Academic literature on the topic 'Anharmonic Oscillators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Anharmonic Oscillators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Anharmonic Oscillators"

1

Li, Zheng Biao, and Wei Hong Zhu. "Frequency–Amplitude Relationship of Coupled Anharmonic Oscillators." Applied Mechanics and Materials 105-107 (September 2011): 271–74. http://dx.doi.org/10.4028/www.scientific.net/amm.105-107.271.

Full text
Abstract:
The frequency–amplitude relationship of coupled anharmonic oscillators is an important problem. Many powerful methods for solving this problem have been proposed. He’s parameter-expanding method is an important one. It holds the advantages of modified Lindstedt–Poincare parameter method and bookkeeping parameter method. The first iteration is enough. It is very effective and convenient and quite accurate to both linear and nonlinear problems. In this paper, He’s parameter-expanding method is applied to coupled anharmonic oscillators. The frequency-amplitude relationship and the first-order app
APA, Harvard, Vancouver, ISO, and other styles
2

Codaccioni, J. P., and R. Caboz. "Anharmonic oscillators revisited." International Journal of Non-Linear Mechanics 20, no. 4 (1985): 291–95. http://dx.doi.org/10.1016/0020-7462(85)90037-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

T. Shivalingaswamy, T. Shivalingaswamy, and B. A. Kagali B. A. Kagali. "Ground States of Sextic and Octic Anharmonic Oscillators." Paripex - Indian Journal Of Research 3, no. 7 (2012): 1–4. http://dx.doi.org/10.15373/22501991/july2014/67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Laszuk, Dawid, Jose O. Cadenas, and Slawomir J. Nasuto. "KurSL: Model of Anharmonic Coupled Oscillations Based on Kuramoto Coupling and Sturm–Liouville Problem." Advances in Data Science and Adaptive Analysis 10, no. 02 (2018): 1840002. http://dx.doi.org/10.1142/s2424922x18400028.

Full text
Abstract:
Physiological signaling is often oscillatory and shows nonlinearity due to complex interactions of underlying processes or signal propagation delays. This is particularly evident in case of brain activity which is subject to various feedback loop interactions between different brain structures, that coordinate their activity to support normal function. In order to understand such signaling in health and disease, methods are needed that can deal with such complex oscillatory phenomena. In this paper, a data-driven method for analyzing anharmonic oscillations is introduced. The KurSL model incor
APA, Harvard, Vancouver, ISO, and other styles
5

Fernández, F. M., and R. H. Tipping. "Analytical expressions for the energies of anharmonic oscillators." Canadian Journal of Physics 78, no. 9 (2000): 845–50. http://dx.doi.org/10.1139/p00-066.

Full text
Abstract:
We propose a systematic construction of algebraic approximants for the bound-state energies of anharmonic oscillators. The approximants are based on the Rayleigh-Schrödinger perturbation series and take into account the analytical behavior of the energies at large values of the perturbation parameter. A simple expression obtained from a low-order perturbation series compares favorably with alternative approximants. Present approximants converge in the large-coupling limit and are suitable for the calculation of the energy of highly excited states. Moreover, we obtain some branch points of the
APA, Harvard, Vancouver, ISO, and other styles
6

Das, Chandra, та Dhiranjan Roy. "Energy Eigenvalues of Quantum Anharmonic Oscillators: Exact Expression for the Pure λx2m Oscillators and a Simple Expression for x2 + λx2m Oscillators". International Journal of Innovative Research in Physics 2, № 4 (2021): 77–81. http://dx.doi.org/10.15864/ijiip.2409.

Full text
Abstract:
We propose an exact expression for the energy eigenvalues of the pure λx2m quantum anharmonic oscillators. The only information needed for the purpose is K0(m,n), which is the first term of strong-coupling expansion for oscillator with potential λx2m for the nth excited state. We then propose simple expression for the eigenvalues of the x2 + λx2m oscillators which reproduce both the ground state and excited states energies of these oscillators with a fairly good accuracy. The present formula is found to better reproduce the energy eigenvalues than those calculated by earlier authors.
APA, Harvard, Vancouver, ISO, and other styles
7

Datta, Nilanjana, and Gautam Ghosh. "Berry’s phase for anharmonic oscillators." Physical Review A 46, no. 9 (1992): 5358–62. http://dx.doi.org/10.1103/physreva.46.5358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Joshi, Chaitanya, Mats Jonson, Erika Andersson, and Patrik Öhberg. "Quantum entanglement of anharmonic oscillators." Journal of Physics B: Atomic, Molecular and Optical Physics 44, no. 24 (2011): 245503. http://dx.doi.org/10.1088/0953-4075/44/24/245503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Znojil, Miloslav, and František Růžička. "Multi-well log-anharmonic oscillators." Modern Physics Letters A 34, no. 11 (2019): 1950085. http://dx.doi.org/10.1142/s0217732319500858.

Full text
Abstract:
Large-N expansions are usually applied in single-well setups. We claim that this technique may offer an equally efficient constructive tool for potentials with more than one deep minimum. In an illustrative multi-well model, this approach enables us to explain the phenomenon of an abrupt relocalization of ground state caused by a minor change of the couplings.
APA, Harvard, Vancouver, ISO, and other styles
10

Dubov, S. Yu, V. M. Eleonskii, and N. E. Kulagin. "Equidistant spectra of anharmonic oscillators." Chaos: An Interdisciplinary Journal of Nonlinear Science 4, no. 1 (1994): 47–53. http://dx.doi.org/10.1063/1.166056.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Anharmonic Oscillators"

1

Lee, Jungkun. "Optimal linearization of anharmonic oscillators /." Online version of thesis, 1991. http://hdl.handle.net/1850/11021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karhu, Robin. "Targeted Energy Transfer in Bose-Einstein Condensates." Thesis, Linköpings universitet, Teoretisk Fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-98279.

Full text
Abstract:
Targeted Energy Transfer is a resonance phenomenon in coupled anharmonic oscillators. In this thesis we investigate if the concept of Targeted Energy Transfer is applicable to Bose-Einsteain condensates in optical lattices. The model used to describe Bose-Einstein condensates in optical lattices is based on the Gross-Pitaevskii equation. Targeted Energy Transfer in these systems would correspond to energy being transferred from one lattice site to another. We also try to expand the concept of Targeted Energy Transfer to a system consisting of three sites, where one of the sites are considered
APA, Harvard, Vancouver, ISO, and other styles
3

Koca, Burcu. "Studies On The Perturbation Problems In Quantum Mechanics." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12604930/index.pdf.

Full text
Abstract:
In this thesis, the main perturbation problems encountered in quantum mechanics have been studied.Since the special functions and orthogonal polynomials appear very extensively in such problems, we emphasize on those topics as well. In this context, the classical quantum mechanical anharmonic oscillators described mathematically by the one-dimensional Schr&uml<br>odinger equation have been treated perturbatively in both finite and infinite intervals, corresponding to confined and non-confined systems, respectively.
APA, Harvard, Vancouver, ISO, and other styles
4

Henry, Raphaël. "Spectre et pseudospectre d'opérateurs non-autoadjoints." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00924425.

Full text
Abstract:
L'instabilité du spectre des opérateurs non-autoadjoints constitue la thématique centrale de cette thèse. Notre premier objectif est de mettre en évidence ce phénomène dans le cas de certains modèles naturels tels que l'opérateur d'Airy, l'oscillateur harmonique ou l'oscillateur cubique complexes. Dans ce but, nous nous intéressons au comportement des projecteurs spectraux associés aux valeurs propres de ces opérateurs, poursuivant une démarche initiée par E. B. Davies. Le second objectif de notre travail consiste à montrer de quelle manière ces modèles peuvent contribuer à la compréhension de
APA, Harvard, Vancouver, ISO, and other styles
5

Durugo, Samuel O. "Higher-order airy functions of the first kind and spectral properties of the massless relativistic quartic anharmonic oscillator." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/16497.

Full text
Abstract:
This thesis consists of two parts. In the first part, we study a class of special functions Aik (y), k = 2, 4, 6, ··· generalising the classical Airy function Ai(y) to higher orders and in the second part, we apply expressions and properties of Ai4(y) to spectral problem of a specific operator. The first part is however motivated by latter part. We establish regularity properties of Aik (y) and particularly show that Aik (y) is smooth, bounded, and extends to the complex plane as an entire function, and obtain pointwise bounds on Aik (y) for all k. Some analytic properties of Aik (y) are also
APA, Harvard, Vancouver, ISO, and other styles
6

Snape, Christopher. "Applications of the coupled cluster method to pairing problems." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/applications-of-the-coupled-cluster-method-to-pairing-problems(c6d69fd0-25cf-4693-ba91-96872c11fc6d).html.

Full text
Abstract:
The phenomenon of pairing in atomic and nuclear many-body systems gives rise to a great number of different physical properties of matter, from areas as seemingly diverse as the shape of stable nuclei to superconductivity in metals and superfluidity in neutron stars. With the experimental realisation of the long sought BCS-BEC crossover observed in trapped atomic gases - where it is possible to fine tune the s-wave scattering length a of a many-fermion system between a dilute, correlated BCS-like superfluid of Cooper pairs and a densely packed BEC of composite bosons - pairing problems in atom
APA, Harvard, Vancouver, ISO, and other styles
7

Ammon, Andreas. "Chiral description and physical limit of pseudoscalar decay constants with four dynamical quarks and applicability of quasi-Monte Carlo for lattice systems." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2015. http://dx.doi.org/10.18452/17244.

Full text
Abstract:
In dieser Arbeit werden Massen und Zerfallskonstanten von pseudoskalaren Mesonen, insbes. dem Pion und dem D-s-Meson, im Rahmen der Quantenchromodynamik (QCD) berechnet. Diese Größen wurden im Rahmen der Gitter-QCD, einer gitter-regularisierten Form der QCD, mit vier dynamischen Twisted-Mass Fermionen (Up-, Down-, Strange- und Charm-Quark) berechnet. Dieses Setup bieten den Vorteil der automatischen O(a)-Verbesserung. Der Gitterabstand a wurde mit Hilfe der Pion-Masse und -Zerfallskonstante durch Extrapolation zum physikalischen Punkt, geg. durch das physikal. Verhältnis von f_pi/M_pi, besti
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Kuen-He, and 陳昆河. "Specific heat of anharmonic oscillators in one dimension." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/96425039922746733773.

Full text
Abstract:
碩士<br>國立交通大學<br>物理研究所<br>88<br>The specific heats of one-dimension systems are obtained with two different methods, which are achieved in terms of the partition function and the probability density function, respectively. In this thesis, we consider three kinds of anharmonic potentials and calculate numerically the specific heat of a particle moving in a potential in one dimension and also at thermally equilibrium with a heat bath. From the views of classical statistical mechanics, the method from the partition function is standard, direct and simple. In addition, we construct the p
APA, Harvard, Vancouver, ISO, and other styles
9

Hong, Chi-Hauh, and 洪琪華. "A study of anharmonic oscillators and coupled oscillators with various quantum mechanical methods." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/58121293920205137136.

Full text
Abstract:
碩士<br>國立臺灣大學<br>物理研究所<br>84<br>Anharmonic oscillators and coupled oscillators, for obvious reasons, are important physical systems to study in the realm of quantum mechanics. In this thesis we attempt to solve the bound-state eigenvalue problems involving these systems using various quantum mechanical methods. The methods we employ are mainly the equations-of-motion method, the maximal-decoupling- principle variational method and the optimal-expansion-series method. These methods have been
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Yi-Tsung, and 陳逸聰. "Development and application of approaches for computing Franck-Condon integrals of harmonic and anharmonic oscillators." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/53286875374915042112.

Full text
Abstract:
碩士<br>國立臺中教育大學<br>科學應用與推廣學系科學教育碩士班<br>101<br>In this research, we have developed an analytical approach for computing Franck-Condon integrals of harmonic oscillators with arbitrary dimensions in which the Duschinsky effect is taken into account. By expanding the Hermite polynomials and solving the Gaussian integrals, a general formula of Franck-Condon integrals of harmonic oscillators was obtained and was applied to study the photoelectron spectroscopy of coronene (C24H12) and ovalene (C32H14). We used the B3LYP approach of density functional theory and the 6-31G(d), 6-31G(d,p) and 6-311G(d) b
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Anharmonic Oscillators"

1

Kazakov, Konstantin V. Quantum Theory of Anharmonic Effects in Molecules. Elsevier, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kazakov, Konstantin V. Quantum Theory of Anharmonic Effects in Molecules. Elsevier Science & Technology Books, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Anharmonic Oscillators"

1

Klink, W. H. "Nilpotent Groups and Anharmonic Oscillators." In Noncompact Lie Groups and Some of Their Applications. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1078-5_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gordiets, B. F., and S. Zhdanok. "Analytical Theory of Vibrational Kinetics of Anharmonic Oscillators." In Nonequilibrium Vibrational Kinetics. Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-48615-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arteca, G. A., F. M. Fernández, and E. A. Castro. "Combination of VFM with RSPT: Application to Anharmonic Oscillators." In Lecture Notes in Chemistry. Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-93469-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kozitsky, Yuri. "Gibbs States of a Lattice System of Quantum Anharmonic Oscillators." In Noncommutative Structures in Mathematics and Physics. Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0836-5_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Corgini, M. "Upper Bounds on Bogolubov’s Inner Product: Quantum Systems of Anharmonic Oscillators." In Stochastic Analysis and Mathematical Physics. Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1372-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Manevitch, Leonid I., Agnessa Kovaleva, Valeri Smirnov, and Yuli Starosvetsky. "Limiting Phase Trajectories and the Emergence of Autoresonance in Anharmonic Oscillators." In Foundations of Engineering Mechanics. Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4666-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kümmel, H. G. "The Anharmonic Oscillator Revisited." In Condensed Matter Theories. Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0971-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schmid, Erich W., Gerhard Spitz, and Wolfgang Lösch. "Anharmonic Free and Forced Oscillations." In Theoretical Physics on the Personal Computer. Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75471-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schmid, Erich W., Gerhard Spitz, and Wolfgang Lösch. "Anharmonic Free and Forced Oscillations." In Theoretical Physics on the Personal Computer. Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-97088-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hecht, K. T. "Example 1: The Slightly Anharmonic Oscillator." In Quantum Mechanics. Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1272-0_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Anharmonic Oscillators"

1

RUFFIN, STEPHEN, and CHUL PARK. "Vibrational relaxation of anharmonic oscillators in expanding flows." In 30th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weiss, Krzysztof, Lucjan Nafalski, and Barbara Gniewinska. "High-stability quartz oscillators utilizing anharmonic mode LFE resonators." In SPIE Proceedings, edited by Igor A. Sukhoivanov, Vasily A. Svich, Alexander V. Volyar, Yuriy S. Shmaliy, and Sergy A. Kostyukevych. SPIE, 2004. http://dx.doi.org/10.1117/12.583380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rydalevskaya, Maria A., and Yulia N. Voroshilova. "Transport processes and sound velocity in vibrationally non-equilibrium gas of anharmonic oscillators." In THE EIGHTH POLYAKHOV’S READING: Proceedings of the International Scientific Conference on Mechanics. Author(s), 2018. http://dx.doi.org/10.1063/1.5034675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, JiaLun, R. D. Khan, Sheng Ding, and Wenda Shen. "Exact solution to a quantum-forced anharmonic oscillator." In 1992 Shanghai International Symposium on Quantum Optics, edited by Yuzhu Wang, Yiqiu Wang, and Zugeng Wang. SPIE, 1992. http://dx.doi.org/10.1117/12.130400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

A., José Récamier. "Algebraic methods for an atom-anharmonic oscillator collision." In Half collision resonance phenomena in molecules. AIP, 1991. http://dx.doi.org/10.1063/1.40545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Poteryakhin, M. A. "Spectral series of the three-dimensional quantum anharmonic oscillator." In International Seminar Day on Diffraction Millennium Workshop. Proceedings. IEEE, 2000. http://dx.doi.org/10.1109/dd.2000.902365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sulaiman, A., and Freddy P. Zen. "Quantum dissipative effect of one dimension coupled anharmonic oscillator." In THE 5TH ASIAN PHYSICS SYMPOSIUM (APS 2012). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4917130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fux Svaiter, Nami. "The Partition Function for Anharmonic Oscillator in the Strong-Coupling Regime." In Fourth International Winter Conference on Mathematical Methods in Physics. Sissa Medialab, 2004. http://dx.doi.org/10.22323/1.013.0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gorobey, Natalia N., and Alexander S. Lukyanenko. "Generation function method in the dynamics of an adiabatically loaded anharmonic oscillator." In SPIE Proceedings, edited by Alexander I. Melker and Teodor Breczko. SPIE, 2006. http://dx.doi.org/10.1117/12.726713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maiz, F., Moteb M. Alqahtani, and I. Ghnaim. "Sextic and decatic anharmonic oscillator potentials including odd power terms: Polynomial solutions." In THE SIXTH SAUDI INTERNATIONAL MEETING ON FRONTIERS OF PHYSICS 2018 (SIMFP2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5042401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!