Journal articles on the topic 'Angel of internal friction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Angel of internal friction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Masoud, Talal. "Shear strength characteristics of Jerash expansive soil." Journal of Advanced Sciences and Engineering Technologies 3, no. 2 (2021): 74–80. http://dx.doi.org/10.32441/jaset.03.02.08.
Full textZegzulka, Jiri, Daniel Gelnar, Lucie Jezerska, Alvaro Ramirez-Gomez, Jan Necas, and Jiri Rozbroj. "Internal Friction Angle of Metal Powders." Metals 8, no. 4 (2018): 255. http://dx.doi.org/10.3390/met8040255.
Full textMo, You, Xu Chuan Liu, Zi Hong Guo, Bin Teng, Zu Yin Zou, and Zhan Yuan Zhu. "Slip-Line Field Theory's Application in Soil Subgrade." Applied Mechanics and Materials 170-173 (May 2012): 283–88. http://dx.doi.org/10.4028/www.scientific.net/amm.170-173.283.
Full textZhang, Lian Wei. "Influence of Anisotropic Internal Friction Angle on the Stability of Uniform Soil Slopes." Applied Mechanics and Materials 170-173 (May 2012): 270–73. http://dx.doi.org/10.4028/www.scientific.net/amm.170-173.270.
Full textMd., Monir. Hossain, Sultana Nasima, and Chandro Malo Ripon. "Correlations between CPT, SPT and Soil Parameters for Khulna, Bangladesh." Journal of Geotechnical Studies (e-ISSN: 2581-9763) 5, no. 1 (2020): 27–32. https://doi.org/10.5281/zenodo.3741371.
Full textPetersen, DR, RE Link, NS Pandian, A. Sridharan, and S. Srinivas. "Angle of Internal Friction for Pond Ashes." Journal of Testing and Evaluation 28, no. 6 (2000): 443. http://dx.doi.org/10.1520/jte12135j.
Full textWÓJCIK, Artur, and Jarosław FRĄCZEK. "THE INFLUENCE OF THE REPOSE ANGLE AND POROSITY OF GRANULAR PLANT MATERIALS ON THE ANGLE OF INTERNAL FRICTION AND COHESION." Tribologia, no. 5 (October 31, 2017): 117–23. http://dx.doi.org/10.5604/01.3001.0010.5931.
Full textDaldrop, Jan O., Julian Kappler, Florian N. Brünig, and Roland R. Netz. "Butane dihedral angle dynamics in water is dominated by internal friction." Proceedings of the National Academy of Sciences 115, no. 20 (2018): 5169–74. http://dx.doi.org/10.1073/pnas.1722327115.
Full textJiang, Ping, and Meng Su Zhang. "Real-Time Monitor Method of Soil Slope Stability in Seasonal Frozen Area." Applied Mechanics and Materials 303-306 (February 2013): 777–81. http://dx.doi.org/10.4028/www.scientific.net/amm.303-306.777.
Full textNasima, Sultana, S. M. Fahad Hossain A, Bhowmic Shotodru, Shahidul Hoque Md, and Akter Shantana Farjana. "A Study on the Friction Angel of Cox's Bazaar Sea Sand by Adding Recycled Plastic Chips." Journal of Advances in Geotechnical Engineering 2, no. 2 (2019): 1–5. https://doi.org/10.5281/zenodo.3377197.
Full textKiriia, R. V., V. F. Monastyrskyi, A. M. Smirnov, and B. I. Mostovyi. "Determination of critical inclination angle for the conveyer with pressure belt." Geo-Technical mechanics, no. 152 (2020): 275–84. http://dx.doi.org/10.15407/geotm2020.152.275.
Full textLiu, Tao, Xiulun Wang, Tingting Wu, Ge Jun, and Halidi Ally. "Effect of Mechanical Properties on the Angle of Repose of Clay Soil." Information 27, no. 4 (2024): 271–78. https://doi.org/10.47880/inf2704-06.
Full textChen, Ningfeng, Kai Fang, Nianwu Liu, and Yanru Wang. "Bayesian-Based Standard Values of Effective Friction Angle for Clayey Strata." Symmetry 17, no. 2 (2025): 176. https://doi.org/10.3390/sym17020176.
Full textDaghistani, Firas, Abolfazl Baghbani, Hossam Abuel Naga, and Roohollah Shirani Faradonbeh. "Internal Friction Angle of Cohesionless Binary Mixture Sand–Granular Rubber Using Experimental Study and Machine Learning." Geosciences 13, no. 7 (2023): 197. http://dx.doi.org/10.3390/geosciences13070197.
Full textYang, Soon-Bo. "Cohesion and Internal Friction Angle of Basalts in Jeju Island." Journal of the Korean Geotechnical Society 31, no. 11 (2015): 33–40. http://dx.doi.org/10.7843/kgs.2015.31.11.33.
Full textGiwangkara, Grawira Ganjur, Azman Mohamed, Hasanan Md Nor, Nur Hafizah A., and Rachmat Mudiyono. "Analysis of Internal Friction Angle and Cohesion Value for Road Base Materials in a Specified Gradation." Journal of Advanced Civil and Environmental Engineering 3, no. 2 (2020): 58. http://dx.doi.org/10.30659/jacee.3.2.58-65.
Full textLi, Jian Qiao, Rui Yang Shi, Meng Zou, Ling He, Yan Jing Yang, and Hao Li. "Effects of Load Type on the Mechanical Properties of the JLU Series Lunar Soil Simulant." Applied Mechanics and Materials 204-208 (October 2012): 479–86. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.479.
Full textDorofeyev, O. "Determinative ratios of a rheological model of a discrete medium with a variable angle of internal friction." Problems of Tribology 25, no. 1 (2020): 69–77. http://dx.doi.org/10.31891/2079-1372-2020-95-1-69-77.
Full textZhao, Rong Fei, Yong Ning Mi, and Wei Gao. "Testing Study on the Change Law about Internal Friction Angle of Geogrid Reinforced Clay under many Times Freezing-Thawing Cycles." Advanced Materials Research 594-597 (November 2012): 186–93. http://dx.doi.org/10.4028/www.scientific.net/amr.594-597.186.
Full textRasti, Arezou, Hamid Ranjkesh Adarmanabadi, Maria Pineda, and Jesse Reinikainen. "Evaluating the Effect of Soil Particle Characterization on Internal Friction Angle." American Journal of Engineering and Applied Sciences 14, no. 1 (2021): 129–38. http://dx.doi.org/10.3844/ajeassp.2021.129.138.
Full textCho, Young Min, Jae Hac Ko, Liqun Chi, and Timothy G. Townsend. "Food waste impact on municipal solid waste angle of internal friction." Waste Management 31, no. 1 (2011): 26–32. http://dx.doi.org/10.1016/j.wasman.2010.07.018.
Full textFUJITA, Yoshio, Rintaro ISHIMARU, Shigetaka HANAI, and Yasuyoshi SUENAGA. "STUDY ON INTERNAL FRICTION ANGLE AND TENSILE STRENGTH OF PLAIN CONCRETE." Journal of Structural and Construction Engineering (Transactions of AIJ) 62, no. 494 (1997): 7–14. http://dx.doi.org/10.3130/aijs.62.7_2.
Full textKhalifeh-Soltani, Anis, Seyed Ahmad Alavi, Mohammad R. Ghassemi, and Mehdi Ganjiani. "Geomechanical modelling of fault-propagation folds: Estimating the influence of the internal friction angle and friction coefficient." Tectonophysics 815 (September 2021): 228992. http://dx.doi.org/10.1016/j.tecto.2021.228992.
Full textEvgen, Opanasyuk, Beherskyi Dmytro, Mozharovskyi Mykola, and Vitiuk Ivan. "Research of the impact of vibration on the efficiency of dissemination of loose plant products from the motor vehicle bodies." Technology audit and production reserves 4, no. 1(60) (2021): 25–30. https://doi.org/10.15587/2706-5448.2021.237231.
Full textEyael, Tenaye Habte, Vadlamudi Srikanth, Ncube Mnqobi, and Muusha Peace. "Advanced prediction of soil shear strength parameters using index properties and artificial neural network approach." World Journal of Advanced Research and Reviews 21, no. 1 (2024): 427–45. https://doi.org/10.5281/zenodo.13147840.
Full textHatanaka, Munenori, and Akihiko Uchida. "Empirical Correlation Between Penetration Resistance and Internal Friction Angle of Sandy Soils." Soils and Foundations 36, no. 4 (1996): 1–9. http://dx.doi.org/10.3208/sandf.36.4_1.
Full textLini Dev, K., Rakesh J. Pillai, and Retnamony G. Robinson. "Drained angle of internal friction from direct shear and triaxial compression tests." International Journal of Geotechnical Engineering 10, no. 3 (2016): 283–87. http://dx.doi.org/10.1080/19386362.2015.1133754.
Full textChik, Zamri, and Luis E. Vallejo. "Characterization of the angle of repose of binary granular materials." Canadian Geotechnical Journal 42, no. 2 (2005): 683–92. http://dx.doi.org/10.1139/t04-118.
Full textCHIRKOV, S. E., A. V. GRISHIN, K. M. MURIN, and P. V. CHIRKOV. "TO THE QUESTION OF DETERMINING THE VALUES OF ADHESION AND ANGLE OF INTERNAL FRICTION OF ROCK FORMATIONS." Mine Surveying and Subsurface Use, no. 1 (2024): 68–72. http://dx.doi.org/10.56195/20793332_2024_1_68_72.
Full textShafiqul, Islam, Ahmed Siddiki Fayez, Latifur Rahman Siddique Md., Rahaman Farjana, and Amimul Ehsan Zishan Md. "Comparative Study to Develop Correlation between Different Properties of River Sand of Bangladesh." Journal of Construction and Building Materials Engineering (e-ISSN: 2581-6454) 6, no. 1 (2020): 21–30. https://doi.org/10.5281/zenodo.3740654.
Full textHATTAB, M., T. HAMMAD, and J. M. FLEUREAU. "Internal friction angle variation in a kaolin/montmorillonite clay mix and microstructural identification." Géotechnique 65, no. 1 (2015): 1–11. http://dx.doi.org/10.1680/geot.13.p.081.
Full textSHIMAZU, Akiomi. "FULL-SCALE RETAINING WALL TESTS WITH EVALUATION OF WORKING ANGLE OF INTERNAL FRICTION." Doboku Gakkai Ronbunshuu C 66, no. 4 (2010): 706–17. http://dx.doi.org/10.2208/jscejc.66.706.
Full textShinohara, Kunio, Mikihiro Oida, and Boris Golman. "Effect of particle shape on angle of internal friction by triaxial compression test." Powder Technology 107, no. 1-2 (2000): 131–36. http://dx.doi.org/10.1016/s0032-5910(99)00179-5.
Full textAbdou Abd El-Naiem, Mostafa. "PREDICTION OF ANGLE OF INTERNAL FRICTION OF SAND USING GRAIN-SIZE DISTRIBUTION CURVE." JES. Journal of Engineering Sciences 36, no. 3 (2008): 569–79. http://dx.doi.org/10.21608/jesaun.2008.116135.
Full textGuo, Zhiguo, Xueli Chen, Yang Xu, and Haifeng Liu. "Effect of granular shape on angle of internal friction of binary granular system." Fuel 150 (June 2015): 298–304. http://dx.doi.org/10.1016/j.fuel.2015.02.047.
Full textZhang, Jianbin, Yutao Ju, and Changsheng Zhou. "Experimental Research on Cohesion and Internal Friction Angle of the Double-base Propellant." Propellants, Explosives, Pyrotechnics 38, no. 3 (2013): 351–57. http://dx.doi.org/10.1002/prep.201200121.
Full textZhou, Bohan, Wenli Zhang, Dong Wang, and Dengfeng Fu. "Estimation of Effective Internal Friction Angle by Ball Penetration Test: Large-Deformation Analyses." Journal of Marine Science and Engineering 12, no. 2 (2024): 230. http://dx.doi.org/10.3390/jmse12020230.
Full textZúñiga, Daniel, and Andrés León. "GCL-LLDPE geomembrane interface friction angle evaluation and stability analysis of a valley fill leach pad project." E3S Web of Conferences 569 (2024): 16003. http://dx.doi.org/10.1051/e3sconf/202456916003.
Full textNguyen, Thuy-Anh, Hai-Bang Ly, and Binh Thai Pham. "Backpropagation Neural Network-Based Machine Learning Model for Prediction of Soil Friction Angle." Mathematical Problems in Engineering 2020 (December 24, 2020): 1–11. http://dx.doi.org/10.1155/2020/8845768.
Full textChoi, Chan Yong, Hun Ki Kim, Sang Beom Yang, and Byung Il Kim. "Stability of Railway Bridge Abutment with Earth Pressure and Internal Friction Angle of Backfill." Journal of the Korean Society for Railway 19, no. 6 (2016): 765–76. http://dx.doi.org/10.7782/jksr.2016.19.6.765.
Full textShahani, Niaz Muhammad, Barkat Ullah, Kausar Sultan Shah, et al. "Predicting Angle of Internal Friction and Cohesion of Rocks Based on Machine Learning Algorithms." Mathematics 10, no. 20 (2022): 3875. http://dx.doi.org/10.3390/math10203875.
Full textGori, U., and M. Mari. "The Correlation Between the Fractal Dimension and Internal Friction Angle of Different Granular Materials." Soils and Foundations 41, no. 6 (2001): 17–23. http://dx.doi.org/10.3208/sandf.41.6_17.
Full textChupradit, Supat, Dmitry Olegovich Bokov, Wanich Suksatan, et al. "Pin Angle Thermal Effects on Friction Stir Welding of AA5058 Aluminum Alloy: CFD Simulation and Experimental Validation." Materials 14, no. 24 (2021): 7565. http://dx.doi.org/10.3390/ma14247565.
Full textMiędlarz, Kamila, Jakub Konkol, and Lech Bałachowski. "Effective Friction Angle Of Deltaic Soils In The Vistula Marshlands." Studia Geotechnica et Mechanica 41, no. 3 (2019): 143–50. http://dx.doi.org/10.2478/sgem-2019-0016.
Full textStark, N., A. E. Hay, R. Cheel, and C. B. Lake. "The impact of particle shape on the angle of internal friction and the implications for sediment dynamics at a steep, mixed sand–gravel beach." Earth Surface Dynamics 2, no. 2 (2014): 469–80. http://dx.doi.org/10.5194/esurf-2-469-2014.
Full textPiriyakul, Keeratikan, Janjit Iamchaturapatr, and Gemmina Di Emidio. "Improvement for internal friction angle of Bangkok sand by bio-cementation process and hemp fiber." Materials Today: Proceedings 5, no. 7 (2018): 14818–23. http://dx.doi.org/10.1016/j.matpr.2018.04.012.
Full textZegzulka, Jiri. "The angle of internal friction as a measure of work loss in granular material flow." Powder Technology 233 (January 2013): 347–53. http://dx.doi.org/10.1016/j.powtec.2012.06.047.
Full textTrpělková, Žofie, Hana Hurychová, Pavel Ondrejček, Tomáš Svěrák, Martin Kuentz, and Zdenka Šklubalová. "Predicting the Angle of Internal Friction from Simple Dynamic Consolidation Using Lactose Grades as Model." Journal of Pharmaceutical Innovation 15, no. 3 (2019): 380–91. http://dx.doi.org/10.1007/s12247-019-09387-3.
Full textAxen, Gary J. "How a strong low-angle normal fault formed: The Whipple detachment, southeastern California." GSA Bulletin 132, no. 9-10 (2019): 1817–28. http://dx.doi.org/10.1130/b35386.1.
Full textMarczak, Halina. "Evaluation of the Impact of Hydrostatic Pressure and Lode Angle on the Strength of the Rock Mass Based on the Hoek–Brown Criterion." Studia Geotechnica et Mechanica 37, no. 2 (2015): 85–91. http://dx.doi.org/10.1515/sgem-2015-0025.
Full text