "Biomechanics Differ for Individuals With Similar Self-Reported Characteristics of Patellofemoral Pain During a High-Demand Multiplanar Movement Task." Journal of Sport Rehabilitation 30, no. 6 (August 1, 2021): 860–69. http://dx.doi.org/10.1123/jsr.2020-0220.

Full text
Abstract:
Context: Patellofemoral pain (PFP) is often categorized by researchers and clinicians using subjective self-reported PFP characteristics; however, this practice might mask important differences in movement biomechanics between PFP patients. Objective: To determine whether biomechanical differences exist during a high-demand multiplanar movement task for PFP patients with similar self-reported PFP characteristics but different quadriceps activation levels. Design: Cross-sectional design. Setting: Biomechanics laboratory. Participants: A total of 15 quadriceps deficient and 15 quadriceps functional (QF) PFP patients with similar self-reported PFP characteristics. Intervention: In total, 5 trials of a high-demand multiplanar land, cut, and jump movement task were performed. Main Outcome Measures: Biomechanics were compared at each percentile of the ground contact phase of the movement task (α = .05) between the quadriceps deficient and QF groups. Biomechanical variables included (1) whole-body center of mass, trunk, hip, knee, and ankle kinematics; (2) hip, knee, and ankle kinetics; and (3) ground reaction forces. Results: The QF patients exhibited increased ground reaction force, joint torque, and movement, relative to the quadriceps deficient patients. The QF patients exhibited: (1) up to 90, 60, and 35 N more vertical, posterior, and medial ground reaction force at various times of the ground contact phase; (2) up to 4° more knee flexion during ground contact and up to 4° more plantarflexion and hip extension during the latter parts of ground contact; and (3) up to 26, 21, and 48 N·m more plantarflexion, knee extension, and hip extension torque, respectively, at various times of ground contact. Conclusions: PFP patients with similar self-reported PFP characteristics exhibit different movement biomechanics, and these differences depend upon quadriceps activation levels. These differences are important because movement biomechanics affect injury risk and athletic performance. In addition, these biomechanical differences indicate that different therapeutic interventions may be needed for PFP patients with similar self-reported PFP characteristics.
APA, Harvard, Vancouver, ISO, and other styles
16

Zhao, Yunmei, Saeed Siri, Bin Feng, and David M. Pierce. "The Macro- and Micro-Mechanics of the Colon and Rectum II: Theoretical and Computational Methods." Bioengineering 7, no. 4 (November 25, 2020): 152. http://dx.doi.org/10.3390/bioengineering7040152.

Full text
Abstract:
Abnormal colorectal biomechanics and mechanotransduction associate with an array of gastrointestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, diverticula disease, anorectal disorders, ileus, and chronic constipation. Visceral pain, principally evoked from mechanical distension, has a unique biomechanical component that plays a critical role in mechanotransduction, the process of encoding mechanical stimuli to the colorectum by sensory afferents. To fully understand the underlying mechanisms of visceral mechanical neural encoding demands focused attention on the macro- and micro-mechanics of colon tissue. Motivated by biomechanical experiments on the colon and rectum, increasing efforts focus on developing constitutive frameworks to interpret and predict the anisotropic and nonlinear biomechanical behaviors of the multilayered colorectum. We will review the current literature on computational modeling of the colon and rectum as well as the mechanical neural encoding by stretch sensitive afferent endings, and then highlight our recent advances in these areas. Current models provide insight into organ- and tissue-level biomechanics as well as the stretch-sensitive afferent endings of colorectal tissues yet an important challenge in modeling theory remains. The research community has not connected the biomechanical models to those of mechanosensitive nerve endings to create a cohesive multiscale framework for predicting mechanotransduction from organ-level biomechanics.
APA, Harvard, Vancouver, ISO, and other styles
17

Lee, Sang-Hie. "Hand biomechanics in skilled pianists playing a scale in thirds." Medical Problems of Performing Artists 25, no. 4 (December 1, 2010): 167–74. http://dx.doi.org/10.21091/mppa.2010.4034.

Full text
Abstract:
Pianists, who attend to the integral relationship of their particular musculoskeletal characteristics to the piano technique at hand, discover an efficient path to technical advancement and, consequently, to injury prevention. Thus, a study of pianist's hand biomechanics in relation to different piano techniques is highly relevant, as hand features may influence various techniques in different ways. This study addressed relationships between pianists' hand biomechanics and the performance of a scale in thirds, as a part of an ongoing series of studies examining relationships between hand biomechanics and performance data of primary techniques. The biomechanics of hand length and width, finger length, hand span, hand and arm weights, and ulnar deviation at the wrist were compared with tempo, articulation, and dynamic voicing (tone balance between two notes of the thirds). Pearson correlation analysis showed a positive association between ulnar deviation and tempo; the other biomechanical features showed no relationships with any of the performance criteria. Qualitative cross-sectional observation of individual profiles showed that experienced pianists perform with a higher degree of synchrony in two-note descent while pianists with organ training background play with a lesser degree of synchrony. All biomechanical features were closely related among one another with one exception: wrist ulnar deviation was not associated with any other biomechanical features; rather, data suggest possible negative associations. This study underscores the importance of wrist mobility in piano skills development. Further research using a complete set of prototype piano techniques and multiple-level pianist-subjects could provide substantive biomechanical information that may be used to develop efficient pedagogy and prevention strategies for playing-related injuries as well as rehabilitation.
APA, Harvard, Vancouver, ISO, and other styles
18

Williams, William E. "Biomechanics." Ecology 71, no. 1 (February 1990): 407. http://dx.doi.org/10.2307/1940279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Smith, R. Lane. "Biomechanics." Clinical Orthopaedics and Related Research 427 (October 2004): S67—S68. http://dx.doi.org/10.1097/01.blo.0000144977.95901.7b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Vilar, José M., Francisco Miró, Miguel A. Rivero, and Giuseppe Spinella. "Biomechanics." BioMed Research International 2013 (2013): 1–2. http://dx.doi.org/10.1155/2013/271543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kersey, Robert D., and Louis R. Osternig. "Biomechanics." Athletic Therapy Today 7, no. 4 (July 2002): 30–31. http://dx.doi.org/10.1123/att.7.4.30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Fung, Y. C. "Biomechanics." Applied Mechanics Reviews 38, no. 10 (October 1, 1985): 1251–55. http://dx.doi.org/10.1115/1.3143684.

Full text
Abstract:
Mechanics is as relevant to living organisms as to conventional engineering, and engineers are making contributions to the understanding of physiology, pathology, cell biology, as well as to the establishment of medical, rehabilitation, and genetic engineering industries. Living organisms do have unique features not found in conventional engineering. These features include the ability to grow, change, and reproduce, the process of aging and dying, and the existence of a most intricate system of feedback and control. Mechanics plays a role in all of these topics. Many things are still unknown or not fully understood, or not controllable, and therein lies the attraction of the field.
APA, Harvard, Vancouver, ISO, and other styles
23

Fung, Yuan-Cheng. "BIOMECHANICS." SHOCK 9, no. 2 (February 1998): 155. http://dx.doi.org/10.1097/00024382-199802000-00018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

JOHNSON, G. R. "BIOMECHANICS." Rheumatology 27, no. 4 (1988): 312–14. http://dx.doi.org/10.1093/rheumatology/27.4.312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Nishida, Masahiro. "Biomechanics." Journal of Artificial Organs 12, no. 1 (March 2009): 23–26. http://dx.doi.org/10.1007/s10047-008-0439-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Montgomery, Melissa M., Amanda J. Tritsch, John R. Cone, Randy J. Schmitz, Robert A. Henson, and Sandra J. Shultz. "The Influence of Lower Extremity Lean Mass on Landing Biomechanics During Prolonged Exercise." Journal of Athletic Training 52, no. 8 (August 1, 2017): 738–46. http://dx.doi.org/10.4085/1062-6050-52.5.03.

Full text
Abstract:
Context: The extent to which lower extremity lean mass (LELM) relative to total body mass influences one's ability to maintain safe landing biomechanics during prolonged exercise when injury incidence increases is unknown. Objectives: To examine the influence of LELM on (1) pre-exercise lower extremity biomechanics and (2) changes in biomechanics during an intermittent exercise protocol (IEP) and (3) determine whether these relationships differ by sex. We hypothesized that less LELM would predict higher-risk baseline biomechanics and greater changes toward higher-risk biomechanics during the IEP. Design: Cohort study. Setting: Controlled laboratory. Patients or Other Participants: A total of 59 athletes (30 men: age = 20.3 ± 2.0 years, height = 1.79 ± 0.05 m, mass = 75.2 ± 7.2 kg; 29 women: age = 20.6 ± 2.3 years, height = 1.67 ± 0.08 m, mass = 61.8 ± 9.0 kg) participated. Intervention(s): Before completing an individualized 90-minute IEP designed to mimic a soccer match, participants underwent dual-energy x-ray absorptiometry testing for LELM. Main Outcome Measure(s): Three-dimensional lower extremity biomechanics were measured during drop-jump landings before the IEP and every 15 minutes thereafter. A previously reported principal components analysis reduced 40 biomechanical variables to 11 factors. Hierarchical linear modeling analysis then determined the extent to which sex and LELM predicted the baseline score and the change in each factor over time. Results: Lower extremity lean mass did not influence baseline biomechanics or the changes over time. Sex influenced the biomechanical factor representing knee loading at baseline (P = .04) and the changes in the anterior cruciate ligament–loading factor over time (P = .03). The LELM had an additional influence only on women who possessed less LELM (P = .03 and .02, respectively). Conclusions: Lower extremity lean mass influenced knee loading during landing in women but not in men. The effect appeared to be stronger in women with less LELM. Continually decreasing knee loading over time may reflect a strategy chosen to avoid injury. A minimal threshold of LELM may be needed to safely perform landing maneuvers, especially during prolonged exercise when the injury risk increases.
APA, Harvard, Vancouver, ISO, and other styles
27

Morriën, Floor, Matthew J. D. Taylor, and Florentina J. Hettinga. "Biomechanics in Paralympics: Implications for Performance." International Journal of Sports Physiology and Performance 12, no. 5 (May 2017): 578–89. http://dx.doi.org/10.1123/ijspp.2016-0199.

Full text
Abstract:
Purpose:To provide an overview of biomechanical studies in Paralympic research and their relevance for performance in Paralympic sports.Methods:The search terms paralympic biomechanics, paralympic sport performance, paralympic athlete performance, and paralympic athlete were entered into the electronic database PubMed.Results:Thirty-four studies were found. Biomechanical studies in Paralympics mainly contributed to performance enhancement by technical optimization (n = 32) and/or injury prevention (n = 6). In addition, biomechanics was found to be important in understanding activity limitation caused by various impairments, which is relevant for evidence-based classification in Paralympic sports (n = 6). Distinctions were made between biomechanical studies in sitting (41%), standing (38%), and swimming athletes (21%). In sitting athletes, mostly kinematics and kinetics in wheelchair propulsion were studied, mainly in athletes with spinal-cord injuries. In addition, kinetics and/or kinematics in wheelchair basketball, seated discus throwing, stationary shot-putting, hand-cycling, sit-skiing, and ice sledge hockey received attention. In standing sports, primarily kinematics of athletes with amputations performing jump sports and running and the optimization of prosthetic devices were investigated. No studies were reported on other standing sports. In swimming, mainly kick rate and resistance training were studied.Conclusions:Biomechanical research is important for performance by gaining insight into technical optimization, injury prevention, and evidence-based classification in Paralympic sports. In future studies it is advised to also include physiological and biomechanical measures, allowing the assessment of the capability of the human body, as well as the resulting movement.
APA, Harvard, Vancouver, ISO, and other styles
28

Garlapati, Revanth Reddy, Aditi Roy, Grand Roman Joldes, Adam Wittek, Ahmed Mostayed, Barry Doyle, Simon Keith Warfield, et al. "More accurate neuronavigation data provided by biomechanical modeling instead of rigid registration." Journal of Neurosurgery 120, no. 6 (June 2014): 1477–83. http://dx.doi.org/10.3171/2013.12.jns131165.

Full text
Abstract:
It is possible to improve neuronavigation during image-guided surgery by warping the high-quality preoperative brain images so that they correspond with the current intraoperative configuration of the brain. In this paper, the accuracy of registration results obtained using comprehensive biomechanical models is compared with the accuracy of rigid registration, the technology currently available to patients. This comparison allows investigation into whether biomechanical modeling provides good-quality image data for neuronavigation for a larger proportion of patients than rigid registration. Preoperative images for 33 neurosurgery cases were warped onto their respective intraoperative configurations using both the biomechanics-based method and rigid registration. The Hausdorff distance–based evaluation process, which measures the difference between images, was used to quantify the performance of both registration methods. A statistical test for difference in proportions was conducted to evaluate the null hypothesis that the proportion of patients for whom improved neuronavigation can be achieved is the same for rigid and biomechanics-based registration. The null hypothesis was confidently rejected (p < 10−4). Even the modified hypothesis that fewer than 25% of patients would benefit from the use of biomechanics-based registration was rejected at a significance level of 5% (p = 0.02). The biomechanics-based method proved particularly effective in cases demonstrating large craniotomy-induced brain deformations. The outcome of this analysis suggests that nonlinear biomechanics-based methods are beneficial to a large proportion of patients and can be considered for use in the operating theater as a possible means of improving neuronavigation and surgical outcomes.
APA, Harvard, Vancouver, ISO, and other styles
29

Tung, Wen-Lin, Kuan-Yin Lai, Li-Chieh Kuo, I.-Ming Jou, and Fong-Chin Su. "BIOMECHANICAL EVALUATION OF TRIGGER FINGER FUNCTION(2B1 Orthopaedic & Rehabilitation Biomechanics IV)." Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2007.3 (2007): S146. http://dx.doi.org/10.1299/jsmeapbio.2007.3.s146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Burns, Geoffrey T., Kenneth M. Kozloff, and Ronald F. Zernicke. "Biomechanics of Elite Performers: Economy and Efficiency of Movement." Kinesiology Review 9, no. 1 (February 1, 2020): 21–30. http://dx.doi.org/10.1123/kr.2019-0058.

Full text
Abstract:
Movement is essential to the human experience, and efficient biomechanics facilitate effective action across the breadth of tasks one encounters in life. The concept of movement efficiency has been investigated and explored through a variety of means including biomechanical modeling, simulation, and experimental manipulation. Observations of elite performers for a given movement task serve as an additional line of insight into efficiency, as their movements have been driven toward optimization via competitive pressure. The authors first discuss the concept of efficiency in biomechanics from a qualitative perspective and the broad tools with which we explore it. They then highlight biomechanical investigations of elite performers and their contributions to our understanding of efficiency. Examples from various classes of movements illustrate unique insights of the elite performers in informing our understanding of movement efficiency.
APA, Harvard, Vancouver, ISO, and other styles
31

Izzo, R., A. A. Diano, F. Lacquaniti, F. Zeccolini, and M. Muto. "Biomechanics of the Spine II." Rivista di Neuroradiologia 18, no. 5-6 (December 2005): 592–605. http://dx.doi.org/10.1177/197140090501800511.

Full text
Abstract:
Spine biomechanics represents a traditional area of research by orthopaedists, neurosurgeons, bioengineers and physicists. Working in an emergency setting and managing spinal traumas every day we began a study on extended literature devoted to biomechanics of the spine, to see beyond the usual static evaluation of neuroimaging patterns. After our earlier paper on biomechanics of the spine16, we have reviewed and broadened some topics such as the role of the ligaments and introduced the main mechanisms of primary spinal traumas and deformations. The spine is a multiarticular complex structure controlled by the muscles whose correct function presupposes its stability. Several “stability factors” ensure spinal stability and correct movements. A number of biomechanical studies analysed the contribution of individual bony and soft spinal elements to stability and the effects of traumas. Several theories have been derived from these studies to account for the distribution of loads and vector forces, including failure-producing loads, among the components of functional spinal units (FSU). Holdsworth's initial two column concept, the three column models by Louis and Denis up to most recent four column theory by Cartolari all represent evolutions in assessing the distribution of loads and the presence and degree of instability in spinal traumas. Whether acute or chronic spinal instability means a partial or complete loss of one or both functions of the spine: load-bearing and cord protection. The diagnosis of spinal instability is crucial to establish the most appropriate strategy of management, namely in acute conditions. Biomechanical concepts are fundamental to understand the factors deciding the type, location and extent of spinal traumas, possible instability and the primary mechanism of the main types of injuries.
APA, Harvard, Vancouver, ISO, and other styles
32

Karzilov, A. I. "The respiratory system biomechanical homeostasis and its maintenance mechanisms in normal conditions and at obstructive pulmonary diseases." Bulletin of Siberian Medicine 6, no. 1 (March 30, 2007): 13–38. http://dx.doi.org/10.20538/1682-0363-2007-1-13-38.

Full text
Abstract:
Parameters of breathing biomechanics in healthy persons (n = 20), patients with bronchial asthma (n = 30) and chronic obstruc-tive pulmonary disease (n = 30) are analyzed during electrical stimulation of the diaphragm. Methodology of homeostatic parame-ters searching and their classification is offered. Descriptive and comparative analyses are performed. Homeostatic parameters of biomechanics describing the condition of elastic and non -elastic properties of respiratory system, of respiratory muscles, of general pulmonary hysteresis, breathing regulation are differentiated. Basic homeostatic parameter is the ratio of inspiratory capacity to the lungs elastic recoil. The model of lungs with the biomechanical buffer and retractive-elastic- surfactant complex of lungs is offered. Biomechanical homeostasis idea of respiratory system as ability of an organism to support in dynamics balance normal and patho-logical conditions essentially important for preservation of respiratory system biomechanical parameters in admissible limits is for-mulated.
APA, Harvard, Vancouver, ISO, and other styles
33

Chaaban, Courtney R., Nathaniel T. Berry, Cortney Armitano-Lago, Adam W. Kiefer, Michael J. Mazzoleni, and Darin A. Padua. "Combining Inertial Sensors and Machine Learning to Predict vGRF and Knee Biomechanics during a Double Limb Jump Landing Task." Sensors 21, no. 13 (June 26, 2021): 4383. http://dx.doi.org/10.3390/s21134383.

Full text
Abstract:
(1) Background: Biomechanics during landing tasks, such as the kinematics and kinetics of the knee, are altered following anterior cruciate ligament (ACL) injury and reconstruction. These variables are recommended to assess prior to clearance for return to sport, but clinicians lack access to the current gold-standard laboratory-based assessment. Inertial sensors serve as a potential solution to provide a clinically feasible means to assess biomechanics and augment the return to sport testing. The purposes of this study were to (a) develop multi-sensor machine learning algorithms for predicting biomechanics and (b) quantify the accuracy of each algorithm. (2) Methods: 26 healthy young adults completed 8 trials of a double limb jump landing task. Peak vertical ground reaction force, peak knee flexion angle, peak knee extension moment, and peak sagittal knee power absorption were assessed using 3D motion capture and force plates. Shank- and thigh- mounted inertial sensors were used to collect data concurrently. Inertial data were submitted as inputs to single- and multiple- feature linear regressions to predict biomechanical variables in each limb. (3) Results: Multiple-feature models, particularly when an accelerometer and gyroscope were used together, were valid predictors of biomechanics (R2 = 0.68–0.94, normalized root mean square error = 4.6–10.2%). Single-feature models had decreased performance (R2 = 0.16–0.60, normalized root mean square error = 10.0–16.2%). (4) Conclusions: The combination of inertial sensors and machine learning provides a valid prediction of biomechanics during a double limb landing task. This is a feasible solution to assess biomechanics for both clinical and real-world settings outside the traditional biomechanics laboratory.
APA, Harvard, Vancouver, ISO, and other styles
34

Yoganandan, N., and F. A. Pintar. "Biomechanics of Human Thoracic Ribs." Journal of Biomechanical Engineering 120, no. 1 (February 1, 1998): 100–104. http://dx.doi.org/10.1115/1.2834288.

Full text
Abstract:
Considerable advances have been made to determine the failure biomechanical properties of the human thoracic spinal column and its components. Except for a few fundamental studies, there is a paucity of such data for the costovertebral elements. The present study was designed to determine the biomechanics of the human thoracic spine ribs from a large population. Seventh and eighth ribs bilaterally were tested from 30 human cadavers using the principles of three-point bending techniques to failure. Biomechanical test parameters included the cross-sectional area (core, marrow, and total), moment of inertia, failure load, deflection, and the Young’s elastic modulus. The strength-related results indicated no specific bias with respect to anatomical level and hemisphere (right or left), although the geometry-related variables demonstrated statistically significant differences (p < 0.05) between the seventh and the eighth ribs. This study offers basic biomechanical information on the ultimate failure and geometric characteristics of the human thoracic spine ribs.
APA, Harvard, Vancouver, ISO, and other styles
35

Petrov, Sergey Yur'yevich, Nataliya Nikolaevna Podgornaya, Anna Eduardovna Aslamazova, and Dar'ya Maksimovna Safonova. "Biomechanical studies of the iris and the trabecular meshwork." Ophthalmology journal 8, no. 1 (March 15, 2015): 69–78. http://dx.doi.org/10.17816/ov2015169-78.

Full text
Abstract:
The article presents a literature review of the latest research in the field of ocular biomechanics with an accent on the role of biomechanical properties of anatomical structures in the development of ocular pathologies. Close attention is paid to biomechanical properties of the iris, the study of its structure and functioning in representatives of different races, as well as its role in anterior eye chamber angle closure and the pathogenesis of angle-closure glaucoma. Experimental and clinical researches of trabecular meshwork biomechanics and modern outlooks on its structure characteristics are described. The review provides information on theoretical developments and practical implications of the development of a new class of local hypotensive drugs that influence the trabecular meshwork tonus (Rho-kinase inhibitors).
APA, Harvard, Vancouver, ISO, and other styles
36

Ojaghi, Reza. "MOLECULAR BIOLOGY AND BIOMECHANICS OF OSTEOPHYTE FORMATION IN ELBOW OSTEOARTHRITIS: A REVIEW." Journal of Musculoskeletal Research 23, no. 02 (June 2020): 2030003. http://dx.doi.org/10.1142/s0218957720300033.

Full text
Abstract:
Managing osteophyte in elbow osteoarthritis (OA) is not an easy task. In the review of the subject hereby, the molecular biology and biomechanics of osteophyte formation will be addressed in composite detail. A number of basic and clinical science research studies that have evaluated the importance and significant role of growth factors, cytokines production, receptors expression, proteoglycans, and alarmins secretion will be included. At the same time, it is notable that the osteophyte formation has not been thoroughly evaluated with respect to its biomechanics, stress and strain pattern on the joint, and its relation to growth plate and the differences that may exist between animal and human joints. Namely, a few studies have begun to look at this particular aspect of osteophyte formation, which does not cover the issue of the graded biomechanical response to the osteophyte formation. The findings of this study can conclude that biomechanical understanding of osteophyte formation has the potential to give a better solution for medical and surgical management of osteophyte formation in different joints and particularly in elbow joint. As such, the proper management of elbow OA with its significant osteophyte formation requires a comprehensive understanding of biology and biomechanics of osteophyte formation.
APA, Harvard, Vancouver, ISO, and other styles
37

King, Oisín, Ilona Sunyovszki, and Cesare M. Terracciano. "Vascularisation of pluripotent stem cell–derived myocardium: biomechanical insights for physiological relevance in cardiac tissue engineering." Pflügers Archiv - European Journal of Physiology 473, no. 7 (April 14, 2021): 1117–36. http://dx.doi.org/10.1007/s00424-021-02557-8.

Full text
Abstract:
AbstractThe myocardium is a diverse environment, requiring coordination between a variety of specialised cell types. Biochemical crosstalk between cardiomyocytes (CM) and microvascular endothelial cells (MVEC) is essential to maintain contractility and healthy tissue homeostasis. Yet, as myocytes beat, heterocellular communication occurs also through constantly fluctuating biomechanical stimuli, namely (1) compressive and tensile forces generated directly by the beating myocardium, and (2) pulsatile shear stress caused by intra-microvascular flow. Despite endothelial cells (EC) being highly mechanosensitive, the role of biomechanical stimuli from beating CM as a regulatory mode of myocardial-microvascular crosstalk is relatively unexplored. Given that cardiac biomechanics are dramatically altered during disease, and disruption of myocardial-microvascular communication is a known driver of pathological remodelling, understanding the biomechanical context necessary for healthy myocardial-microvascular interaction is of high importance. The current gap in understanding can largely be attributed to technical limitations associated with reproducing dynamic physiological biomechanics in multicellular in vitro platforms, coupled with limited in vitro viability of primary cardiac tissue. However, differentiation of CM from human pluripotent stem cells (hPSC) has provided an unlimited source of human myocytes suitable for designing in vitro models. This technology is now converging with the diverse field of tissue engineering, which utilises in vitro techniques designed to enhance physiological relevance, such as biomimetic extracellular matrix (ECM) as 3D scaffolds, microfluidic perfusion of vascularised networks, and complex multicellular architectures generated via 3D bioprinting. These strategies are now allowing researchers to design in vitro platforms which emulate the cell composition, architectures, and biomechanics specific to the myocardial-microvascular microenvironment. Inclusion of physiological multicellularity and biomechanics may also induce a more mature phenotype in stem cell–derived CM, further enhancing their value. This review aims to highlight the importance of biomechanical stimuli as determinants of CM-EC crosstalk in cardiac health and disease, and to explore emerging tissue engineering and hPSC technologies which can recapitulate physiological dynamics to enhance the value of in vitro cardiac experimentation.
APA, Harvard, Vancouver, ISO, and other styles
38

Prachgosin, Tulaya, Wipawan Leelasamran, Pruittikorn Smithmaitrie, and Surapong Chatpun. "Effect of total-contact orthosis on medial longitudinal arch and lower extremities in flexible flatfoot subjects during walking." Prosthetics and Orthotics International 41, no. 6 (February 19, 2017): 579–86. http://dx.doi.org/10.1177/0309364617691621.

Full text
Abstract:
Background: Total-contact orthosis (TCO) is one kind of foot orthosis (FO) that is used to adjust biomechanics in flexible flatfoot. Objective: To determine the effects of a TCO on the MLA moment, MLA deformation angle and lower limb biomechanics. Study Design: Cross-sectional study. Methods: Seven-flatfoot and thirteen-normal foot subjects were recruited by footprint and radiographs. The biomechanics of subjects with normal foot (NF), flatfoot with shoe only (FWOT) and flatfoot with TCO (FWT) were collected in a 3D motion analysis laboratory and force plates. The MLA and lower limb biomechanics in each condition during specific sub-phases of stance were analyzed. Results: The NF had larger MLA eversion moment after shod walking ( p = 0.001). The FWT condition compared with the FWOT condition had a significantly larger peak MLA upward moment ( p = 0.035) during pre-swing, larger peak knee external rotation angle ( p = 0.040) during mid stance, smaller peak knee extension moment during terminal stance ( p = 0.035) and a larger ground reaction force in the anterior-posterior direction during early stance ( p < 0.05). Conclusion: Our study found positive effects from the customized TCOs which included an increased TCO angle that led to a decreased peak MLA moment in the frontal plane in flexible flatfoot subjects during walking. Clinical relevance Lower limb biomechanics is different from normal in subjects with flexible flatfoot. The design of a TCO affects MLA, ankle and knee biomechanics and may be used to clinically correct biomechanical changes in flexible flatfoot.
APA, Harvard, Vancouver, ISO, and other styles
39

Di Paolo, Stefano, Stefano Zaffagnini, Nicola Pizza, Alberto Grassi, and Laura Bragonzoni. "Poor Motor Coordination Elicits Altered Lower Limb Biomechanics in Young Football (Soccer) Players: Implications for Injury Prevention through Wearable Sensors." Sensors 21, no. 13 (June 25, 2021): 4371. http://dx.doi.org/10.3390/s21134371.

Full text
Abstract:
Motor coordination and lower limb biomechanics are crucial aspects of anterior cruciate ligament (ACL) injury prevention strategies in football. These two aspects have never been assessed together in real scenarios in the young population. The present study aimed to investigate the influence of motor coordination on lower limb biomechanics in young footballers during an on-the-pitch training. Eighteen juvenile football players (10 y ± 2 m) were enrolled. Each player performed a training drill with sport-specific movements (vertical jump, agility ladders, change of direction) and the Harre circuit test (HCT) to evaluate players’ motor coordination. Wearable inertial sensors (MTw Awinda, Xsens) were used to assess lower limb joint angles and accelerations. Based on the results of the HCT, players were divided into poorly coordinated (PC) and well-coordinated (WC) on the basis of the literature benchmark. The PC group showed a stiffer hip biomechanics strategy (up to 40% lower flexion angle, ES = 2.0) and higher internal-external hip rotation and knee valgus (p < 0.05). Significant biomechanical limb asymmetries were found only in the PC group for the knee joint (31–39% difference between dominant and non-dominant limb, ES 1.6–2.3). Poor motor coordination elicited altered hip and knee biomechanics during sport-specific dynamic movements. The monitoring of motor coordination and on-field biomechanics might enhance the targeted trainings for ACL injury prevention.
APA, Harvard, Vancouver, ISO, and other styles
40

Hewett, Timothy E., and Nathaniel A. Bates. "Preventive Biomechanics: A Paradigm Shift With a Translational Approach to Injury Prevention." American Journal of Sports Medicine 45, no. 11 (February 15, 2017): 2654–64. http://dx.doi.org/10.1177/0363546516686080.

Full text
Abstract:
Background: Preventive medicine techniques have alleviated billions of dollars’ worth of the economic burden in the medical care system through the implementation of vaccinations and screenings before the onset of disease symptoms. Knowledge of biomechanical tendencies has progressed rapidly over the past 20 years such that clinicians can identify, in healthy athletes, the underlying mechanisms that lead to catastrophic injuries such as anterior cruciate ligament (ACL) ruptures. As such, preventive medicine concepts can be applied to noncontact musculoskeletal injuries to reduce the economic burden of sports medicine treatments and enhance the long-term health of athletes. Purpose: To illustrate the practical medical benefits that could be gained from preventive biomechanics applied to the ACL as well as the need and feasibility for the broad implementation of these principles. Study Design: Literature review. Methods: The recent literature pertinent to the screening and prevention of musculoskeletal injuries was reviewed and compiled into a clinical commentary on the current state and applicability of preventive biomechanics. Results: Investigators have identified neuromuscular training protocols that screen for and correct the underlying biomechanical deficits that lead to ACL injuries. The literature shows that when athletes comply with these prescribed training protocols, the incidence of injuries is significantly reduced within that population. Such preventive biomechanics practices employ basic training methods that would be familiar to athletic coaches and have the potential to save billions of dollars in cost in sports medicine. Conclusion: The widespread implementation of preventive biomechanics concepts could profoundly affect the field of sports medicine with a minimum of initial investment.
APA, Harvard, Vancouver, ISO, and other styles
41

Hisatomi, Sayaka, Hisashi Naito, Takeshi Matsumoto, Eiji Tanaka, and Masao Tanaka. "Biomechanical Analysis of TMJ Soft Tissues under Asymmetric Jaw Movement(3D1 Dental Biomechanics)." Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2007.3 (2007): S219. http://dx.doi.org/10.1299/jsmeapbio.2007.3.s219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Arendra, A., and S. Akhmad. "Development of esMOCA Biomechanic, Motion Capture Instrumentation for Biomechanics Analysis." Journal of Physics: Conference Series 953 (January 2018): 012130. http://dx.doi.org/10.1088/1742-6596/953/1/012130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kuru, İlhami. "Patellofemoral biomechanics." Türk Ortopedi ve Travmatoloji Birliği Derneği Dergisi 11, no. 4 (November 3, 2012): 274–80. http://dx.doi.org/10.5606/totbid.dergisi.2012.37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Phillips, Robert D. "Musculoskeletal Biomechanics." Journal of the American Podiatric Medical Association 92, no. 8 (September 1, 2002): 475. http://dx.doi.org/10.7547/87507315-92-8-475aa.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Burstein, Albert H. "Musculoskeletal Biomechanics." Journal of Bone and Joint Surgery-American Volume 84, no. 9 (September 2002): 1731–32. http://dx.doi.org/10.2106/00004623-200209000-00038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

IKAI, Atsushi. "Nano-Biomechanics." Seibutsu Butsuri 50, no. 2 (2010): 068–69. http://dx.doi.org/10.2142/biophys.50.068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ellison, Aaron M. "Plant Biomechanics." Ecology 74, no. 6 (September 1993): 1905–6. http://dx.doi.org/10.2307/1939950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Henderson, Andrew, and Karl J. Niklas. "Plant Biomechanics." Brittonia 46, no. 1 (January 1994): 71. http://dx.doi.org/10.2307/2807461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Verkerke, G. J., and T. C. Lee. "Basic Biomechanics." Technology and Health Care 16, no. 3 (July 8, 2008): 219–21. http://dx.doi.org/10.3233/thc-2008-16307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Jeronimidis, George. "Biomechanics explained." Materials Today 7, no. 3 (March 2004): 51. http://dx.doi.org/10.1016/s1369-7021(04)00133-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography