Academic literature on the topic 'Animal sounds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Animal sounds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Animal sounds"
Clark, Christopher J. "Ways that Animal Wings Produce Sound." Integrative and Comparative Biology 61, no. 2 (March 8, 2021): 696–709. http://dx.doi.org/10.1093/icb/icab008.
Full textChen, Yi-Chuan, and Gert Westermann. "Twelve-month-old infants learn crossmodal associations between visual objects and natural sounds in ecologically valid situations." Seeing and Perceiving 25 (2012): 117. http://dx.doi.org/10.1163/187847612x647504.
Full textButler, Shane. "Animal listening." Journal of Interdisciplinary Voice Studies 6, no. 1 (April 1, 2021): 27–38. http://dx.doi.org/10.1386/jivs_00035_1.
Full textSales, G. D., K. J. Wilson, K. E. V. Spencer, and S. R. Milligan. "Environmental ultrasound in laboratories and animal houses: a possible cause for concern in the welfare and use of laboratory animals." Laboratory Animals 22, no. 4 (October 1, 1988): 369–75. http://dx.doi.org/10.1258/002367788780746188.
Full textHopkins, Carl D., Michelangelo Rossetto, and Ann Lutjen. "A Continuous Sound Spectrum Analyzer for Animal Sounds." Zeitschrift für Tierpsychologie 34, no. 3 (April 26, 2010): 313–20. http://dx.doi.org/10.1111/j.1439-0310.1974.tb01804.x.
Full textGong, Yutang. "Animal speech and singing synthesis model based on So-VITS-SVC." Applied and Computational Engineering 68, no. 1 (June 6, 2024): 165–70. http://dx.doi.org/10.54254/2755-2721/68/20241430.
Full textErisman, Brad E., and Timothy J. Rowell. "A sound worth saving: acoustic characteristics of a massive fish spawning aggregation." Biology Letters 13, no. 12 (December 2017): 20170656. http://dx.doi.org/10.1098/rsbl.2017.0656.
Full textBennett, Granger, and Jim McLoughlin. "Underwater noise impact assessment and the hearing response of marine animals." APPEA Journal 50, no. 2 (2010): 741. http://dx.doi.org/10.1071/aj09105.
Full textKładoczny, Piotr. "Co łączy i dzieli nazwy odgłosów zwierząt i ludzi?" Zoophilologica, no. 6 (December 29, 2020): 271–86. http://dx.doi.org/10.31261/zoophilologica.2020.06.18.
Full textBylieva, Daria. "Artificial Intelligence as an Intermediary Between animals and Humans." Ideas and Ideals 16, no. 2-1 (June 26, 2024): 102–20. http://dx.doi.org/10.17212/2075-0862-2024-16.2.1-102-120.
Full textDissertations / Theses on the topic "Animal sounds"
Couturier, Kaijser Vilma. "Metaphorical uses of verbs of animal sounds in Swedish." Thesis, Stockholms universitet, Institutionen för lingvistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-148958.
Full textDjur förekommer ofta som källdomän i metaforer. I europeiska språk finns det ofta många lexikaliserade verb för specifika typer av läten med ett prototypiskt djur som subjekt. Typologiska studier har gjorts på dessa verb för djurläten, och deras metaforiska användningar. Detta har lett till en klassifikationsmodell över mänskliga situationer som ofta uttrycks med metaforisk användning av verb för djurläten. I svenska finns det många sådana verb, men deras metaforiska användningar har inte undersökts. Syftet med den här studien var att undersöka den metaforiska användningen av verb för djurläten i svenska. 13 verb som beskriver ett specifikt läte hos ett visst djur valdes ut. Studiens data var definitioner av verben, hämtade från lexikon, och konkordansrader med verben, hämtade från korpusar av språk från bloggar och nyhetstext. Studien undersöker vilka situationer som kan uttryckas med metaforisk användning av dessa verb, vilka olika användningar ett och samma verb kan uttrycka, samt hur väl den föreslagna klassifikationsmodellen fungerar på svenska. Resultatet visar att verben främst har mänskliga subjekt och att verben varierar i hur många och vilka situationer de kan uttrycka metaforiskt. Ett par ändringar gjordes på klassifikationsmodellen, till exempel lades typen ’talverb’ till, och subtypen ’röstkvalitet’ frigjordes från typen ’fysiologiska ljud’.
Glaeser, Sharon Stuart. "Analysis and Classification of Sounds Produced by Asian Elephants (Elephas Maximus)." PDXScholar, 2009. https://pdxscholar.library.pdx.edu/open_access_etds/4066.
Full textHill, Mandy Lee. "Signature whistle productions, development, and perception in free-ranging bottlenose dolphins /." Electronic version (PDF), 2002. http://dl.uncw.edu/etd/2002/hillm/mandyhill.html.
Full textMiller, Patrick J. O. "Maintaining contact : design and use of acoustic signals in killer whales, Orcinus orca /." Online version, 2000. http://hdl.handle.net/1912/1765.
Full textVita. Includes bibliographical references.
LeVering, Kathleen Rose. "Why frogs scream : an investigation of the function of distress calling in Leptodactylus pentadactylus /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Full textKiapuchisnki, Davi Miara. "Uma plataforma para monitoramento de espectros sonoros e pré-processamento de canto de pássaros." Universidade Tecnológica Federal do Paraná, 2012. http://repositorio.utfpr.edu.br/jspui/handle/1/440.
Full textOs atuais métodos de classificação automática dos pássaros pelo canto apresentam lacunas que justificam um aprofundamento do estudo do tema. Entre estas lacunas, por exemplo, observa-se a necessidade da evolução da pesquisa para uma maior abrangência de espécies. Outra lacuna, que será o foco deste trabalho, é observada nas etapas iniciais dos processos de classificação automática em ambientes reais e práticos (e.g. habitat natural). Considerando-se que as etapas de coleta de amostras, pré-processamento, processamento e análise dos resultados estão presentes em um processo de classificação sonora de pássaros, observa-se uma carência de contribuições na etapa de coleta de amostras e, particularmente, na etapa de pré-processamento. Neste âmbito, as rotinas projetadas nos trabalhos científicos de classificação sonora são muitas vezes dependentes de uma amostra ideal, que por sua vez não são encontradas em um ambiente real. Ou seja, para obter respostas corretas e acertos na classificação, tais rotinas renecessitam de amostras filtradas e também de um escopo do ambiente previamente restrito. Com o objetivo de prover soluções para este conjunto de deficiências, foi proposta e materializada uma plataforma de coleta e processamento dos sons coletados,cobrindo as duas primeiras etapas de classificação automática. Em suma, este trabalho apresenta uma plataforma de aquisição e préprocessamento de cantos de pássaros. No trabalho também são discutidas vantagens e desvantagens das metodologias utilizadas, bem como são dissertados contextos pertinentes para aplicação da plataforma. As validações se dão por meio de testes práticos e comparações das amostras processadas pela plataforma, com amostras resultantes das ferramentas de processamento e análise sonora previamente existentes.
The current methods for birdsong automatic classification present gaps which justify a deeper study of the theme. Among these shortcomings, for example, there is the need for the development of research for a wider range of species. Another gap that will be the focus of this work, is observed in the initial stages of the process of automatic classification in real environments and practical (e. g. nature). Considering that the stages of sample collection, preprocessing, processing and analysis of results are present in a birdsong classification process, there is a deficiency of contributions in the stage of sample collection and, particularly, in the preprocessing step. In this context, the routines designed on the scientific papers of sound classification are often dependent on an ideal sample, which are not found in a real environment. That is, to achieve correct answers and successes in classification such routines require filtered samples and also a scope of environment previously restricted. With the objective of providing solutions to this set of deficiencies, it was proposed and implemented a platform for collecting and processing of sounds collected, covering the first two steps of automatic classification. In summary, this paper presents a platform for acquisition and preprocessing of bird songs. On paper are also discussed about the advantages and disadvantages of the methodologies used, as well as the contexts relevant to the application of the platform. The validation occurs through practical tests and comparisons between the samples processed by the platform, with samples arising from the previously existing tools of sound processing and analysis.
Moura, Giselle Borges de. "Vocalização de suínos em grupo sob diferentes condições térmicas." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/11/11131/tde-26042013-094034/.
Full textTo quantify and to qualify animal well-being in livestock farms is still a challenge. To assess animal well-being, it must be analyzed, mainly, the absence of strong negative feelings, like pain, and the presence of positive feelings, like pleasure. The main objective was to quantify vocalization in a group of pigs under different thermal conditions. The specific objectives were to assess the existence of vocal pattern of communication between housing groups of pigs, and get the acoustic characteristics of the sound spectrum from the vocalizations related to the different microclimate conditions. The trial was carried out in a controlled environment experimental unit for pigs, at the University of Illinois (USA). Four groups of six pigs were used in the data collection. Dataloggers were installed to record environmental variables (T, °C and RH, %). These environmental variable were used to calculate two thermal comfort index: Enthalpy and THI. Cardioid microphones were installed to record continuous vocalizations in the geometric center of each pen where the pigs were housing. Microphones were connected to an amplifier, and this was connected to a dvr card installed in a computer to record audio and video information. For doing the sound edition in a pig vocalization database, the Goldwave® software was used to separate, and filter the files excluding background noise. In the sequence, the sounds were analyzed using the software Sounds Analysis Pro 2011, and the acoustic characteristics were extracted. Amplitude (dB), pitch (Hz), mean frequency (Hz), peak frequency (Hz) and entropy were used to characterize the sound spectrum of vocalizations of the groups of piglets in the different thermal conditions. A randomized block design was used, composed by two treatments and three repetitions in a week and executed in two weeks. Data were sampled to analyze the behavior of the databank of vocalization as a relation to the applied treatments. Data were submitted to an analysis of variance using the proc GLM of SAS. Among the studied acoustic parameters, the amplitude (dB), pitch and entropy. The treatments (comfort and heat stress conditions) presented significative differences, through Tukey\'s test (p<0,05). The analysis of variance showed differences to the wave format to each thermal condition in the different periods of the day. The quantification of vocalization of swine in groups under different thermal conditions is possible, using the extraction of acoustic characteristics from the sound samples. The sound spectrum was extracted, which indicated possible alterations in the piglets behavior in the different thermal conditions during the periods of the day. However, the stage of pattern\'s recognition still needs a larger and more consistent database to the recognition of the spectrum in each thermal condition, through image analysis or by the extraction of the acoustic characteristics. Among he analyzed acoustic characteristics, the amplitude (dB), pitch (Hz) and entropy of the vocalizations of groups of swine were significative to express the condition of the animals in different thermal conditions.
Criswell, Joni M. "Multimodal Communication in the Panamanian Golden Frog (Atelopus zeteki)." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1228224476.
Full textLindsey, Alan R. "SPECPAK an integrated acquisition and analysis system for analyzing the echolocation signals of microchiroptera." Ohio : Ohio University, 1991. http://www.ohiolink.edu/etd/view.cgi?ohiou1183732035.
Full textReis, Sarah Stutz. "Caracterização das emissões sonoras do boto-cinza Sotalia guianensis (Van Benédén, 1864) (Cetacea: Delphinidae) e a investigação do ambiente acústico na Baía de Benevente, ES." Universidade Federal de Juiz de Fora, 2013. https://repositorio.ufjf.br/jspui/handle/ufjf/1077.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-04-24T02:58:46Z (GMT) No. of bitstreams: 1 sarahstutzreis.pdf: 2710665 bytes, checksum: 3e112b0640b97d744e46b7134c227148 (MD5)
Made available in DSpace on 2016-04-24T02:58:46Z (GMT). No. of bitstreams: 1 sarahstutzreis.pdf: 2710665 bytes, checksum: 3e112b0640b97d744e46b7134c227148 (MD5) Previous issue date: 2013-02-01
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Os delfinídeos exibem grande plasticidade de sinais acústicos e são capazes de adequar suas emissões sonoras frente à diferentes circunstâncias. Atualmente, a poluição sonora dos oceanos constitui uma ameaça aos cetáceos e esta questão tem sido pouco estudada em relação ao boto-cinza (Sotalia guianensis). Logo, seus sinais acústicos representam um aspecto biológico importante a ser compreendido. Neste contexto, este estudo visou caracterizar o repertório sonoro e investigar o ambiente acústico dos botos-cinza que utilizam a baía de Benevente, ES. As gravações foram realizadas utilizando-se hidrofone Cetacean Research C54XRS acoplado a gravador digital Fostex FR-2 LE gravando a 96kHz/24bits. Os dados coletados entre dezembro de 2011 e julho de 2012 totalizaram 27horas e 55minutos de esforço de gravação. Foram analisados 69 assobios, 42 sons pulsantes explosivos e 33 cadeias de cliques. Dentre os assobios o contorno mais comum foi o do tipo ascendente (N=37; 53%), seguido pelos tipos ascendente-descendente (N=15; 22%), múltiplo (N=13; 19%). A frequência fundamental dos assobios variou entre 3,51 kHz e 37,56 kHz. Os parâmetros analisados foram: duração, pontos de inflexão, frequências inicial, final, mínima, máxima, variação e frequências a 1/4, 1/2 e 3/4 da duração. A duração média destes sinais foi 0,298 segundos (DP= 0,147). Quanto aos sons pulsantes explosivos, o sinal do tipo “bray call” (N=36) foi mais comum e mais longo que o “buzz sound”(N=6). Estes dois tipos ocorreram imediatamente após ou próximos a cliques de ecolocalização. Em relação a estes, 33 cadeias foram analisadas e estas apresentaram 36,45 cliques (DP= 43,47) e 11,404 (DP= 21,226) segundos de duração, em média. Os intervalos entre cliques (ICI) duraram 0,308s (DP= 0,301), em média. Verificou-se dois padrões temporais distintos entre os ICIs: 81% (N=946) dos intervalos duraram entre 0,001 e 0,400 segundos e os 19% (N=224) restantes duraram entre 0,401 e 1,246 segundos. A maioria das médias dos parâmetros de frequência dos assobios foram superiores aos valores verificados em estudos com S. guianensis ao sul da área de estudo e inferiores aos valores de populações ao norte. Isto pode estar relacionado aos diferentes limites de frequência destes trabalhos e/ou à hipótese de que a frequência aumenta do sul para o norte. Os sons explosivos observados foram verificados anteriormente para S. guianensis e outros odontocetos. Além de apresentarem função social, também podem estar relacionados à obtenção de presas. A distribuição dos valores de ICI em padrões temporais distintos já foi observada para S. guianensis e outras espécies de golfinhos, podendo representar as distintas funções dos cliques de ecolocalização. O boto-cinza ocorreu em áreas onde existia um ruído antropogênico de baixa frequência. Na presença deste ruído ocorreram alterações no comportamento acústico que possivelmente expressam uma tentativa de compensar o efeito de mascaramento para manter a comunicação eficiente em um ambiente acústicamente poluído.
The Delphinidae exhibits great plasticity of acoustic signals and adapts their sound emission according to circumstances. Currently, ocean noise pollution is a threat to cetaceans and this issue has not been well studied in relation to the estuarine dolphin (Sotalia guianensis). Therefore, their acoustic signals represent an important biological aspect to be understood. In this context, this study aimed to characterize the sound repertoire and investigate the acoustic environment of estuarine dolphin in Benevente Bay, ES, Brazil. The recordings were performed using hydrophone Cetacean Research C54XRS coupled to digital recorder Fostex FR-2 LE recording at 96kHz/24bits. Data collected between December 2011 and July 2012 totaled 27 hours and 55 minutes of effort recording. We evaluated 69 whistles, 42 burst sounds and 33 clicks’ train. Among the whistles contour the most common type was ascending (N = 37, 53%), followed by ascending-descending (N = 15, 22%) and multiple (N = 13, 19%) types. The fundamental frequency of whistles ranged between 3.51 kHz and 37.56 kHz. The frequency parameters analyzed were: start, end, minimum, maximum, range and frequencies at 1/4, 1/2 and 3/4 of the duration. The duration and inflection points were also analyzed. The average duration of whistles was 0.298 second (SD = 0.147). About the burst pulse sounds the sign "bray call" (N = 36) was more common and longer than the "buzz sound" (N = 6). These two types occurred immediately after or near echolocation clicks. On these, 33 trains were analyzed and presented 36.45 (SD = 43.47) clicks and 11.404 (SD = 21.226) seconds, in average length. The interval between clicks or “Inter-click interval” (ICI) lasted 0.308 (SD = 0.301) seconds in average. It was also found two distinct temporal patterns for ICIs: 81% (N = 946) intervals lasted between 0.001 and 0.400 seconds and 19% (N = 224) lasted between 0.401 and 1.246 seconds. Most of the frequency parameters’ average from whistles were higher than those observed in studies with S. guianensis at south of the study area and lower than populations at north. This could be related to different frequency limits and/or the assumption that the frequency increases from south to north. The burst sounds observed were previously cited for S. guianensis and other odontocetes. Besides presenting a social function, these sounds may be related to obtaining prey. The distribution of the ICIs’ values in distinct temporal patterns was also reported for S. guianensis and other species of dolphins, which may represent the different functions of echolocation clicks. The estuarine dolphin occurred in the presence of a low-frequency anthropogenic noise. On this occasion there was a change in the acoustic behavior that possibly expresses an attempt to compensate for the effect of masking to maintain effective communication in an acoustically polluted environment.
Books on the topic "Animal sounds"
illustrator, Roberts Cindy (Illustrator), ed. Animal sounds. New York: Little Bee Books, an imprint of Bonnier Publishing Group, 2015.
Find full textBook chapters on the topic "Animal sounds"
Watkins, William A., Karen E. Moore, Christopher W. Clark, and Marilyn E. Dahlheim. "The Sounds of Sperm Whale Calves." In Animal Sonar, 99–107. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-7493-0_11.
Full textOswald, Julie N., Christine Erbe, William L. Gannon, Shyam Madhusudhana, and Jeanette A. Thomas. "Detection and Classification Methods for Animal Sounds." In Exploring Animal Behavior Through Sound: Volume 1, 269–317. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97540-1_8.
Full textLarsen, Ole Næsbye, William L. Gannon, Christine Erbe, Gianni Pavan, and Jeanette A. Thomas. "Source-Path-Receiver Model for Airborne Sounds." In Exploring Animal Behavior Through Sound: Volume 1, 153–83. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97540-1_5.
Full textSchoeman, Renée P., Christine Erbe, Gianni Pavan, Roberta Righini, and Jeanette A. Thomas. "Analysis of Soundscapes as an Ecological Tool." In Exploring Animal Behavior Through Sound: Volume 1, 217–67. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97540-1_7.
Full textReckendorf, Anja, Lars Seidelin, and Magnus Wahlberg. "Marine Mammal Acoustics." In Marine Mammals, 15–31. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-06836-2_2.
Full textMarten, Kenneth, Kenneth S. Norris, Patrick W. B. Moore, and Kirsten A. Englund. "Loud Impulse Sounds in Odontocete Predation and Social Behavior." In Animal Sonar, 567–79. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-7493-0_57.
Full textSmolker, Rachel, and Andrew Richards. "Loud Sounds During Feeding in Indian Ocean Bottlenose Dolphins." In Animal Sonar, 703–6. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-7493-0_75.
Full textPop, G. P. "Discriminate Animal Sounds Using TESPAR Analysis." In International Conference on Advancements of Medicine and Health Care through Technology; 12th - 15th October 2016, Cluj-Napoca, Romania, 185–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52875-5_41.
Full textPop, Gavril-Petre. "Identification of Animal Species from Their Sounds." In 6th International Conference on Advancements of Medicine and Health Care through Technology; 17–20 October 2018, Cluj-Napoca, Romania, 133–37. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6207-1_21.
Full textLendinara, Patrizia. "Medieval Versifications of Lists of Animal Sounds." In Instrumenta Patristica et Mediaevalia, 235–73. Turnhout, Belgium: Brepols Publishers, 2021. http://dx.doi.org/10.1484/m.ipm-eb.5.125564.
Full textConference papers on the topic "Animal sounds"
Hagiwara, Masato, Benjamin Hoffman, Jen-Yu Liu, Maddie Cusimano, Felix Effenberger, and Katie Zacarian. "BEANS: The Benchmark of Animal Sounds." In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023. http://dx.doi.org/10.1109/icassp49357.2023.10096686.
Full textTacioli, Leandro, Luíz Toledo, and Claudua Medeiros. "An Architecture for Animal Sound Identification based on Multiple Feature Extraction and Classification Algorithms." In XI Brazilian e-Science Workshop. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/bresci.2017.9919.
Full textGunasekaran, S., and K. Revathy. "Content-Based Classification and Retrieval of Wild Animal Sounds Using Feature Selection Algorithm." In 2010 Second International Conference on Machine Learning and Computing. IEEE, 2010. http://dx.doi.org/10.1109/icmlc.2010.11.
Full textLi, Qingqing, Qiong Wu, Jiajia Yang, Yiyang Yu, Fengxia Wu, Wu Wang, Satoshi Takahashi, Yoshimichi Ejima, and Jinglong Wu. "The Identification and Evaluation for Animal and Other Sounds: The Effect of Presentation Time." In 2019 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2019. http://dx.doi.org/10.1109/icma.2019.8816333.
Full textJanicka, Wiktoria, and Martyna Mierzicka. "Variation in horses’ responses to sounds of different frequency characteristics." In 2nd International PhD Student’s Conference at the University of Life Sciences in Lublin, Poland: ENVIRONMENT – PLANT – ANIMAL – PRODUCT. Publishing House of The University of Life Sciences in Lublin, 2023. http://dx.doi.org/10.24326/icdsupl2.a009.
Full textRomero, Javier, Amalia Luque, and Alejandro Carrasco. "Animal Sound Classification using Sequential Classifiers." In 10th International Conference on Bio-inspired Systems and Signal Processing. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0006246002420247.
Full textPons, Patricia, Marcus Carter, and Javier Jaen. "Sound to your objects." In ACI '16: Third International Conference on Animal-Computer Interaction. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2995257.2995383.
Full textCondurache-Bota, Simona, Gabriel Murariu, Romana Maria Drasovean, and Romica Cretu. "URBAN NOISE POLLUTION AND ANTHROPOGENIC RELIEF; CASE STUDY FOR A MEDIUM-SIZED CITY." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/5.1/s20.063.
Full textLin, Na, Haixin Sun, and Xiao-Ping Zhang. "Overlapping Animal Sound Classification Using Sparse Representation." In ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. http://dx.doi.org/10.1109/icassp.2018.8462058.
Full textSasmaz, Emre, and F. Boray Tek. "Animal Sound Classification Using A Convolutional Neural Network." In 2018 3rd International Conference on Computer Science and Engineering (UBMK). IEEE, 2018. http://dx.doi.org/10.1109/ubmk.2018.8566449.
Full textReports on the topic "Animal sounds"
Bradbury, Jack W., Christopher Clark, David K. Mellinger, and Sue E. Moore. An Annotated and Federated Digital Library of Marine Animal Sounds. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada481335.
Full textVantassel, Stephen M., and Mark A. Klng. Wildlife Carcass Disposal. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, July 2018. http://dx.doi.org/10.32747/2018.7207733.ws.
Full textNachtigall, Paul E. Self-Changing of Animal Hearing to Mitigate the Effects of Loud Sound. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada573673.
Full textCahaner, Avigdor, Susan J. Lamont, E. Dan Heller, and Jossi Hillel. Molecular Genetic Dissection of Complex Immunocompetence Traits in Broilers. United States Department of Agriculture, August 2003. http://dx.doi.org/10.32747/2003.7586461.bard.
Full textBell, Matthew, Rob Ament, Damon Fick, and Marcel Huijser. Improving Connectivity: Innovative Fiber-Reinforced Polymer Structures for Wildlife, Bicyclists, and/or Pedestrians. Nevada Department of Transportation, September 2022. http://dx.doi.org/10.15788/ndot2022.09.
Full textFontecave, Marc, and Candel Sébastien. Quelles perspectives énergétiques pour la biomasse ? Académie des sciences, January 2024. http://dx.doi.org/10.62686/1.
Full textInnovative Solutions to Human-Wildlife Conflicts: National Wildlife Research Center Accomplishments, 2016. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, May 2017. http://dx.doi.org/10.32747/2017.7207238.aphis.
Full textInnovative Solutions to Human-Wildlife Conflicts: National Wildlife Research Center Accomplishments, 2015. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, May 2016. http://dx.doi.org/10.32747/2016.7206800.aphis.
Full textInnovative Solutions to Human-Wildlife Conflicts: National Wildlife Research Center Accomplishments, 2013. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, June 2014. http://dx.doi.org/10.32747/2014.7206798.aphis.
Full textInnovative Solutions to Human-Wildlife Conflicts: National Wildlife Research Center Accomplishments, 2014. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, June 2015. http://dx.doi.org/10.32747/2015.7206799.aphis.
Full text