Academic literature on the topic 'Anion exchange polymer membrane'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Anion exchange polymer membrane.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Anion exchange polymer membrane"

1

Cho, Hyeongrae, Henning Krieg, and Jochen Kerres. "Performances of Anion-Exchange Blend Membranes on Vanadium Redox Flow Batteries." Membranes 9, no. 2 (2019): 31. http://dx.doi.org/10.3390/membranes9020031.

Full text
Abstract:
Anion exchange blend membranes (AEBMs) were prepared for use in Vanadium Redox Flow Batteries (VRFBs). These AEBMs consisted of 3 polymer components. Firstly, PBI-OO (nonfluorinated PBI) or F6-PBI (partially fluorinated PBI) were used as a matrix polymer. The second polymer, a bromomethylated PPO, was quaternized with 1,2,4,5-tetramethylimidazole (TMIm) which provided the anion exchange sites. Thirdly, a partially fluorinated polyether or a non-fluorinated poly (ether sulfone) was used as an ionical cross-linker. While the AEBMs were prepared with different combinations of the blend polymers,
APA, Harvard, Vancouver, ISO, and other styles
2

Kuppusamy, Hari Gopi, Prabhakaran Dhanasekaran, Niluroutu Nagaraju, et al. "Anion Exchange Membranes for Alkaline Polymer Electrolyte Fuel Cells—A Concise Review." Materials 15, no. 16 (2022): 5601. http://dx.doi.org/10.3390/ma15165601.

Full text
Abstract:
Solid anion exchange membrane (AEM) electrolytes are an essential commodity considering their importance as separators in alkaline polymer electrolyte fuel cells (APEFC). Mechanical and thermal stability are distinguished by polymer matrix characteristics, whereas anion exchange capacity, transport number, and conductivities are governed by the anionic group. The physico-chemical stability is regulated mostly by the polymer matrix and, to a lesser extent, the cationic head framework. The quaternary ammonium (QA), phosphonium, guanidinium, benzimidazolium, pyrrolidinium, and spirocyclic cation-
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Seunghyun, Hyejin Lee, Tae-Hyun Yang, et al. "Quaternary Ammonium-Bearing Perfluorinated Polymers for Anion Exchange Membrane Applications." Membranes 10, no. 11 (2020): 306. http://dx.doi.org/10.3390/membranes10110306.

Full text
Abstract:
Perfluorinated polymers are widely used in polymer electrolyte membranes because of their excellent ion conductivity, which are attributed to the well-defined morphologies resulting from their extremely hydrophobic main-chains and flexible hydrophilic side-chains. Perfluorinated polymers containing quaternary ammonium groups were prepared from Nafion- and Aquivion-based sulfonyl fluoride precursors by the Menshutkin reaction to give anion exchange membranes. Perfluorinated polymers tend to exhibit poor solubility in organic solvents; however, clear polymer dispersions and transparent membranes
APA, Harvard, Vancouver, ISO, and other styles
4

Pintauro, Peter N. "(Invited) Monopolar and Bipolar Membranes Based on Nanofiber Electrospinning." ECS Meeting Abstracts MA2023-02, no. 39 (2023): 1893. http://dx.doi.org/10.1149/ma2023-02391893mtgabs.

Full text
Abstract:
Cation-exchange, anion-exchange, and bipolar membranes play crucial roles in a variety of electrochemical processes and devices, including chloralkali cells, electrodialysis separations for water purification, proton-exchange membrane and hydroxide-exchange membrane (alkaline) fuel cells, redox flow batteries, and processes for direct air capture of CO2. The incorporation of polymeric nanofibers into such membranes provides an attractive and tunable method of creating materials with new nano-morphologies and highly desirable properties. The impregnation of an ionomer solution into a pre-formed
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Zezhou, Ryszard Wycisk, and Peter N. Pintauro. "(Invited) Bipolar Membranes with a 3D Junction of Interlocking Electrospun Fibers." ECS Meeting Abstracts MA2022-02, no. 44 (2022): 1661. http://dx.doi.org/10.1149/ma2022-02441661mtgabs.

Full text
Abstract:
Bipolar membranes (BPMs), typically laminated layers of anion-exchange and cation-exchange polymers, have the unique capability of splitting water at a potential near 0.83 V. Such membranes are used in electrodialysis membrane separation processes. They also have applications in water electrolyzers, CO2 electrolysis cells, and self-humidifying fuel cells. We report here on recent developments regarding BPMs with a high interfacial area, 3D nanofiber junction. Membranes were prepared by first creating a bipolar junction layer, by the simultaneous electrospinning of anion-exchange and cation-exc
APA, Harvard, Vancouver, ISO, and other styles
6

Palanivel, Tamilazhagan, Shankara Kalanur, Vinodh Rajangam, and Bruno Georges Pollet. "Development of a Superior Anion Exchange Membrane with Hyperbranched Polymer for Anion Exchange Membrane Water Electrolysis." ECS Meeting Abstracts MA2024-02, no. 43 (2024): 2919. https://doi.org/10.1149/ma2024-02432919mtgabs.

Full text
Abstract:
Hydrogen is a clean and renewable energy, that provides numerous potential benefits to industries, and households, with zero greenhouse gas emissions, and increased energy security. Mainly hydrogen energy is widely seen as a key component to combat climate change that could potentially fulfill the global energy demands in the future. Hence, hydrogen production technologies are considered an important energy and R&D sector in both academics and industries. Currently, water with its abundance in electrolysis mode is known to be an effective route of green hydrogen production. Specifically, h
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Wei. "Block copolymers as anion exchange membrane in fuel cells." Applied and Computational Engineering 66, no. 1 (2024): 198–203. http://dx.doi.org/10.54254/2755-2721/66/20240951.

Full text
Abstract:
Anion exchange membranes play a crucial part as the primary component of alkaline fuel cells, yet their optimization remains an ongoing endeavor. While research and development efforts have made strides in advancing anion exchange membranes, a pressing need exists to further refine their mechanical properties, ionic conductivity, and chemical stability, especially in comparison to proton exchange membranes. Block copolymers have emerged as promising candidates among the array of materials explored for enhancing anion exchange membranes due to their inherent advantages. These copolymers offer u
APA, Harvard, Vancouver, ISO, and other styles
8

Shen, Haiyang, Yifei Gong, Wei Chen, Xianbiao Wei, Ping Li, and Congliang Cheng. "Anion Exchange Membrane Based on BPPO/PECH with Net Structure for Acid Recovery via Diffusion Dialysis." International Journal of Molecular Sciences 24, no. 10 (2023): 8596. http://dx.doi.org/10.3390/ijms24108596.

Full text
Abstract:
In order to improve the performance of the anion exchange membrane (AEM) used in acid recovery from industrial wastewater, this study adopted a new strategy in which brominated poly (2,6-dimethyl-1,4-phenyleneoxide) (BPPO) and polyepichlorohydrin (PECH) were used as the polymer backbone of the prepared membrane. The new anion exchange membrane with a net structure was formed by quaternizing BPPO/PECH with N,N,N,N-tetramethyl-1,6-hexanediamine (TMHD). The application performance and physicochemical property of the membrane were adjusted by changing the content of PECH. The experimental study fo
APA, Harvard, Vancouver, ISO, and other styles
9

Kerres, Jochen Alfred. "(Invited) Novel Polymer and Membrane Development Strategies for Water Electrolysis." ECS Meeting Abstracts MA2024-01, no. 34 (2024): 1741. http://dx.doi.org/10.1149/ma2024-01341741mtgabs.

Full text
Abstract:
Water electrolysis processes play a crucial role in transitioning to a climate-friendly society. They facilitate the integration of renewable energy, offer a clean and versatile energy carrier, decarbonize industries, improve energy storage and grid stability, and support the development of sustainable transportation solutions. As technology advances and economies of scale are realized, electrolysis is expected to play an increasingly significant role in the clean energy landscape, contributing to a more sustainable and resilient future. Various water-splitting electrolysis processes currently
APA, Harvard, Vancouver, ISO, and other styles
10

Jung, Jiyoon, Young Sang Park, Gwan Hyun Choi, et al. "Alkaline-Stable, In Situ Menshutkin Coat and Curable Ammonium Network: Ion-Solvating Membranes for Anion Exchange Membrane Water Electrolyzers." International Journal of Energy Research 2023 (September 30, 2023): 1–12. http://dx.doi.org/10.1155/2023/7416537.

Full text
Abstract:
Anion exchange membranes fabricated through a one-step Menshutkin reaction with down-selected multifunctional alkyl halides and multifunctional tertiary amines within an ion-solvating matrix, poly(ethylene-co-vinyl alcohol), yielded alkaline-stable ammonium network polymers. Due to the vast simplicity in fabrication due to the quaternization/Menshutkin reaction between tertiary amine and alkyl bromides, which does not evolve any by-products that require purification, alkaline-stable membranes were fabricated in one step through facile mixing and curing of alkaline-stable ammonium network formi
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Anion exchange polymer membrane"

1

Panda, Ronit Kumar. "Développement d'un simulateur d'électrolyse alcalin avec membrane polymère échangeuse d'anions." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALI041.

Full text
Abstract:
Cette thèse décrit la modélisation des performances AEMWE (chap 1) et ses dégradations (chap 2). Les modèles sont développés dans le code MePHYSTO développé au CEA dans la plateforme Matlab/Simulink. Le modèle de performance a été développé grâce aux caractérisations électrochimiques réalisées au CEA au cours du projet. Les phénomènes électrochimiques essentiels sont bien capturés, notamment l'effet de concentration en KOH et l'effet de couverture de bulles, et les courbes de polarisation sont correctement simulées.Concernant les dégradations, ces travaux s'appuient sur les résultats expérimen
APA, Harvard, Vancouver, ISO, and other styles
2

García, Cruz Leticia. "Electroorganic synthesis using a Polymer Electrolyte Membrane Electrochemical Reactor: electrooxidation of primary alcohols in alkaline medium." Doctoral thesis, Universidad de Alicante, 2016. http://hdl.handle.net/10045/61507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thieu, Lam Mai. "Multiscale Tortuous Diffusion in Anion- and Cation-Exchange Membranes: Exploration of Counterions, Water Content, and Polymer Functionality." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/88849.

Full text
Abstract:
Fundamental understanding of water transport and morphology is critical for improving ion conductivity in polymer electrolyte membranes (PEMs). Herein, we present comprehensive water transport measurements comparing anion-exchange membranes (AEMs) based on ammonium-functionalized poly(phenylene oxide) and cation-exchange membranes (CEMs) based on sulfonated poly(ether sulfone). We investigate the influence of counter ions, alkyl side chain, and degree of functionalization on water transport in AEMs and CEMs using pulsed-field-gradient (PFG) NMR diffusometry. Water diffusion in both AEMs and CE
APA, Harvard, Vancouver, ISO, and other styles
4

Bertolotti, Bruno. "Élaboration de membranes échangeuses d’anions à architecture réseaux interpénétrés de polymères pour des batteries lithium-air." Thesis, Cergy-Pontoise, 2013. http://www.theses.fr/2013CERG0676/document.

Full text
Abstract:
Ce travail porte sur la synthèse et la caractérisation de membranes polymères échangeuses d'anions, destinées à la protection de l'électrode à air dans une batterie lithium-air (en vue d'une application pour véhicule électrique). Ces matériaux à architecture de réseaux interpénétrés de polymères (RIP) associent un réseau polyélectrolyte cationique hydrocarboné, la poly(épichlorohydrine) (PECH), à un réseau de polymère neutre qui peut être soit hydrocarboné, soit fluoré. Tout d'abord, la synthèse du réseau polyélectrolyte et son assemblage sur l'électrode à air ont été optimisés. Une première s
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Shaoyi. "SYNTHESIS OF PERFLUOROHETEROAROMATIC POLYMERS FOR ION-CONDUCTING MEMBRANE FUEL CELLS VIA FREE RADICAL-BASED REACTIONS AND SYNTHESIS OF DI-CATIONIC IONIC LIQUIDS AS EFFICIENT SO2 ABSORBENTS." OpenSIUC, 2016. https://opensiuc.lib.siu.edu/dissertations/1160.

Full text
Abstract:
A novel free radical-based substitution reaction was developed for grafting aromatic/heteroaromatic compounds to perfluorosulfonic acid polymers (PFSAs). Two proton-exchange membranes perfluorobenzoic acid (PFBA) and perfluorobenzenesulfonic acid (PFBSA)—were synthesized for proton-exchange membrane fuel cells via the free radical-based reaction. The physical properties, in-plane ionic conductivities and fuel cell performance of two membranes were investigated. They exhibited different electrochemical and physical properties, possibly due to the formation of unique dimerized/trimerized structu
APA, Harvard, Vancouver, ISO, and other styles
6

Pasquini, Luca. "Ion - conducting polymeric membranes for electrochemical energy devices." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4750.

Full text
Abstract:
La recherche vise à proposer des membranes pour des dispositifs électrochimiques capables d'atteindre le bon compromis en terme de conduction ionique, de stabilité et de longue durée de vie pour une haute efficacité.Nous avons réalisé des membranes échangeuses des protons, d'anions ou amphotères à base de polymères aromatiques stables fonctionnalisés. Des groupes sulfonique on été introduit sur la squelette du PEEK, des groupes d'ammonium sur le PEEK et le PSU ou le deux au même temps pour échanger ensemble des protons et des anions.L'optimisation continue des paramètres de synthèse, le choix
APA, Harvard, Vancouver, ISO, and other styles
7

Catonné, Jean-Claude. "Contribution à l'étude du défaut de sélectivité présenté par les membranes échangeuses d'anions, dans le cadre de leurs applications au traitement électrochimique de régénération des solutions aqueuses d'acides minéraux." Paris 6, 1986. http://www.theses.fr/1986PA066030.

Full text
Abstract:
Essai d'identification de l'origine de la "fuite h+" et de celle des différentes sources susceptibles d'alimenter le mouvement d'eau au sein des membranes échangeuses d'anions, selon que le matériau est fortement ou non "élusterisé", puis d'établissement de l'existence d'une corrélation étroite entre l'intensité de fuite protonique et celle de la perméabilité osmotique des membranes (ainsi que le laisse prévoir la théorie de Gierke dans le cas des membranes échangeuses de cations). Et enfin, évaluation du rôle du champ électrique, ainsi que celui de la composition de l'électrolyte sur les résu
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Lianqin. "Nanostructured Electrocatalysts for Anion Exchange Membrane Fuel Cells." Doctoral thesis, Università degli studi di Trieste, 2015. http://hdl.handle.net/10077/11107.

Full text
Abstract:
2013/2014<br>Lo sviluppo sostenibile è una sfida prioritaria per la nostra società. La possibilità di costruire un futuro sostenibile, mantenendo al contempo alti standard nella qualità della vita e preservando risorse e ambiente, dipende dalla disponibilità di metodi per la produzione verde di energía e prodotti chimici. La produzione simultanea di prodotti chimici ed energía può essere ottenuta nelle celle a combustibile che impiegano combustibili liquidi (Direct Liquid Fuel Cells – DLFC), dispositivi in cui l’energia chimica contenuta nelle molecole di combustibile è convertita direttamente
APA, Harvard, Vancouver, ISO, and other styles
9

Santori, Pietro Giovanni. "Investigation of electrocatalysts for anion-exchange membrane fuel cells." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS129.

Full text
Abstract:
Cette thèse de doctorat étudie la synthèse, caractérisation structurale et activité pour la réaction de réduction de O2 (ORR) de catalyseurs Fe-N-C et de composites d’oxydes de manganèse supporté sur Fe-N-C, ainsi que leur utilisation en pile à combustible à membrane échangeuse d’anions (AEMFC). Tandis que les piles à membrane échangeuse de protons (PEMFC) requièrent aujourd’hui du platine dans ses catalyseurs pour atteindre des hautes performances, les piles AEMFC peuvent ouvrir la voie vers des piles sans métaux précieux. Si les catalyseurs Fe-N-C sont actuellement étudiés comme alternative
APA, Harvard, Vancouver, ISO, and other styles
10

Matsuoka, Koji. "Studies on direct alcohol fuel cells using anion-exchange membrane." 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/144928.

Full text
Abstract:
Kyoto University (京都大学)<br>0048<br>新制・課程博士<br>博士(工学)<br>甲第11583号<br>工博第2529号<br>新制||工||1344(附属図書館)<br>23226<br>UT51-2005-D332<br>京都大学大学院工学研究科物質エネルギー化学専攻<br>(主査)教授 小久見 善八, 教授 垣内 隆, 教授 田中 功<br>学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Anion exchange polymer membrane"

1

An, Liang, and T. S. Zhao, eds. Anion Exchange Membrane Fuel Cells. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71371-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

V, Sonawane J., and Bhabha Atomic Research Centre, eds. Liquid anion exchanges (LAE) as novel receptors for plutonium pertraction across polymer immobilized liquid membranes. Bhabha Atomic Research Centre, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Morgan, P. The immobilisation of anion exchange resins in polymer modified cements. University of Salford, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

N, Büchi Felix, Inaba Minoru 1961-, and Schmidt Thomas J, eds. Polymer electrolyte fuel cell durability. Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

University), International Summer School on Advanced Studies of Polymer Electrolyte Fuel Cells (4th 2011 Yokohama National. Advanced studies of polymer electrolyte fuel cells: 4th International Summer School : Yokohama National University, September 5th-9th, 2011. Verlag der Technischen Universität Graz, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pak, Chin-su. Kochʻe alkʻalli yŏllyo chŏnji rŭl wihan ŭmion kyohwanmak mit chŏnʼgŭk-chonhaejil chŏphapchʻe kaebal =: Development of anion-exchange membranes and membrane-electrode assemblies for solid alkaline fuel cells. Chisik Kyŏngjebu, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pak, Chin-su. Kochʻe alkʻalli yŏllyo chŏnji rŭl wihan ŭmion kyohwanmak mit chŏnʼgŭk-chonhaejil chŏphapchʻe kaebal =: Development of anion-exchange membranes and membrane-electrode assemblies for solid alkaline fuel cells. Chisik Kyŏngjebu, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

An, Liang, and T. S. Zhao. Anion Exchange Membrane Fuel Cells: Principles, Materials and Systems. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

An, Liang, and T. S. Zhao. Anion Exchange Membrane Fuel Cells: Principles, Materials and Systems. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Esposito, Richard. Polymer Electrolyte Membrane Fuel Cells and Electrocatalysts. Nova Science Publishers, Incorporated, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Anion exchange polymer membrane"

1

Vijayakumar, Vijayalekshmi, and Sang Yong Nam. "Recent Advances in Anion Exchange Membranes for Fuel Cell Applications." In Progress in Polymer Research for Biomedical, Energy and Specialty Applications. CRC Press, 2022. http://dx.doi.org/10.1201/9781003200710-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tsai, Tsung-Han, Craig Versek, Michael Thorn, Mark Tuominen, and E. Bryan Coughlin. "Block Copolymers Containing Quaternary Benzyl Ammonium Cations for Alkaline Anion Exchange Membrane Fuel Cells (AAEMFC)." In Polymers for Energy Storage and Delivery: Polyelectrolytes for Batteries and Fuel Cells. American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1096.ch015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Higa, Mitsuru. "Anion-Exchange Membrane (AEM)." In Encyclopedia of Membranes. Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Higa, Mitsuru. "Anion-Exchange Membrane (AEM)." In Encyclopedia of Membranes. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_23-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cavaliere, Pasquale. "Anion Exchange Membrane Water Electrolysis." In Water Electrolysis for Hydrogen Production. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37780-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peng, Shengjie. "Anion Exchange Membrane Water Electrolysis." In Electrochemical Hydrogen Production from Water Splitting. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4468-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ergozhin, E. E., E. Zh Menligaziev, T. Chukenova, A. K. Chalov, and I. K. Abdrakhmanova. "SYNTHESIS AND PROPERTIES OF ANION EXCHANGE MEMBRANES BASED ON EPOXY DERIVATIVES OF DIHYDROXYBENZENES AND AMINOPHENOLS." In Synthetic Polymeric Membranes, edited by Blahoslav Sedláček and Jaroslav Kahovec. De Gruyter, 1987. http://dx.doi.org/10.1515/9783110867374-006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Omasta, Travis J., and William E. Mustain. "Water and Ion Transport in Anion Exchange Membrane Fuel Cells." In Anion Exchange Membrane Fuel Cells. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71371-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Yinshi. "Challenges and Perspectives in Alkaline Direct Ethanol Fuel Cells." In Anion Exchange Membrane Fuel Cells. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71371-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Haan, John L., Omar Muneeb, and Jose Estrada. "Electrocatalysts for the Oxidation of Small Organic Molecules in Alkaline Media." In Anion Exchange Membrane Fuel Cells. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71371-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Anion exchange polymer membrane"

1

Rakhshani, Somayyeh, Rodolfo Araneo, Antonio Rinaldi, Luis Alexander Hein, and Alfonso Pozio. "Prominent Progress in Polysulfone-Based Anion Exchange Membrane Fabrication by Electrospinning." In 2024 IEEE International Conference on Environment and Electrical Engineering and 2024 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). IEEE, 2024. http://dx.doi.org/10.1109/eeeic/icpseurope61470.2024.10751210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Song, Xinfu, Wenyu Hu, Gang Zou, et al. "Mathematical Modeling Research on Hydrogen Production from Anion Exchange Membrane Electrolysis." In 2024 6th International Conference on Power and Energy Technology (ICPET). IEEE, 2024. https://doi.org/10.1109/icpet62369.2024.10941189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Pei, Shiyu Zhou, Yang Wang, Jingting Hu, Chunbo Zhang, and Jinshan Han. "Anion exchange membrane with quaternary ammonium cation/cation strings for electrochemical devices: effect of cationic charge density." In Third International Conference on Advanced Materials and Equipment Manufacturing (AMEM 2024), edited by Michele Penza and Shunli Wang. SPIE, 2025. https://doi.org/10.1117/12.3069675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arsalis, Alexandros, Panos Papanastasiou, and George E. Georghiou. "Mathematical Modeling of an Anion Exchange Membrane Electrolyzer for Integration in a Novel Solar Photovoltaic-Battery-Green Hydrogen Nanogrid." In 2024 3rd International Conference on Energy Transition in the Mediterranean Area (SyNERGY MED). IEEE, 2024. https://doi.org/10.1109/synergymed62435.2024.10799294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dudek, Magdalena, Andrzej Raźniak, Jarosław Markowski, Umar Majeed Sada, and Iliya Iliev. "Technical Assessment of Green Hydrogen Production in Anion Exchange Membrane Electrolyzers Integrated with Off-grid Renewable Energy Systems at Different Scales." In 2024 5th International Conference on Communications, Information, Electronic and Energy Systems (CIEES). IEEE, 2024. https://doi.org/10.1109/ciees62939.2024.10811199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Viedt, Isabell, Michel Gro�e (n� Mock), and Leon Urbas. "Development of a hybrid, semi-parametric Simulation Model of an AEM Electrolysis Stack Unit for large-scale System Simulations." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.129325.

Full text
Abstract:
A key technology for integrating fluctuating renewable energy into the process industry is the production of green hydrogen through water electrolysis plants. Scaling up electrolysis plant capacity remains a significant challenge for the renewable energy transition. System simulation of large-scale electrolysis plants can support process design, monitoring, optimization, and maintenance scheduling. Hybrid modeling methods are promising for improving simulation reliability by combining process knowledge with process data, addressing gaps in understanding of the underlying processes. These hybri
APA, Harvard, Vancouver, ISO, and other styles
7

Kelle Zeiher, E. H., A. S. Kowalski, and K. S. Salmen. "Making Waves with Microfilters in Water and Wastewater Treatment." In CORROSION 2000. NACE International, 2000. https://doi.org/10.5006/c2000-00315.

Full text
Abstract:
Abstract Much of membrane research in the past decade has centered on reverse osmosis (RO) and the control of scaling, fouling and troubleshooting in RO. The popular acceptance of RO has paved the way for other crossflow membrane technologies that hold great promise for commercialization. The increased use of microfiltration in industrial applications, however, presents new opportunities and challenges for chemical suppliers and end-users alike. Because of its versatility, robust nature, and small footprint, microfiltration could well replace, or at least augment, traditional equipment includi
APA, Harvard, Vancouver, ISO, and other styles
8

"Prediction of the conductivity and compatibility of the selected ionic liquids (ILs) with Nafion™ using COSMO-RS." In Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-51.

Full text
Abstract:
Abstract. Proton exchange membrane (PEM) electrolysis is one of the waters splitting techniques available for producing green hydrogen. As such, improvement of the membrane ion conductivity will result in improvement of hydrogen production. Ionic liquids have recently been reported to enhance ionic conductivity of PEM. Herein, a screening method to select suitable ionic liquids for the development of efficient proton exchange membrane. COnductor-like Screening MOdel for Realistic Solvents (COSMO-RS) was used to predict the ionic conductivity as well as the compatibility of the ions with the Na
APA, Harvard, Vancouver, ISO, and other styles
9

Ulbricht, Nicco, Alain Boldini, Chulsung Bae, Thomas Wallmersperger, and Maurizio Porfiri. "Experimental characterization of actuation of anion-exchange membranes in salt solution." In Electroactive Polymer Actuators and Devices (EAPAD) XXV, edited by John D. Madden, Iain A. Anderson, and Herbert R. Shea. SPIE, 2023. http://dx.doi.org/10.1117/12.2658447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vona, Maria Luisa Di. "Ionomers and Electrocatalysts for Anion Exchange Membrane Fuel Cells." In The 8th World Congress on Recent Advances in Nanotechnology. Avestia Publishing, 2023. http://dx.doi.org/10.11159/icnnfc23.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Anion exchange polymer membrane"

1

Kim, Yu, Eun Park, Jannasch Patric, et al. Aryl Ether-free Polymer Electrolytes for Anion Exchange Membrane Water Electrolysers and Other Electrochemical Devices. Office of Scientific and Technical Information (OSTI), 2024. http://dx.doi.org/10.2172/2377942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Yu, and Ivana Gonzales. Computationally Assisted Design of Ion-conducting Polymers for Anion Exchange Membrane Fuel Cells. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1893651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Yu, and Ivana Gonzales. Report for computational project w19_ionpolymers (2nd year) Computationally Assisted Design of Ion-conducting Polymers for Anion Exchange Membrane Fuel Cells. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1781361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Yu. Anion exchange membrane electrolysis. Office of Scientific and Technical Information (OSTI), 2025. https://doi.org/10.2172/2570017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pivovar, Bryan, and Yu Kim. 2019 Anion Exchange Membrane Workshop Summary Report. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1660106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Acevedo, Yaset, Kevin McNamara, Jacob Prosser, Jennie Huya-Kouadio, and Brian James. Hydrogen Production Cost with Anion Exchange Membrane Electrolysis. Office of Scientific and Technical Information (OSTI), 2024. http://dx.doi.org/10.2172/2476013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!