Academic literature on the topic 'Anisotropi'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Anisotropi.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Anisotropi"
Pranowo, Waskito, and Sonny Winardhi. "Application of Velocity Variation with Angle (VVA) Method on an Anisotropic Model with Thomsen Delta Anisotropy Parameters." Jurnal Geofisika 16, no. 2 (September 19, 2018): 6. http://dx.doi.org/10.36435/jgf.v16i2.371.
Full textRongkonusa, Melisa, Gerald Tamuntuan, and Guntur Pasau. "Analisis Anisotropi Suseptibilitas Magnetik Batuan Beku Lengan Utara Sulawesi." Jurnal MIPA 6, no. 1 (May 2, 2017): 8. http://dx.doi.org/10.35799/jm.6.1.2017.15846.
Full textLuthfin, Ahmad, Adi Susilo, and Teguh Suroso. "PEMODELAN BAWAH PERMUKAAN METODE PRE-STACK TIME MIGRATION (PSTM) ISOTROPY DAN METODE PSTM ANISOTROPY HIGH ORDER MOVEOUT (HOM)." JURNAL NEUTRINO 8, no. 2. APRIL (May 2, 2016): 58. http://dx.doi.org/10.18860/neu.v8i2.3265.
Full textFebriardi, Julius, and Wahyu Triyoso. "Estimasi Parameter Koreksi Anisotropi Seismik Melalui Pendekatan Nonhyperbolic Moveout Pada Gather Konvensional, DMO, dan CRS." Jurnal Geofisika 15, no. 1 (November 18, 2019): 15. http://dx.doi.org/10.36435/jgf.v15i1.404.
Full textNurhasan, Abdullah, Dadang Ramdan, Zuardin Azzaino, Alexis Badai Samudra, and Rino Saputra. "Fault Related Stress and Fractures Analysis using the Anisotropy Signatures from Azimuthal Amplitude Variation in Lematang Trend, South Sumatera Basin." Jurnal Geofisika 18, no. 2 (December 22, 2020): 27. http://dx.doi.org/10.36435/jgf.v18i2.444.
Full textXiong, Zonghou. "Electromagnetic fields of electric dipoles embedded in a stratified anisotropic earth." GEOPHYSICS 54, no. 12 (December 1989): 1643–46. http://dx.doi.org/10.1190/1.1442633.
Full textFebriyanti, Eka, Amin Suhadi, Dedi Priadi, and Rini Riastuti. "ANALISIS MAMPU BENTUK BAHAN BAKU SELONGSONG MUNISI Cu-Zn 70/30 SETELAH DEFORMASI PADA SUHU 500ºC = ANALYSIS FORMABILITY OF RAW MATERIALS CU - ZN MUNITIONS CASINGS 70/30 AFTER DEFORMATION AT TEMPERATURE 500ºC." Majalah Ilmiah Pengkajian Industri 9, no. 3 (September 5, 2015): 175–78. http://dx.doi.org/10.29122/mipi.v9i3.1648.
Full textHood, J. A. "A simple method for decomposing fracture‐induced anisotropy." GEOPHYSICS 56, no. 8 (August 1991): 1275–79. http://dx.doi.org/10.1190/1.1443149.
Full textRamadhan, Muhammad Gilang, Ayuna Santika Putri, Andang Kurniawan, and Amir Mustofa Irawan. "PRIORITAS ARAH PENEMPATAN TITIK PENGAMATAN KECEPATAN VERTIKAL DI KALIMANTAN MENGGUNAKAN ANALISIS ANISOTROPI." Jurnal Meteorologi Klimatologi dan Geofisika 5, no. 3 (April 29, 2019): 63–71. http://dx.doi.org/10.36754/jmkg.v5i3.76.
Full textYu, Jing, Yongmei Zhang, Yuhong Zhao, and Yue Ma. "Anisotropies in Elasticity, Sound Velocity, and Minimum Thermal Conductivity of Low Borides VxBy Compounds." Metals 11, no. 4 (April 1, 2021): 577. http://dx.doi.org/10.3390/met11040577.
Full textDissertations / Theses on the topic "Anisotropi"
Isachsen, Marit. "Effekt av anisotropi på udrenert skjærstyrke i naturlige skråninger." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for bygg, anlegg og transport, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18653.
Full textChen, Xiaoming. "Two-dimensional constrained anisotropic inversion of magnetotelluric data." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/6316/.
Full textTektonische und geologische Prozesse verursachen häufig eine strukturelle Anisotropie des Untergrundes, welche von verschiedenen geophysikalischen Methoden beobachtet werden kann. Zur Erstellung und Interpretation geeigneter, realistischer Modelle der Erde sind Inversionsalgorithmen notwendig, die einen anisotropen Untergrund einbeziehen können. Für die vorliegende Arbeit habe ich einen magnetotellurischen (MT) Datensatz vom Cape Fold Gürtel in Südafrika untersucht. Diese Daten weisen auf eine ausgeprägte Anisotropie der Kruste hin, da z.B. die MT Phasen außerhalb des erwarteten Quadranten liegen und nicht durch standardisierte isotrope Inversionsalgorithmen angepasst und ausgewertet werden können. Um dieses Problem zu beheben, habe ich eine zweidimensionale Inversionsmethode entwickelt, welche eine anisotrope elektrische Leitfähigkeitsverteilungen in den Modellen zulässt. Die MT Inversion ist im allgemeinen ein nichtlineares, schlecht gestelltes Minimierungsproblem mit einer hohen Anzahl an Freiheitsgraden. Im isotropen Fall wird jeder Gitterzelle eines Modells ein elektrischer Leitfähigkeitswert zugewiesen um den Erduntergrund nachzubilden. Ein Modell mit beispielsweise 100 x 50 Zellen besitzt 5000 unbekannte Modellparameter. Im Gegensatz dazu haben wir im anisotropen Fall die sechsfache Anzahl, da hier aus dem einfachen Zahlenwert der elektrischen Leitfähigkeit ein symmetrischer, reellwertiger Tensor wird, wobei die Anzahl der Daten gleich bleibt. Für die erfolgreiche Inversion von anisotropen Leitfähigkeiten und um die Nicht-Eindeutigkeit der Lösung des inversen Problems zu überwinden, ist eine geeignete Einschränkung der möglichen Modelle absolut notwendig. Dies wird umso wichtiger, da die Sensitivität von MT Daten nicht für alle Anisotropieparameter gleich ist. In der vorliegenden Arbeit habe ich einen Algorithmus entwickelt, welcher die Lösung des anisotropen Inversionsproblems unter Minimierung einer globalen Straffunktion berechnet. Diese besteht aus drei Teilen: der Datenanpassung, den Zusatzbedingungen an die Glätte des Modells und die Anisotropie. Im Gegensatz dazu werden beim isotropen Fall nur die ersten zwei Parameter minimiert. Der neu definierte Anisotropieterm wird mit Hilfe der Summe der quadratischen Abweichung der Hauptleitfähigkeitswerte des Modells gemessen. Die grundlegende Idee dieser Zusatzbedingung ist einfach. Falls ein isotropes Modell die Daten ausreichend gut anpassen kann, wird keine elektrische Anisotropie zusätzlich in das Modell eingefügt. Um eine erfolgreiche Inversion zu garantieren müssen geeignete Regularisierungsparameter für die verschiedenen Nebenbedingungen an das Modell gewählt werden. Tests mit synthetischen Modellen zeigen, dass bei festgesetzten Regularisierungsparametern die Inversion meistens entweder in einem glatten Modell mit hohem RMS Fehler oder einem groben Modell mit kleinem RMS Fehler endet. Die Anwendung einer Relaxationsbedingung auf die Regularisierung nach jedem Iterationsschritt resultiert in glatteren Inversionsmodellen und einer höheren Konvergenz und scheint ein ausgereifter Weg zur Wahl der Parameter zu sein. Die vorgestellte Inversionsmethode ist im allgemeinen in der Lage die Hauptleitfähigkeiten in der horizontalen Ebene zu finden. Wenn keine der Hauptrichtungen der Anisotropiestruktur mit der vorgegebenen Streichrichtung übereinstimmt, können nur die dazugehörigen effektiven Leitfähigkeiten, welche die Projektion der Hauptleitfähigkeiten auf die Koordinatenachsen des Modells darstellen, aufgelöst werden. Allerdings gehen die Informationen über die Rotationswinkel verloren. Am Ende meiner Arbeit werden die MT Daten des Cape Fold Gürtels in Südafrika analysiert. Die MT Daten zeigen in einem Abschnitt des Messprofils (> 10 km) Phasen über 90 Grad. Dieser Teil der Daten kann nicht mit herkömmlichen isotropen Modellierungsverfahren angepasst und daher mit diesen auch nicht vollständig ausgewertet werden. Die vorgestellte Inversionsmethode konnte die außergewöhnlich hohen Phasenwerte nicht wie gewünscht im Inversionsergebnis erreichen, was mit dem erwähnten Informationsverlust der Rotationswinkel begründet werden kann. MT Phasen außerhalb des ersten Quadranten können für gewöhnlich bei Anomalien mit geneigter Streichrichtung der Anisotropie gemessen werden. Um diese auch in den Inversionsergebnissen zu erreichen ist eine Weiterentwicklung des Algorithmus notwendig. Vorwärtsmodellierungen des MT Datensatzes haben allerdings gezeigt, dass eine hohe Leitfähigkeitsheterogenität an der Oberfläche in Kombination mit einer Zone elektrischer Anisotropie in der mittleren Kruste notwendig sind um die Daten anzupassen. Aufgrund geologischer und tektonischer Informationen kann diese Zone in der mittleren Kruste als tiefer Aquifer interpretiert werden, der im Zusammenhang mit den zerrütteten Gesteinen der Table Mountain Group des Cape Fold Gürtels steht.
Taouk, Habib. "Wave propagation in general anisotropic media." Ohio : Ohio University, 1986. http://www.ohiolink.edu/etd/view.cgi?ohiou1183380228.
Full textLjungberg, Adam, and Nathalie Schmidt. "Deformationsstrukturer i ett duplext rostfritt stål (SAF 2507)." Thesis, Högskolan Dalarna, Materialteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:du-15770.
Full textIn order to improve the processes and the use of the duplex stainless steel SAF 2507, its deformation properties has to be investigated and explained. Through EBSD-analysis deformation structures and pole figures have been developed to describe the behavior of the material during deformation. Also Taylor factors, Young’s modules and Poisson's ratio have been developed in order to investigate the material's anisotropy. The experiments have been performed on samples of SAF 2507 which has been plastically deformed at different strains. The strains studied are undeformed sample, samples drawn uniaxial drawn to 7.7 % and 24.3 % elongation, and one sample which is cyclically loaded to 3% elongation. The steel we have investigated is produced by two different methods, but in this report, only the extruded steel is investigated. By comparing how different mechanical properties of the steel behave during plastic deformation, the result shows that the steel’s ferrite phase behaves anisotropically with a hint of increasing isotropy when the deformation is increasing. The austenite phase behaves isotropic and does not become more or less isotropic with increasing deformation. The substructures in the ferrite phase are clearly increasing with increasing deformation, and are seen mainly in the austenite phase after 24 % deformation.
Vallefuoco, Donato. "Numerical study of unconfined and confined anisotropic turbulence." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC053/document.
Full textIn turbulent flows of practical interest, turbulence interacts with confinement and external forces, leading to statistical inhomogeneity and anisotropy. Isolating their contributions to some targeted statistics is indispensable for understanding the underlying physical phenomena. The aim of this thesis has therefore been to gain further insight into direction- and scale-dependent anisotropy in a set of idealized and realistic contexts. Both spectral space and separation space statistical characterizations have been employed. The spectral characterization concerns the anisotropic statistics of turbulence under the form of directional energy, polarization and helicity spectra. The separation space characterization is built on two-point second- and third-order velocity increment moments, and two-point velocity correlations. First, we studied the effect of large-scale spectral forcing. The considered forcing methods are the non-helical and the helical Euler scheme, and the ABC-scheme. We showed that both forcings have a drawback in that, if the number of sufficiently excited modes is too low, anisotropy is bound to arise even at small scales. In the case of Euler forcing, this depends on both the range of forcing wavenumbers and its helicity contents. The ABC forcing, for which the amount of injected helicity cannot be controlled, excites only six modes and therefore always generates anisotropy at all resolved scales. Our second step was to analyze the scale- and direction-dependent anisotropy of homogeneous rotating turbulence. Surprisingly, anisotropy arises at all scales even at low rotation rate. In particular, we identified two anisotropic ranges with different features. In the large scales, directional anisotropy is larger and decreases with wavenumber. At smaller scales, it is much weaker—although still significant—and slowly increases with wavenumber all the way to the dissipative scales. Another interesting and original conclusion of this part of the work concerns the role of the Zeman scale and its link with the flow scale-dependent anisotropy. The Zeman scale was previously argued to be the characteristic lengthscale separating rotation-affected scales 2 from isotropic ones. Upon closer investigation using several simulations at different parameters, we found that the separating scale between large and weak anisotropy is rather the characteristic lengthscale at which rotation and dissipation effects balance. This result, however, does not contradict Zeman’s argument about isotropy recovery in the asymptotic limit of vanishing viscosity, since the separating scale vanishes at infinite Reynolds number, and therefore only the decreasing anisotropy range should persist and scales much smaller than the Zeman one may recover isotropy. Finally, we considered the von Kármán flow between two counter-rotating bladed disks in a cylindrical cavity. We repeated the separation space analysis in different small sub-regions, in order to question the possible analogies in the flow dynamics with that of homogeneous rotating turbulence. We found that, in the regions of the domain where the mean flow has a larger average rotation rate, the distributions of the statistics in separation space display some of the features typical of rotating turbulence
Ferraro, Filippo Jacopo. "Magnetic anisotropies and exchange bias in ultrathin cobalt layers for the tunnel anisotropic magnetoresistance." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAY086/document.
Full textIn the context of studying magnetic and spintronics phenomena occurring at the nanoscale, we investigated several aspects of Pt/Co/AlOx asymmetric structures. One of the objectives of this thesis was the control of the oxidation and the tailoring of the magnetic properties of these multilayers. We combined structural (X-Ray Reflectivity), transport (Anomalous Hall Effect) and magnetic measurements (VSM-SQUID), to study the interplay of magnetic and interfacial effects. One objective was to analyze the role that few monolayers (MLs) of CoO (which can form when overoxidizing the Al layer), could have on the properties of the stack. We used a wedge deposition techniques to control the oxidation on a subnanometer scale. We established that few MLs of CoO largely affect the total anisotropy of the stack. To further investigate the impact of the CoO, we engineered ultrathin Co(0.6nm)/CoO(0.6nm) bilayers. We performed field cooled measurements on this system and we found a large exchange bias anisotropy. These results indicate that the CoO keeps a large anisotropy even in the ML regime, help to rule out some of the models proposed to explain the exchange bias effect and imply that the usually neglected CoO presence must be considered in the energy balance of the system. We build perpendicular Tunneling Anisotropic MagnetoResistance (TAMR) devices based on the Pt/Co/AlOx structure. The TAMR is a relatively new spintronics effect in which the rotation of the magnetization in a single magnetic electrode (combined with the Spin-Orbit Coupling) can cause a change of the tunnel probability, which manifests as a magnetoresistance effect. We demonstrated that a careful control of the interface oxidation is crucial for the TAMR effect. The large induced magnetic anisotropy allowed us to achieve enhanced TAMR values compared to similar Pt/Co/AlOx structures
Quarta, Francesco. "Implementazione numerica di modelli algebrici espliciti per il flusso termico e il tensore degli sforzi di Reynolds in moti turbolenti anisotropi stazionari." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textEdström, Alexander. "Theoretical and Computational Studies on the Physics of Applied Magnetism : Magnetocrystalline Anisotropy of Transition Metal Magnets and Magnetic Effects in Elastic Electron Scattering." Doctoral thesis, Uppsala universitet, Materialteori, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-304666.
Full textFelaktigt ISBN i den tryckta versionen: 9789155497149
Azevedo, Carlos Alberto Cabral de. "Formulação alternativa para análise de domínios não-homogêneos e inclusões anisotrópicas via MEC." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-18102007-110753/.
Full textThis work deals with elastic 2D problems characterized by the presence of zones with different materials and anisotropic inclusions using the boundary element method. The anisotropy can be assumed either over the whole domain or defined only over some particular inclusions, which is the most usual case. Fundamental solutions for anisotropic domains, although well-known, lead to more complex formulations and may introduce difficulties when the analysis requires more complex material models as for instance plastic behavior, finite deformations, etc. The alternative formulation proposed in this work can be applied to anisotropic bodies using the classical fundamental solutions for 2D elastic isotropic domains plus correction given by an initial stress field. The domain region with anisotropic properties or only with different isotropic elastic parameters has to be discretized into cells to allow the required corrections, while the complementary part of the body requires only boundary discretization. The initial stress tensor to be applied to the anisiotropic region is defined as the isotropic material elastic stress tensor correction by introducing a local penalty matrix. This matrix is obtained by the difference between the elastic parameters between the reference values and the anisotropic material. This technique is particularly appropriate for anisotropic inclusion analysis, in which the domain discretization is required only over a small region, therefore increasing very little the number of degrees of freedom of the final algebraic system. The numerical results obtained by using the proposed formulation have demonstrated to be very accurate in comparison with either analytical solutions or the other numerical values.
Koabaz, Mahmoud. "Contribution à l’étude des ondes de LAMB dans une plaque anisotrope : théorie et expérience." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14071/document.
Full textThe ultrasonic radiation from a source located on one of the interfaces of an anisotropic plateis studied. The calculation of the Green tensor is performed in the general case of a 3Dproblem. Decomposition into multiple reflections /refractions, as a series of rays in the plate,is used for comparison between theory and experiment in the case of a single crystal of copper. The phase velocity and energy velocity are measured in terms of frequency ordirection of observation, for a plate of unidirectional carbon-epoxy, and compared withtheory
Books on the topic "Anisotropi"
Groupe français de rhéologie. Colloque national. Rhéologie des matériaux anisotropes =: Rheology of anisotropic materials. Toulouse: Cepadues-Éditions, 1986.
Find full textInternational Workshop on Seismic Anisotropy (6th 1994 Trondheim, Norway). Seismic anisotropy. Tulsa, Okla: Society of Exploration Geophysicists, 1996.
Find full textLi, Quan, ed. Anisotropic Nanomaterials. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18293-3.
Full textVannucci, Paolo. Anisotropic Elasticity. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5439-6.
Full textFreger, G. E. Spirally Anisotropic Composites. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
Find full textGivargizov, E. I. Highly anisotropic crystals. Dordrecht: D. Reidel Pub. Co., 1987.
Find full textFreger, G. E., V. N. Kestelman, and D. G. Freger. Spirally Anisotropic Composites. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09975-9.
Full textBook chapters on the topic "Anisotropi"
Giusfredi, Giovanni. "Propagazione della luce in mezzi anisotropi." In Manuale di Ottica, 751–902. Milano: Springer Milan, 2015. http://dx.doi.org/10.1007/978-88-470-5744-9_7.
Full textPacault, A., J. Hoarau, and J. Favède. "Anisotropie Diamagnétique — Diamagnetic Anisotropy." In Eigenschaften der Materie in Ihren Aggregatzuständen, 141–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-662-43334-8_2.
Full textTax, Chantal M. W., Elena Kleban, Muhamed Baraković, Maxime Chamberland, and Derek K. Jones. "Magnetic Resonance Imaging of $$T_2$$- and Diffusion Anisotropy Using a Tiltable Receive Coil." In Mathematics and Visualization, 247–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56215-1_12.
Full textWit, A. L. "Anisotropy and anisotropic reentry in myocardial infarction." In Myocardial Ischemia and Arrhythmia, 83–94. Heidelberg: Steinkopff, 1994. http://dx.doi.org/10.1007/978-3-642-72505-0_7.
Full textDiersch, Hans-Jörg G. "Anisotropy." In FEFLOW, 227–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38739-5_7.
Full textWackernagel, Hans. "Anisotropy." In Multivariate Geostatistics, 62–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05294-5_9.
Full textBrosius, Alexander, and Dorel Banabic. "Anisotropy." In CIRP Encyclopedia of Production Engineering, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-35950-7_6679-3.
Full textGooch, Jan W. "Anisotropic." In Encyclopedic Dictionary of Polymers, 41. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_668.
Full textGooch, Jan W. "Anisotropy." In Encyclopedic Dictionary of Polymers, 41. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_669.
Full textChen, Zengtao, and Cliff Butcher. "Anisotropy." In Micromechanics Modelling of Ductile Fracture, 75–100. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6098-1_3.
Full textConference papers on the topic "Anisotropi"
Lo, M. H., P. M. Tu, C. H. Wang, H. C. Kuo, S. C. Wang, H. W. Zan, C. Y. Chang, S. C. Hsu, Y. J. Cheng, and S. C. Huang. "Multilayer Epitaxial Lateral Overgrowth of Light Emitting Diode with Anisotropi-cally Etched GaN/sapphire Interface." In 2009 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2009. http://dx.doi.org/10.7567/ssdm.2009.e-5-3l.
Full textHilgert, Oliver, Susanne Höhler, and Holger Brauer. "Anisotropic HFI Welded Steel Pipes for Strain Based Design." In 2016 11th International Pipeline Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ipc2016-64194.
Full textlavsky, J., G. G. Long, A. J. Allen, L. Leblanc, M. Prystay, and C. Moreau. "Anisotropic Microstructure of Plasma-Sprayed Deposits." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p1577.
Full textUnnikrishnan, Ginu U., Glenn D. Barest, David B. Berry, Amira I. Hussein, and Elise F. Morgan. "Influence of Specimen-Specific Trabecular Anisotropy on QCT-Based Finite Element Analyses of Lumbar Vertebra." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80114.
Full textWang, B. X., and C. Y. Zhao. "Polarized Radiative Transfer in Anisotropic Disordered Media With Short-Range Order." In ASME 2017 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ht2017-5051.
Full textThomopoulos, Stavros, and Jeffrey W. Holmes. "A Structural Basis for Anisotropy in Cardiac Fibroblast Populated Collagen Gels." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61209.
Full textNguyen, T. Dung, Houssem Badreddine, and Khémais Saanouni. "Non-Associative Finite Strain Plasticity Coupled With Anisotropic Ductile Damage for Metal Forming." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82797.
Full textKweon, Soondo, and Daniel S. Raja. "Damage and Anisotropy Evolution in the Free End Shear Problem." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52965.
Full textGaith, Mohamed S., and I. Alhayek. "The Measurement of Overall Elastic Stiffness and Bulk Modulus in Anisotropic Materials: Semiconductors." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10097.
Full textRaghupathy, Ramesh, Spencer P. Lake, Edward A. Sander, and Victor H. Barocas. "Generalized Anisotropic Inverse Mechanics: Mechanical Anisotropy Correlates With Structural Anisotropy in Collagen Based Tissue Equivalents." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19215.
Full textReports on the topic "Anisotropi"
Pechan, M. J. Magnetic multilayer interface anisotropy. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6958467.
Full textPechan, M. J. Magnetic multilayer interface anisotropy. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5158883.
Full textPechan, M. J. Magnetic multilayer interface anisotropy. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6554380.
Full textLee, Hung-Mou, and Chen-Kuo Yu. A Theorem of Anisotropic Absorbers. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada323831.
Full textCheng, C. Z. Magnetospheric equilibrium with anisotropic pressure. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/5730952.
Full textNikkel, D. J., D. S. Nath, A. A. Brown, and J. Casey. Modeling of Anisotropic Inelastic Behavior. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/793453.
Full textSahu, D., A. Langner, and Thomas F. George. Specific Heat of Anisotropic Superconductors. Fort Belvoir, VA: Defense Technical Information Center, July 1990. http://dx.doi.org/10.21236/ada225031.
Full textLi, Liang-shi. Anisotropy in CdSe quantum rods. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/827094.
Full textEvans, Jordan Andrew. Nuclear Reactor Materials and Anisotropy. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1578013.
Full textMoss, W., and J. Levatin. MOSSFRAC: An anisotropic 3D fracture model. Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/894759.
Full text