Academic literature on the topic 'And Cluster Computing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'And Cluster Computing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "And Cluster Computing"
Buyya, Rajkumar, Hai Jin, and Toni Cortes. "Cluster computing." Future Generation Computer Systems 18, no. 3 (January 2002): v—viii. http://dx.doi.org/10.1016/s0167-739x(01)00053-x.
Full textNwobodo, Ikechukwu. "Cloud Computing: A Detailed Relationship to Grid and Cluster Computing." International Journal of Future Computer and Communication 4, no. 2 (April 2015): 82–87. http://dx.doi.org/10.7763/ijfcc.2015.v4.361.
Full textROSENBERG, ARNOLD L., and RON C. CHIANG. "HETEROGENEITY IN COMPUTING: INSIGHTS FROM A WORKSHARING SCHEDULING PROBLEM." International Journal of Foundations of Computer Science 22, no. 06 (September 2011): 1471–93. http://dx.doi.org/10.1142/s0129054111008829.
Full textHatcher, P., M. Reno, G. Antoniu, and L. Bouge. "Cluster Computing with Java." Computing in Science and Engineering 7, no. 2 (March 2005): 34–39. http://dx.doi.org/10.1109/mcse.2005.28.
Full textDu, Ran, Jingyan Shi, Xiaowei Jiang, and Jiaheng Zou. "Cosmos : A Unified Accounting System both for the HTCondor and Slurm Clusters at IHEP." EPJ Web of Conferences 245 (2020): 07060. http://dx.doi.org/10.1051/epjconf/202024507060.
Full textPushkar, V. I., H. D. Kyselov, YE V. Olenovych, and O. H. Kyivskyi. "Computing cluster performance evaluation in department of the university." Electronics and Communications 15, no. 5 (March 29, 2010): 211–16. http://dx.doi.org/10.20535/2312-1807.2010.58.5.285236.
Full textTripathy, Minakshi, and C. R. Tripathy. "A Comparative Analysis of Performance of Shared Memory Cluster Computing Interconnection Systems." Journal of Computer Networks and Communications 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/128438.
Full textFowler, A. G., and K. Goyal. "Topological cluster state quantum computing." Quantum Information and Computation 9, no. 9&10 (September 2009): 721–38. http://dx.doi.org/10.26421/qic9.9-10-1.
Full textSaman, M. Y., and D. J. Evans. "Distributed computing on cluster systems." International Journal of Computer Mathematics 78, no. 3 (January 2001): 383–97. http://dx.doi.org/10.1080/00207160108805118.
Full textThiruvathukal, G. K. "Guest Editors' Introduction: Cluster Computing." Computing in Science and Engineering 7, no. 2 (March 2005): 11–13. http://dx.doi.org/10.1109/mcse.2005.33.
Full textDissertations / Theses on the topic "And Cluster Computing"
Boden, Harald. "Multidisziplinäre Optimierung und Cluster-Computing /." Heidelberg : Physica-Verl, 1996. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=007156051&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textRosu, Marcel-Catalin. "Communication support for cluster computing." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/8256.
Full textZhang, Hua. "VCLUSTER: A PORTABLE VIRTUAL COMPUTING LIBRARY FOR CLUSTER COMPUTING." Doctoral diss., Orlando, Fla. : University of Central Florida, 2008. http://purl.fcla.edu/fcla/etd/CFE0002339.
Full textLee, Chun-ming, and 李俊明. "Efficient communication subsystem for cluster computing." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31221245.
Full textLee, Chun-ming. "Efficient communication subsystem for cluster computing /." Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B20604592.
Full textSolsona, Tehàs Francesc. "Coscheduling Techniques for Non-Dedicated Cluster Computing." Doctoral thesis, Universitat Autònoma de Barcelona, 2002. http://hdl.handle.net/10803/3029.
Full textasí como aplicaciones distribuidas.
Para solucionar el problema, deben tenerse en cuenta dos importantes consideraciones:
* Como compartir y planificar los recursos de las diferentes estaciones de trabajo (especialmente la CPU) entre las aplicaciones locales y distribuidas.
* Como gestionar y controlar la totalidad del sistema para
conseguir ejecuciones eficientes de ambos tipos de aplicaciones.
Coscheduling es el principio básico usado para compartir
y planificar la CPU. Cosche-duling se basa en la reducción
del tiempo de espera de comunicación de aplicaciones distribuidas,
planificando simultáneamente todas (o un subconjunto de)
las tareas que la componen. Por lo tanto, mediante el uso
de técnicas de coscheduling, únicamente se puede incrementar
el rendimiento de aplicaciones distribuidas con comunicación
remota entre las tareas que la componen.
Las técnicas de Coscheduling se clasifican en dos grandes
grupos: control-explícito y control-implícito. Esta clasificación
se basa en la forma de coplanificar las tareas distribuidas.
En control-explícito, la coplanificación es realizada por
procesos y (o) procesadores especializados. En cambio, en
control-implícito, las técnicas de coscheduling se realizan
tomando decisiones de planificación localmente, dependiendo
de los eventos que ocurren en cada estación de trabajo.
En este proyecto se presentan dos mecanismos de coscheduling,
los cuales siguen las dos diferentes filosofías explicadas
anteriormente, control-implícito y control-explí-cito. También
proporcionan características adicionales incluyendo un buen
rendimiento en la ejecución de aplicaciones distribuidas,
ejecución simultánea de varias aplicaciones distribuidas,
bajo overhead y también bajo impacto en el rendimiento de
la carga local.
También se presenta un modelo de coscheduling, el cual proporciona
una base teórica para el desarrollo de nuevas técnicas de
control-implícito. La técnica de control-implícito propuesta
se basa en este modelo.
El buen comportamiento de las técnicas de coscheduling presentadas
en este trabajo se analiza en primer lugar por medio de
simulación. También se ha realizado un gran esfuerzo en
la implementación de estas técnicas de coscheduling en un
Cluster real. El estudio de los resultados obtenidos proporciona
una orientación importante para la investigación futura
en el campo de coscheduling.
En la experimentación en el Cluster real, se han utilizado
varios benchmarks distribuidos con diversos patrones de
comunicación de paso de mensajes: regulares e irregulares,
anillos lógicos, todos-a-todos, etc. También se han utilizado
benchmarks que medían diferentes primitivas de comunicación,
tales como barreras, enlaces uni y bidireccionales, etc.
El uso de esta amplia gama de aplicaciones distribuidas
ha servido para demostrar la aplicabilidad de las técnicas
de coscheduling en computación distribuida basados en Clusters.
Efforts of this Thesis are centered on constructing a Virtual
Machine over a Cluster system that provides the double functionality
of executing traditional workstation jobs as well as distributed
applications efficiently.
To solve the problem, two major considerations must be addressed:
* How share and schedule the workstation resources (especially
the CPU) between the local and distributed applications.
* How to manage and control the overall system for the efficient
execution of both application kinds.
Coscheduling is the base principle used for the sharing and
scheduling of the CPU. Coscheduling is based on reducing
the communication waiting time of distributed applications
by scheduling their forming tasks, or a subset of them at
the same time. Consequently, non-communicating distributed
applications (CPU bound ones) will not be favored by the
application of coscheduling. Only the performance of distributed
applications with remote communication can be increased
with coscheduling.
Coscheduling techniques follow two major trends: explicit
and implicit control. This classification is based on the
way the distributed tasks are managed and controlled. Basically,
in explicit-control, such work is carried out by specialized
processes and (or) processors. In contrast, in implicit-control,
coscheduling is performed by making local scheduling decisions
depending on the events occurring in each workstation.
Two coscheduling mechanisms which follow the two different
control trends are presented in this project. They also
provide additional features including usability, good performance
in the execution of distributed applications, simultaneous
execution of distributed applications, low overhead and
also low impact on local workload performance. The design
of the coscheduling techniques was mainly influenced by
the optimization of these features.
An implicit-control coscheduling model is also presented.
Some of the features it provides include collecting on-time
performance statistics and the usefulness as a basic scheme
for developing new coscheduling policies. The presented
implicit-control mechanism is based on this model.
The good scheduling behavior of the coscheduling models presented
is shown firstly by simulation, and their performance compared
with other coscheduling techniques in the literature. A
great effort is also made to implement the principal studied
coscheduling techniques in a real Cluster system. Thus,
it is possible to collect performance measurements of the
different coscheduling techniques and compare them in the
same environment. The study of the results obtained will
provide an important orientation for future research in
coscheduling because, to our knowledge, no similar work
(in the literature) has been done before.
Measurements in the real Cluster system were made by using
various distributed benchmarks with different message patterns:
regular and irregular communication patterns, token rings,
all-to-all and so on. Also, communication primitives such
as barriers and basic sending and receiving using one and
two directional links were separately measured. By using
this broad range of distributed applications, an accurate
analysis of the usefulness and applicability of the presented
coscheduling techniques in Cluster computing is performed.
Jacob, Aju. "Distributed configuration management for reconfigurable cluster computing." [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0007181.
Full textStewart, Sean. "Deploying a CMS Tier-3 Computing Cluster with Grid-enabled Computing Infrastructure." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2564.
Full textMaiti, Anindya. "Distributed cluster computing on high-speed switched LANs." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0012/MQ41741.pdf.
Full textSingla, Aman. "Beehive : application-driven systems support for cluster computing." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/8278.
Full textBooks on the topic "And Cluster Computing"
1970-, Buyya Rajkumar, and Szyperski Clemens, eds. Cluster computing. Huntington, N.Y: Nova Science Publishers, 2001.
Find full text1970-, Buyya Rajkumar, ed. High performance cluster computing. Upper Saddle River, N.J: Prentice Hall PTR, 1999.
Find full textHoffmann, Karl Heinz, and Arnd Meyer, eds. Parallel Algorithms and Cluster Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-33541-2.
Full textBoden, Harald. Multidisziplinäre Optimierung und Cluster-Computing. Heidelberg: Physica-Verlag HD, 1996. http://dx.doi.org/10.1007/978-3-642-48081-2.
Full textLawrence, Sterling Thomas, ed. Beowulf cluster computing with Linux. Cambridge, Mass: MIT Press, 2002.
Find full textLawrence, Sterling Thomas, ed. Beowulf cluster computing with Windows. Cambridge, Mass: MIT Press, 2002.
Find full textWilliam, Gropp, Lusk Ewing, and Sterling Thomas Lawrence, eds. Beowulf cluster computing with Linux. 2nd ed. Cambridge, Mass: MIT Press, 2003.
Find full textFey, Dietmar. Grid-Computing: Grid Computing fu r Computational Science. Berlin: Springer Berlin, 2009.
Find full textCiceron, Jimenez, and Ortego Maurice, eds. Cluster computing and multi-hop network research. Hauppauge, N.Y: Nova Science Publishers, Inc., 2009.
Find full textBook chapters on the topic "And Cluster Computing"
Baker, Mark, John Brooke, Ken Hawick, and Rajkumar Buyya. "Cluster Computing." In Euro-Par 2001 Parallel Processing, 702–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44681-8_100.
Full textBuyya, Rajkumar, Mark Baker, Daniel C. Hyde, and Djamshid Tavangarian. "Cluster Computing." In Euro-Par 2000 Parallel Processing, 1115–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-44520-x_158.
Full textFrenz, Stefan, Michael Schoettner, Ralph Goeckelmann, and Peter Schulthess. "Transactional Cluster Computing." In High Performance Computing and Communications, 465–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11557654_55.
Full textOng, Hong, and Mark Baker. "Cluster Computing Fundamentals." In Handbook of Computer Networks, 79–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118256107.ch6.
Full textSteele, Guy L., Xiaowei Shen, Josep Torrellas, Mark Tuckerman, Eric J. Bohm, Laxmikant V. Kalé, Glenn Martyna, et al. "Cluster of Workstations." In Encyclopedia of Parallel Computing, 289. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-09766-4_2120.
Full textSteele, Guy L., Xiaowei Shen, Josep Torrellas, Mark Tuckerman, Eric J. Bohm, Laxmikant V. Kalé, Glenn Martyna, et al. "Cluster File Systems." In Encyclopedia of Parallel Computing, 289. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-09766-4_2245.
Full textChinchalkar, Shirish, Thomas F. Coleman, and Peter Mansfield. "Cluster Computing for Financial Engineering." In Applied Parallel Computing. State of the Art in Scientific Computing, 395–403. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11558958_47.
Full textMinartz, Timo, Daniel Molka, Michael Knobloch, Stephan Krempel, Thomas Ludwig, Wolfgang E. Nagel, Bernd Mohr, and Hugo Falter. "eeClust: Energy-Efficient Cluster Computing." In Competence in High Performance Computing 2010, 111–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24025-6_10.
Full textAfrati, Foto N., Vinayak Borkar, Michael Carey, Neoklis Polyzotis, and Jeffrey D. Ullman. "Cluster Computing, Recursion and Datalog." In Datalog Reloaded, 120–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24206-9_8.
Full textChiesa, Alessandro, Eran Tromer, and Madars Virza. "Cluster Computing in Zero Knowledge." In Advances in Cryptology - EUROCRYPT 2015, 371–403. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46803-6_13.
Full textConference papers on the topic "And Cluster Computing"
Ancona, M. "Cluster computing." In Proceedings Eleventh Euromicro Conference on Parallel, Distributed and Network-Based Processing. IEEE, 2003. http://dx.doi.org/10.1109/empdp.2003.1183567.
Full textSatoh. "Reusable mobile agents for cluster computing." In Proceedings IEEE International Conference on Cluster Computing CLUSTR-03. IEEE, 2003. http://dx.doi.org/10.1109/clustr.2003.1253324.
Full textCrago, Steve, Kyle Dunn, Patrick Eads, Lorin Hochstein, Dong-In Kang, Mikyung Kang, Devendra Modium, Karandeep Singh, Jinwoo Suh, and John Paul Walters. "Heterogeneous Cloud Computing." In 2011 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2011. http://dx.doi.org/10.1109/cluster.2011.49.
Full text"Proceedings. IEEE International Conference on Cluster Computing." In Proceedings IEEE International Conference on Cluster Computing CLUSTR-03. IEEE, 2003. http://dx.doi.org/10.1109/clustr.2003.1253292.
Full textCehn and Schmidt. "Computing large-scale alignments on a multi-cluster." In Proceedings IEEE International Conference on Cluster Computing CLUSTR-03. IEEE, 2003. http://dx.doi.org/10.1109/clustr.2003.1253297.
Full textAbawajy and Dandamudi. "Parallel job scheduling on multicluster computing system." In Proceedings IEEE International Conference on Cluster Computing CLUSTR-03. IEEE, 2003. http://dx.doi.org/10.1109/clustr.2003.1253294.
Full textKleban and Clearwater. "Interstitial computing: utilizing spare cycles on supercomputers." In Proceedings IEEE International Conference on Cluster Computing CLUSTR-03. IEEE, 2003. http://dx.doi.org/10.1109/clustr.2003.1253295.
Full textDauger and Decyk. ""Plug-and-play" cluster computing using Mac OS X." In Proceedings IEEE International Conference on Cluster Computing CLUSTR-03. IEEE, 2003. http://dx.doi.org/10.1109/clustr.2003.1253343.
Full textSperhac, Jeanette, Benjamin D. Plessinger, Jeffrey T. Palmer, Rudra Chakraborty, Gregary Dean, Martins Innus, Ryan Rathsam, et al. "Federating XDMoD to Monitor Affiliated Computing Resources." In 2018 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2018. http://dx.doi.org/10.1109/cluster.2018.00074.
Full textFujita, Norihisa, Ryohei Kobayashi, Yoshiki Yamaguchi, Kohji Yoshikawa, Makito Abe, and Masayuki Umemura. "Toward OpenACC-enabled GPU-FPGA Accelerated Computing." In 2020 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2020. http://dx.doi.org/10.1109/cluster49012.2020.00060.
Full textReports on the topic "And Cluster Computing"
Alsing, Paul, Michael Fanto, and A. M. Smith. Cluster State Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, December 2012. http://dx.doi.org/10.21236/ada572237.
Full textRichards, Mark A., and Daniel P. Campbell. Rapidly Reconfigurable High Performance Computing Cluster. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada438586.
Full textDuke, D. W., and T. P. Green. [Research toward a heterogeneous networked computing cluster]. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/674884.
Full textLi, Haoyuan, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Reliable, Memory Speed Storage for Cluster Computing Frameworks. Fort Belvoir, VA: Defense Technical Information Center, June 2014. http://dx.doi.org/10.21236/ada611854.
Full textChen, H. Y., J. M. Brandt, and R. C. Armstrong. ATM-based cluster computing for multi-problem domains. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/415338.
Full textEric Burger, Eric Burger. Studying Building Energy Use with a Micro Computing Cluster. Experiment, October 2014. http://dx.doi.org/10.18258/3777.
Full textIlg, Mark. Multi-Core Computing Cluster for Safety Fan Analysis of Guided Projectiles. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada551790.
Full textLele, Sanjiva K. Computing Cluster for Large Scale Turbulence Simulations and Applications in Computational Aeroacoustics. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada406713.
Full textAbu-Gazaleh, Nael. Using Heterogeneous High Performance Computing Cluster for Supporting Fine-Grained Parallel Applications. Fort Belvoir, VA: Defense Technical Information Center, October 2006. http://dx.doi.org/10.21236/ada459900.
Full textGottlieb, Sigal. A Heterogeneous Terascale Computing Cluster for the Development of GPU Optimized High Order Numerical Methods. Fort Belvoir, VA: Defense Technical Information Center, November 2011. http://dx.doi.org/10.21236/ada566277.
Full text