Academic literature on the topic 'Animal migration'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Animal migration.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Animal migration"
Hibbit, Cate. "Animal Migration." American Biology Teacher 78, no. 3 (March 1, 2016): 268. http://dx.doi.org/10.1525/abt.2016.78.3.268.
Full textCouzin, Iain D. "Collective animal migration." Current Biology 28, no. 17 (September 2018): R976—R980. http://dx.doi.org/10.1016/j.cub.2018.04.044.
Full textKölzsch, Andrea, Erik Kleyheeg, Helmut Kruckenberg, Michael Kaatz, and Bernd Blasius. "A periodic Markov model to formalize animal migration on a network." Royal Society Open Science 5, no. 6 (June 2018): 180438. http://dx.doi.org/10.1098/rsos.180438.
Full textBauer, S., and B. J. Hoye. "Migratory Animals Couple Biodiversity and Ecosystem Functioning Worldwide." Science 344, no. 6179 (April 3, 2014): 1242552. http://dx.doi.org/10.1126/science.1242552.
Full textLi, Xiangtao, Jie Zhang, and Minghao Yin. "Animal migration optimization: an optimization algorithm inspired by animal migration behavior." Neural Computing and Applications 24, no. 7-8 (June 15, 2013): 1867–77. http://dx.doi.org/10.1007/s00521-013-1433-8.
Full textHobson, Keith A. "Tracking animal migration with stable isotopes." Open Access Government 38, no. 1 (April 12, 2023): 458–59. http://dx.doi.org/10.56367/oag-038-10757.
Full textAlerstam, Thomas, and Johan Bäckman. "Ecology of animal migration." Current Biology 28, no. 17 (September 2018): R968—R972. http://dx.doi.org/10.1016/j.cub.2018.04.043.
Full textDINGLE, HUGH. "Evolutionary Genetics of Animal Migration." American Zoologist 31, no. 1 (February 1991): 253–64. http://dx.doi.org/10.1093/icb/31.1.253.
Full textCao, Yi, Xiangtao Li, and Jianan Wang. "Opposition-Based Animal Migration Optimization." Mathematical Problems in Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/308250.
Full textLennox, Robert J., Jacqueline M. Chapman, Christopher M. Souliere, Christian Tudorache, Martin Wikelski, Julian D. Metcalfe, and Steven J. Cooke. "Conservation physiology of animal migration." Conservation Physiology 4, no. 1 (2016): cov072. http://dx.doi.org/10.1093/conphys/cov072.
Full textDissertations / Theses on the topic "Animal migration"
Zango, Palau Laura. "Individual specialization in foraging and migration strategies in long-lived seabirds." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/672942.
Full textSparrow, Alexander. "LIM kinase and metanephric mesenchymal cell migration in the developing mouse kidney." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/31106/.
Full textGrigg, Jamin Lyle. "Gradients of predation risk affect distribution and migration of a large herbivore." Thesis, Montana State University, 2007. http://etd.lib.montana.edu/etd/2007/grigg/GriggJ1207.pdf.
Full textRoos, Marna. "Elucidating the role of WDR47 in regulating neuronal migration, autophagy and tubulin dynamics." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96065.
Full textENGLISH ABSTRACT: Introduction Normal cerebral cortex development depends on extensive neuronal migration during embryogenesis, permitting the formation of accurate synaptic circuits and a highly ordered laminar neocortex. The motility of a migrating neuron is achieved by a dynamic microtubule cytoskeleton that alternates between states of stabilization/lengthening and destabilization/shortening. This dynamic instability of the microtubule cytoskeleton is controlled by numerous microtubule-stabilizing and -destabilising proteins that bind directly to microtubules. Autophagy (“self-eating”), a major bulk intracellular degradation system, involves the fusion of autophagosomes with lysosomes, followed by proteolysis and recycling of cellular constituents. Like neuronal migration, autophagy is a microtubule-dependent process. The dynamic microtubule network serves as a track for autophagosomes to be transported to the lysosomes. WDR47 is a protein that is expressed in the brain during development, but of which the function is largely unknown. Novel interactions have recently been identified between Reelin and WDR47 and between the microtubule-destabilising protein superior cervical ganglion 10 (SCG10) and WDR47. These findings suggest that WDR47 may be regulating microtubule-dependent processes such as neuronal migration and autophagy. We hypothesize that WDR47 may play a role in regulating neuronal migration and/or autophagy, and that this regulation may be mediated by a tubulin stability-regulating role of WDR47. Aims and Methods Our aims are to assess the cellular localization of WDR47 in GT1-7 cells and to determine whether WDR47 is able to influence neuronal migration, filopodia extension, surface adhesion, ultra-structure, autophagy, tubulin stability, and tau or SCG10 protein levels. GT1-7 neuronal cells were cultured under normal conditions and transfected with WDR47 siRNA for 24 hours, followed by western blot verification of the knock-down. A 36 hour neuronal in vitro cell migration assay was performed and images of the wound were captured every 6 hours; the migration distances and the wound areas for the different time points were measured and analysed. A 24 hour migration assay was performed, capturing images every hour, and the direction of migration was determined. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed to analyse neuronal surface morphology and ultra-structure. Western blot analysis of SCG10, acetylated α-tubulin, Tau, LC3, and Sequestosome 1/p62 (SQTM1) protein levels was performed. Super-resolution structured Illumination microscopy (SR-SIM) three-dimensional (3-D) imaging of WDR47-YFP transfected cells, confocal microscopy of LC3 and acetylated tubulin, co-localization analysis of WDR47 and acetylated tubulin, and fluorescence recovery after photo-bleaching (FRAP) analysis were performed. Results WDR47 siRNA treatment significantly reduced the average migration distance and the migration velocity, resulted in fewer filopodia-like extensions as well as perturbed surface adhesion of migrating neurons, and lead to an increased presence of endoplasmic reticulum (ER) structures as well as an expanded nuclear envelope. LC3-II protein levels were significantly lower with WDR47 siRNA treatment, but were significantly increased with WDR47 siRNA treatment in conjunction with Bafilomycin A1 treatment, indicating increased autophagic flux. SCG10 protein levels were significantly decreased with WDR47 siRNA treatment. SR-SIM and confocal microscopy of WDR47 siRNA treated cells revealed a robust presence of highly convoluted acetylated tubulin in the perinuclear region as well as decreased LC3 fluorescence signal. Confocal microscopy revealed co-localization of WDR47 with acetylated tubulin. - Discussion and Conclusion: The results suggest that WDR47 is involved in regulating neuronal migration, neuronal surface adhesion and filopodia formation, microtubule dynamics, and likely also autophagic flux. Taken together, we propose that WDR47 is regulating microtubule dynamics by facilitating assembly of microtubule-regulating proteins such as SCG10, thereby affecting microtubule-dependent processes such as neuronal migration and autophagy.
AFRIKAANSE OPSOMMING: Inleiding Normale serebrale korteks ontwikkeling is hoogs afhanklik van neuronale migrasie tydens embriogenese, en is belanrik vir die vorming van akkurate sinaptiese netwerke en 'n hoogs geordende laminêre neokorteks. Die vermoё van 'n neuron om te migreer berus op 'n hoogs dinamiese mikrotubulien sitoskelet wat verleng/stabiliseer of verkort/destabiliseer soos tubulien-eenhede begevoeg of verwyder word. Hierdie dinamiese onstabiliteit van die mikrotubulien sitoskelet word beheer deur verskeie mikrotubulien-stabiliserende en - destabiliserende proteïene wat direk bind aan mikrotubuliene. Autofagie ("self-eet"), 'n grootmaat intrasellulêre degradasie stelsel, behels die fussie van autofagosome met lisosome, gevolg deur proteolitiese afbraak van sellulêre organelle en proteine. Soos neuronale migrasie is autofagie 'n mikrotubulien-afhanklike proses. Die dinamiese mikrotubulien netwerk dien as 'n spoor vir die vervoer van autofagosome na lisosome. WDR47 is 'n proteïen wat voorkom in die brein tydens ontwikkeling, maar waarvan die funksie grootliks onbekend is. Interaksies was onlangs geïdentifiseer tussen beide Reelin en WDR47 en die mikrotubulien-destabiliserende proteïen SCG10 en WDR47. Hierdie bevindinge dui daarop aan dat WDR47 n rol speel in die regulering van tubulienstabiliteit en sodoende mikrotubulien-afhanklike prosesse. Ons veronderstel dat WDR47 'n rol kan speel in die regulering van neuronale migrasie en/of autofagie en dat hierdie regulasie moontlik afhanklik is van 'n tubulien-stabiliteit-regulerende rol van WDR47. - Doelwitte en Metodes: Ons doelwitte is om die sellulêre lokalisering van WDR47 in GT1-7 neurone te evallueer en om te bepaal of WDR47 n effek het op neuronale migrasie, oppervlak adhesie en filopodia formasie, ultra-struktuur, autofagie, tubulien-netwerke en -stabiliteit, en Tau of SCG10 proteïenvlakke. GT1-7 neuronale selle is gekweek onder normale omstandighede en vir 24 uur getransfekteer met WDR47 siRNA, gevolg deur verifikasie met Western-blot analise. 'n 36 uur neuronale in vitro sel migrasie toets is uitgevoer en fotos van die wond is elke 6 uur geneem. Die migrasie afstande en die wondareas vir die verskillende tydpunte is gemeet en ontleed. 'N 24-uur-migrasie toets is uitgevoer, 'n foto van die wond is elke uur geneem, en die rigting van migrasie is bepaal. Skandering elektronmikroskopie (SEM) en transmissieelektronmikroskopie (TEM) is uitgevoer om neuronale oppervlakmorfologie en ultrastruktuur te observeer. Western blot analise van SCG10, geasetieleerde α-tubulien, Tau, LC3 en Sequestosome 1/p62 (SQTM1) proteïenvlakke is uitgevoer. Super-resolusie gestruktureerde verligting mikroskopie (SR-SIM) driedimensionele (3-D) beelding van WDR47-YFP getransfekteerde selle, konfokale mikroskopie vir visualisering van LC3 en tubulien, co-lokalisering analise van beide WDR47 en LC3 en WDR47 en tubulien, asook fluorescentie hersteling na foto-bleek (FRAP) analise is uitgevoer. Resultate Die gemiddelde migrasie-afstand en die migrasiesnelheid (μm/min) het beduidend afgeneem met WDR47 siRNA behandeling. SEM analise van WD47 siRNA-behandelde neurone het minder filopodia en veranderde oppervlak adhesie vertoon, en TEM analise het 'n verhoogde teenwoordigheid van endoplasmiese retikulum (ER) strukture, en 'n uitgebreide kernmembraan vertoon. LC3-II proteïenvlakke was beduidend laer met slegs WDR47 siRNA behandeling, maar beduidend hoёr met WDR47 siRNA behandeling in samewerking met Bafilomycin A1 behandeling. Hierdie resultate dui aan op toeneemende autofagie met WDR47 siRNA behandeling. Verder, beduidend laer vlakke van SCG10 proteïenvlakke is waargeneem met WDR47 siRNA behandeling. SR-SIM en konfokale mikroskopie van WDR47 siRNA behandelde selle het 'n robuuste teenwoordigheid van hoogs buigende geasetieleerdetubulien in die area rondom die nukleus, 'n afgeneemde LC3 Bespreking en Gevolgtrekking Die resultate dui daarop aan dat WDR47 betrokke is by die regulering van neuronale migrasie, filopodia vormasie, oppervlak adhesie, mikrotubuliendinamika, en waarskynlik ook autofagie. Ons stel voor dat WDR47 mikrotubuliendinamika afekteer deur die regulering van proteïene soos SCG10, en sodoende mikrotubulienafhanklike prosesse soos neuronale migrasie en autofagie fasiliteer.
Lindmark, Elianne M. "Flow design for migrating fish /." Luleå : Division of Fluid Mechanics, Department of Applied Physics and Mechanical Engineering, Luleå University of Technology, 2008. http://epubl.luth.se/1402-1544/2008/55.
Full textTrinks, Alexandra Maria. "Reconstructing patterns of migration and translocation of different animal taxa across the Indian Ocean and Island South-East Asia." Thesis, Durham University, 2014. http://etheses.dur.ac.uk/11556/.
Full textTabacca, Natalie Ellen. "Epithelial Migration on the Canine Tympanic Membrane." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306719375.
Full textLysiak, Nadine Stewart J. "Investigating the migration and foraging ecology of North Atlantic right whales with stable isotope geochemistry of baleen and zooplankton." Restricted access (UM), 2008. http://libraries.maine.edu/gateway/oroauth.asp?file=orono/etheses/37803141.pdf.
Full textRasmussen, John C. "Development of a radiative transport based, fluorescence-enhanced, frequency-domain small animal imaging system." Thesis, [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1067.
Full textTekeli, Işil. "Bioengineering approach to study the role of cell migration during zebrafish heart regneration." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/396098.
Full textLos humanos tienen una capacidad muy limitada para regenerar el corazón y, como consecuencia de ello, una de cada tres personas fallece debido a enfermedades cardíacas. En cambio, el pez cebra tiene una enorme capacidad intrínseca para restaurar grandes porciones de su corazón tras un daño, por lo que se ha convertido en uno de los modelos experimentales más usados para investigar la regeneración del corazón. Entender los mecanismos que controlan la regeneración cardíaca del pez cebra permitirá desarrollar estrategias para regenerar el corazón humano y buscar soluciones a estas enfermedades. Basándonos en este gran objetivo, el trabajo que forma el estudio de esta tesis doctoral detalla algunas aproximaciones de bioingeniería dirigidas a estudiar el papel de la migración celular de los cardiomiocitos y de las células del epicardio durante la regeneración del corazón del pez cebra. La primera aproximación es un sistema de seguimiento del linaje de los cardiomiocitos del pez cebra para investigar su destino durante la regeneración cardiaca. Para esto, se desarrolló un sistema de marcado genético de linaje con triple especificidad, de tipo celular, temporal y espacial, que permitió marcar los cardiomiocitos en diferentes partes del corazón. Utilizando esta técnica se demostró que durante la regeneración sólo los cardiomiocitos inmediatamente adyacentes a la lesión contribuyen al miocardio regenerado. A continuación, se utilizó la iluminación multifotón de tres fotones para fotoactivar cardiomiocitos in vivo con el objetivo de aumentar la resolución espacial del marcado genético. En este trabajo se demostró teóricamente y experimentalmente que la iluminación de tres-fotones supera problemas de dispersión y es capaz de realizar la fotoactivación, convirtiéndose en el primer ejemplo donde se consigue utilizar este tipo de iluminación para fotoactivar células in vivo. El uso de la iluminación de tres fotones en combinación con el sistema de marcado genético fotoinducible permitió marcar los cardiomiocitos de embriones de pez cebra de forma prospectiva. Por último, se desarrolló un sistema ex vivo para caracterizar el comportamiento migratorio de las células del epicardio del corazón del pez cebra con el fin de investigar las características físicas de la migración celular durante la regeneración. Este método permitió medir las características físicas esenciales para la migración celular, tales como la velocidad migratoria y las fuerzas de tracción en las células del epicardio.
Books on the topic "Animal migration"
Vaughan, Marcia K. Incredible journeys: Animal migration. Upper Saddle River, NJ: Peasrson/Celebration Press, 2006.
Find full textBook chapters on the topic "Animal migration"
Dey, Susmita, Dola Das, and Arijit Chakraborty. "Migration." In Encyclopedia of Animal Cognition and Behavior, 1–10. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-47829-6_914-1.
Full textDey, Susmita, Dola Das, and Arijit Chakraborty. "Migration." In Encyclopedia of Animal Cognition and Behavior, 4301–10. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-55065-7_914.
Full textViljoen, G. J., A. G. Luckins, and I. Naletoski. "Animal Migration Tracking Methods." In Stable Isotopes to Trace Migratory Birds and to Identify Harmful Diseases, 11–33. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28298-5_2.
Full textHobson, Keith A., Rachel Barnett-Johnson, and Thure Cerling. "Using Isoscapes to Track Animal Migration." In Isoscapes, 273–98. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3354-3_13.
Full textRai, Riya, and Virendra Singh Kushwah. "New Approach for Animal Migration Optimization Algorithm." In Lecture Notes in Networks and Systems, 509–16. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8198-9_54.
Full textProsser, Diann J., Jessica Nagel, and John Y. Takekawa. "ANIMAL MIGRATION AND RISK OF SPREAD OF VIRAL INFECTIONS." In Viral Infections and Global Change, 151–78. Hoboken, NJ: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118297469.ch9.
Full textMüller, Werner A. "Animal Morphogenesis Is Shaped Actively by Adhesion and Cell Migration." In Developmental Biology, 228–34. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2248-4_12.
Full textZivkovic, Miodrag, Ana Vesic, Nebojsa Bacanin, Ivana Strumberger, Milos Antonijevic, Luka Jovanovic, and Marina Marjanovic. "An Improved Animal Migration Optimization Approach for Extreme Learning Machine Tuning." In Lecture Notes in Networks and Systems, 3–13. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09176-6_1.
Full textCouzin, Iain. "Animal Migration." In Migration, 166–80. Cambridge University Press, 2020. http://dx.doi.org/10.1017/9781108778497.009.
Full text"animal migration." In Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik, 51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41714-6_11998.
Full textConference papers on the topic "Animal migration"
Duraki, Sadat, Sercan Demirci, and Selcuk Aslan. "UAV Placement with Animal Migration Optimization Algorithm." In 2020 28th Telecommunications Forum (TELFOR). IEEE, 2020. http://dx.doi.org/10.1109/telfor51502.2020.9306631.
Full textBhambu, Pawan, and Sandeep Kumar. "Levy Flight based Animal Migration Optimization algorithm." In 2016 International Conference on Recent Advances and Innovations in Engineering (ICRAIE). IEEE, 2016. http://dx.doi.org/10.1109/icraie.2016.7939570.
Full textVesic, Ana, Marina Marjanovic, Aleksandar Petrovic, Ivana Strumberger, Eva Tuba, and Timea Bezdan. "Optimizing Extreme Learning Machine by Animal Migration Optimization." In 2022 IEEE Zooming Innovation in Consumer Technologies Conference (ZINC). IEEE, 2022. http://dx.doi.org/10.1109/zinc55034.2022.9840711.
Full textDevaraj, B., K. Fukuchi, Y. Watanabe, H. Ishihata, M. Kobayashi, T. Yuasa, H. Endo, et al. "Laser Computed Tomographic Images of Bones and Teeth by Coherent Detection Imaging in the Visible and Near-IR Regions." In Advances in Optical Imaging and Photon Migration. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/aoipm.1996.cit214.
Full textBoppart, Stephen A., Gary J. Tearney, Brett E. Bouma, James G. Fujimoto, and Mark E. Brezinski. "Optical Coherence Tomography of Embryonic Morphology During Cellular Differentiation." In Advances in Optical Imaging and Photon Migration. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/aoipm.1996.cit231.
Full textAltizer, Sonia M. "Monarchs as a model system for studying animal migration and infectious diseases." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.88949.
Full textLiu, Xuan, Kai Cui, Cheng Hu, Rui Wang, Huafeng Mao, and Dongli Wu. "A dynamic short-range animal migration forecast model based on weather radar network." In IET International Radar Conference (IRC 2023). Institution of Engineering and Technology, 2023. http://dx.doi.org/10.1049/icp.2024.1760.
Full textBallora, Mark. "Music of Migration and Phenology: Listening to Counterpoints of Musk Ox and Caribou Migrations, and Cycles of Plant Growth." In The 22nd International Conference on Auditory Display. Arlington, Virginia: The International Community for Auditory Display, 2016. http://dx.doi.org/10.21785/icad2016.016.
Full textTsiunchyck, O. S., T. I. Khomich, and D. V. Preobrazhensky. "Effects of Low-intensity Laser Irradiation on Animal Antioxidant System." In European Conference on Biomedical Optics. Washington, D.C.: Optica Publishing Group, 2001. http://dx.doi.org/10.1364/ecbo.2001.4433_65.
Full textLai, Zhaolin, Xiang Feng, and Huiqun Yu. "An Improved Animal Migration Optimization Algorithm Based on Interactive Learning Behavior for High Dimensional Optimization Problem." In 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS). IEEE, 2019. http://dx.doi.org/10.1109/hpbdis.2019.8735450.
Full textReports on the topic "Animal migration"
Jungsberg, Leneisja, and Diana N. Huynh. Young Voices from the Arctic: Insights on Climate Change and Permafrost Degradation. Nordregio, September 2023. http://dx.doi.org/10.6027/wp2023:61403-2511.
Full textShani, Moshe, and C. P. Emerson. Genetic Manipulation of the Adipose Tissue via Transgenesis. United States Department of Agriculture, April 1995. http://dx.doi.org/10.32747/1995.7604929.bard.
Full textGage, Edward, Linda Zeigenfuss, Hanem Abouelezz, Allison Konkowski, David Cooper, and Therese Johnson. Vegetation response to Rocky Mountain National Park’s elk and vegetation management plan: Analysis of 2008–2018 data. National Park Service, June 2023. http://dx.doi.org/10.36967/2299264.
Full textSources and migration pathways of natural gas in near-surface ground water beneath the Animas River valley, Colorado and New Mexico. US Geological Survey, 1994. http://dx.doi.org/10.3133/wri944006.
Full text