To see the other types of publications on this topic, follow the link: Anisotropic etching by cryogenic plasma.

Journal articles on the topic 'Anisotropic etching by cryogenic plasma'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Anisotropic etching by cryogenic plasma.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Isakovic, A. F., K. Evans-Lutterodt, D. Elliott, A. Stein, and J. B. Warren. "Cyclic, cryogenic, highly anisotropic plasma etching of silicon using SF6∕O2." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 26, no. 5 (September 2008): 1182–87. http://dx.doi.org/10.1116/1.2960557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Whang, Ki Woong, Seok Hyun Lee, and Ho Jun Lee. "Cryogenic electron cyclotron resonance plasma etching." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10, no. 4 (July 1992): 1307–12. http://dx.doi.org/10.1116/1.578244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Muttalib, Muhammad Firdaus A., Ruiqi Y. Chen, Stuart J. Pearce, and Martin D. B. Charlton. "Anisotropic Ta2O5 waveguide etching using inductively coupled plasma etching." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 32, no. 4 (July 2014): 041304. http://dx.doi.org/10.1116/1.4884557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hsiao, R., K. Yu, L. S. Fan, T. Pandhumsopom, H. Sanitini, S. A. Macdonald, and N. Robertson. "Anisotropic Etching of a Novalak‐Based Polymer at Cryogenic Temperature." Journal of The Electrochemical Society 144, no. 3 (March 1, 1997): 1008–13. http://dx.doi.org/10.1149/1.1837521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Quan-Zhi, Stefan Tinck, Jean-François de Marneffe, Liping Zhang, and Annemie Bogaerts. "Mechanisms for plasma cryogenic etching of porous materials." Applied Physics Letters 111, no. 17 (October 23, 2017): 173104. http://dx.doi.org/10.1063/1.4999439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aydil, Eray S., Jeffrey A. Gregus, and Richard A. Gottscho. "Electron cyclotron resonance plasma reactor for cryogenic etching." Review of Scientific Instruments 64, no. 12 (December 1993): 3572–84. http://dx.doi.org/10.1063/1.1144284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Knizikevičius, R., and V. Kopustinskas. "Anisotropic etching of silicon in SF6 plasma." Vacuum 77, no. 1 (December 2004): 1–4. http://dx.doi.org/10.1016/j.vacuum.2004.07.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Swanson, G. D., Takashi Tamagawa, and D. L. Polla. "Anisotropic Plasma Etching of Sputtered Zinc Oxide." Journal of The Electrochemical Society 137, no. 9 (September 1, 1990): 2982–84. http://dx.doi.org/10.1149/1.2087111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Etrillard, Jackie, Jean-Marc Francou, Alain Inard, and Daniel Henry. "Anisotropic Etching of Submicronic Resist Structures by Resonant Inductive Plasma Etching." Japanese Journal of Applied Physics 33, Part 1, No. 10 (October 15, 1994): 6005–12. http://dx.doi.org/10.1143/jjap.33.6005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Verhey, T. R., J. J. Rocca, and P. K. Boyer. "Anisotropic plasma‐chemical etching by an electron‐beam‐generated plasma." Journal of Applied Physics 63, no. 7 (April 1988): 2463–66. http://dx.doi.org/10.1063/1.341023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rahim, Rosminazuin A., Badariah Bais, and Majlis Burhanuddin Yeop. "Double-Step Plasma Etching for SiO2 Microcantilever Release." Advanced Materials Research 254 (May 2011): 140–43. http://dx.doi.org/10.4028/www.scientific.net/amr.254.140.

Full text
Abstract:
In this paper, an isotropic dry plasma etching was used to release the suspended SiO2 microcantilever from the substrate of SOI wafer. Employing the plasma dry etching technique, the frontside etching for the SiO2 microcantilever release is done using the Oxford Plasmalab System 100. To obtain the optimum condition for the microcantilever release using the plasma etcher, the etching parameters involved are 100 sccm of SF6 flow, 2000 W of capacitively coupled plasma (CCP) power, 3 W of inductively coupled plasma (ICP) power, 20°C of etching temperature and 30 mTorr chamber pressure. The optimum parameters yield lateral etch rate of about 5 μm/min and vertical etch rate of about 8 μm/min. Two etching methods have been considered in this study. The first method employs only the isotropic etching to realize the microcantilever release while the second method utilizes both the anisotropic etching and the isotropic etching. For the second method, the process starts with the anisotropic etching from the deep reactive ion etching (DRIE) system which is then followed by the isotropic etching to complete the microcantilever releasing process. The purpose of the anisotropic etching is to create an etching window for the subsequent isotropic etching process. By using double-step etching method which combines both isotropic and anisotropic plasma etching for the microcantilever release process, the releasing process of suspended microcantilever is significantly improved.
APA, Harvard, Vancouver, ISO, and other styles
12

Tobinaga, Y., T. Miyano, K. Fujimoto, M. Fujito, and H. Fujiwara. "Anisotropic ECR Plasma Etching with Low-Energy Ions." Materials Science Forum 140-142 (October 1993): 39–54. http://dx.doi.org/10.4028/www.scientific.net/msf.140-142.39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Malinin, A., T. Majamaa, and A. Hovinen. "Anisotropic Si reactive ion etching in fluorinated plasma." Microelectronic Engineering 43-44 (August 1998): 641–45. http://dx.doi.org/10.1016/s0167-9317(98)00238-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ding, R., L. J. Klein, M. A. Eriksson, and A. E. Wendt. "Anisotropic fluorocarbon plasma etching of Si∕SiGe heterostructures." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, no. 2 (2007): 404. http://dx.doi.org/10.1116/1.2712199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Varhue, Walter, Jeffrey Burroughs, and Walter Mlynko. "Electron cyclotron resonance plasma etching of photoresist at cryogenic temperatures." Journal of Applied Physics 72, no. 7 (October 1992): 3050–57. http://dx.doi.org/10.1063/1.351462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Yang, Xiaoji, and Jeffrey A. Hopwood. "Physical mechanisms for anisotropic plasma etching of cesium iodide." Journal of Applied Physics 96, no. 9 (November 2004): 4800–4806. http://dx.doi.org/10.1063/1.1803607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bliznetsov, Vladimir, Anbumalar Manickam, Junwei Chen, and Nagarajan Ranganathan. "High-throughput anisotropic plasma etching of polyimide for MEMS." Journal of Micromechanics and Microengineering 21, no. 6 (May 11, 2011): 067003. http://dx.doi.org/10.1088/0960-1317/21/6/067003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Tillocher, Thomas, Jack Nos, Gaëlle Antoun, Philippe Lefaucheux, Mohamed Boufnichel, and Rémi Dussart. "Comparison between Bosch and STiGer Processes for Deep Silicon Etching." Micromachines 12, no. 10 (September 23, 2021): 1143. http://dx.doi.org/10.3390/mi12101143.

Full text
Abstract:
The cryogenic process is well known to etch high aspect ratio features in silicon with smooth sidewalls. A time-multiplexed cryogenic process, called STiGer, was developed in 2006 and patented. Like the Bosch process, it consists in repeating cycles composed of an isotropic etching step followed by a passivation step. If the etching step is similar for both processes, the passivation step is a SiF4/O2 plasma that efficiently deposits a SiOxFy layer on the sidewalls only if the substrate is cooled at cryogenic temperature. In this paper, it is shown that the STiGer process can achieve profiles and performances equivalent to the Bosch process. However, since sidewall passivation is achieved with polymer free plasma chemistry, less frequent chamber cleaning is necessary, which contributes to increase the throughput.
APA, Harvard, Vancouver, ISO, and other styles
19

Lenk, Claudia, Martin Hofmann, Steve Lenk, Marcus Kaestner, Tzvetan Ivanov, Yana Krivoshapkina, Diana Nechepurenko, et al. "Nanofabrication by field-emission scanning probe lithography and cryogenic plasma etching." Microelectronic Engineering 192 (May 2018): 77–82. http://dx.doi.org/10.1016/j.mee.2018.01.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Craciun, G., M. A. Blauw, E. van der Drift, P. M. Sarro, and P. J. French. "Temperature influence on etching deep holes with SF6/O2 cryogenic plasma." Journal of Micromechanics and Microengineering 12, no. 4 (June 14, 2002): 390–94. http://dx.doi.org/10.1088/0960-1317/12/4/307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Haidar, Yehya, Ahmed Rhallabi, Amand Pateau, Arezki Mokrani, Fadia Taher, Fabrice Roqueta, and Mohamed Boufnichel. "Simulation of cryogenic silicon etching under SF6/O2/Ar plasma discharge." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 34, no. 6 (November 2016): 061306. http://dx.doi.org/10.1116/1.4966606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

CHOI, S. S., M. Y. JUNG, J. W. KIM, J. H. BOO, and J. S. YANG. "FABRICATION OF NEARFIELD OPTICAL PROBE ARRAY USING VARIOUS NANOFABRICATION PROCEDURES." International Journal of Nanoscience 02, no. 04n05 (August 2003): 283–91. http://dx.doi.org/10.1142/s0219581x03001309.

Full text
Abstract:
The nanosize silicon oxide aperture on the cantilever array has been successfully fabricated as nearfield optical probe. The various semiconductor processes were utilized for subwavelength size aperture fabrication. The anisotropic etching of the Si substrate by alkaline solutions followed by anisotropic crystal orientation dependent oxidation, anisotropic plasma etching, isotropic oxide etching was carried out. The 3 and 4 micron size dot array were patterned on the Si(100) wafer. After fabrication of the V-groove shape by anisotropic TMAH etching, the oxide growth at 1000° C was performed to have an oxide etch-mask. The oxide layer on the Si(111) plane have been utilized as an etch mask for plasma dry etching and water-diluted HF wet etching for nanosize aperture fabrication. The Au thin layer was deposited on the fabricated oxide nanosize aperture on the cantilever array. The 160 nm metal apertures on (5×1) cantilever array were successfully fabricated using electron beam evaporator.
APA, Harvard, Vancouver, ISO, and other styles
23

Lee, Jaemin, Hyun Woo Lee, and Kwang-Ho Kwon. "Characteristics of etching residues on the upper sidewall after anisotropic plasma etching of silicon." Applied Surface Science 517 (July 2020): 146189. http://dx.doi.org/10.1016/j.apsusc.2020.146189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Mansano, R. D., P. Verdonck, H. S. Maciel, and M. Massia. "Anisotropic inductively coupled plasma etching of silicon with pure SF6." Thin Solid Films 343-344 (April 1999): 378–80. http://dx.doi.org/10.1016/s0040-6090(98)01689-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Richter, K., M. Orfert, and K. Drescher. "Anisotropic patterning of copper-laminated polyimide foils by plasma etching." Surface and Coatings Technology 97, no. 1-3 (December 1997): 481–87. http://dx.doi.org/10.1016/s0257-8972(97)00209-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Knizikevičius, R. "Simulation of anisotropic etching of silicon in SF6+O2 plasma." Sensors and Actuators A: Physical 132, no. 2 (November 2006): 726–29. http://dx.doi.org/10.1016/j.sna.2006.02.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Park, Wontaek. "Anisotropic etching in inductive plasma source with no rf biasing." Journal of Applied Physics 104, no. 6 (September 15, 2008): 063302. http://dx.doi.org/10.1063/1.2979715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gadgil, P. K., D. Dane, and T. D. Mantei. "Anisotropic highly selective electron cyclotron resonance plasma etching of polysilicon." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10, no. 4 (July 1992): 1303–6. http://dx.doi.org/10.1116/1.578243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ding, Tao, Ye Tian, Kui Liang, Koen Clays, Kai Song, Guoqiang Yang, and Chen-Ho Tung. "Anisotropic oxygen plasma etching of colloidal particles in electrospun fibers." Chem. Commun. 47, no. 8 (2011): 2429–31. http://dx.doi.org/10.1039/c0cc04393a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kamto, A., R. Divan, A. V. Sumant, and S. L. Burkett. "Cryogenic inductively coupled plasma etching for fabrication of tapered through-silicon vias." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 28, no. 4 (July 2010): 719–25. http://dx.doi.org/10.1116/1.3281005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chanson, Romain, Remi Dussart, Thomas Tillocher, P. Lefaucheux, Christian Dussarrat, and Jean François de Marneffe. "Low-k integration: Gas screening for cryogenic etching and plasma damage mitigation." Frontiers of Chemical Science and Engineering 13, no. 3 (July 24, 2019): 511–16. http://dx.doi.org/10.1007/s11705-019-1820-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Burtsev, A., Y. X. Li, H. W. Zeijl, and C. I. M. Beenakker. "An anisotropic U-shaped SF6-based plasma silicon trench etching investigation." Microelectronic Engineering 40, no. 2 (July 1998): 85–97. http://dx.doi.org/10.1016/s0167-9317(98)00149-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Blauw, Michiel A., Peter Van Lankvelt, F. Roozeboom, Erwin Kessels, and Richard van de Sanden. "High-Rate Anisotropic Silicon Etching with the Expanding Thermal Plasma Technique." ECS Transactions 3, no. 10 (December 21, 2019): 291–98. http://dx.doi.org/10.1149/1.2357269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Schüppert, B., E. Brose, K. Petermann, and R. Moosburger. "Anisotropic plasma etching of polymers using a cryo-cooled resist mask." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 18, no. 2 (March 2000): 385–87. http://dx.doi.org/10.1116/1.582197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Handke, R., R. Krzikalla, and Gud Lippert. "Anisotropic plasma etching of P-doped poly-Si with CCl4/He." Crystal Research and Technology 23, no. 9 (September 1988): 1085–91. http://dx.doi.org/10.1002/crat.2170230906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Perry, A. J., and R. W. Boswell. "Fast anisotropic etching of silicon in an inductively coupled plasma reactor." Applied Physics Letters 55, no. 2 (July 10, 1989): 148–50. http://dx.doi.org/10.1063/1.102127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Pomot, C. "Anisotropic etching of silicon using an SF6/Ar microwave multipolar plasma." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 4, no. 1 (January 1986): 1. http://dx.doi.org/10.1116/1.583437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Blauw, M. A., P. J. W. van Lankvelt, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels. "High-Rate Anisotropic Silicon Etching with the Expanding Thermal Plasma Technique." Electrochemical and Solid-State Letters 10, no. 10 (2007): H309. http://dx.doi.org/10.1149/1.2769563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Мирошкин, Я. А. "ИССЛЕДОВАНИЕ ПРОЦЕССА ГЛУБОКОГО ТРАВЛЕНИЯ КРЕМНИЯ С МИНИМАЛЬНОЙ ШЕРОХОВАТОСТЬЮ СТЕНОК И ДНА СТРУКТУР." NANOINDUSTRY Russia 96, no. 3s (June 15, 2020): 668–75. http://dx.doi.org/10.22184/1993-8578.2020.13.3s.668.675.

Full text
Abstract:
Данная работа посвящена исследованию процессов глубокого анизотропного травления кремния. В качестве предложенных методов были проанализированы два подхода - Bosch и Cryo. Представлено феноменологическое описание вышеупомянутых методов, проведен анализ эксперимента по криогенному травлению кремния, полученный на базе ФТИАН, также предложена аналитическая модель Cryo-процесса. This work is devoted to the study of the processes of deep anisotropic silicon etching. Two approaches (Bosch and Cryo) have been analyzed as proposed methods. The phenomenological description of the above mentioned methods has been presented, the analysis of the experiment on cryogenic etching of silicon obtained on the basis of FTIAN has been carried out, as well as an analytical model of Cryo process has been proposed.
APA, Harvard, Vancouver, ISO, and other styles
40

Miakonkikh, A. V., S. N. Averkin, and K. V. Rudenko. "Anisotropic plasma etching of Silicon in gas chopping process by alternating steps of oxidation and etching." Journal of Physics: Conference Series 1243 (May 2019): 012009. http://dx.doi.org/10.1088/1742-6596/1243/1/012009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Dussart, R., T. Tillocher, P. Lefaucheux, and M. Boufnichel. "Plasma cryogenic etching of silicon: from the early days to today's advanced technologies." Journal of Physics D: Applied Physics 47, no. 12 (March 6, 2014): 123001. http://dx.doi.org/10.1088/0022-3727/47/12/123001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Samukawa, Seiji, Shinya Kumagai, and Toshiaki Shiraiwa. "Highly Anisotropic and Corrosionless PtMn Etching Using Pulse-Time-Modulated Chlorine Plasma." Japanese Journal of Applied Physics 42, Part 2, No. 10B (October 8, 2003): L1272—L1274. http://dx.doi.org/10.1143/jjap.42.l1272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Park, Jong Cheon, Seong Hak Kim, Seung Uk Cha, Ok Geun Jeong, Tae Gyu Kim, Jin Kon Kim, and Hyun Cho. "Anisotropic Pattern Transfer in Ultrananocrystalline Diamond Films by Inductively Coupled Plasma Etching." Journal of Nanoscience and Nanotechnology 14, no. 12 (December 1, 2014): 9078–81. http://dx.doi.org/10.1166/jnn.2014.10102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Knizikevičius, R., A. Galdikas, and A. Grigonis. "Real dimensional simulation of anisotropic etching of silicon in CF4+O2 plasma." Vacuum 66, no. 1 (June 2002): 39–47. http://dx.doi.org/10.1016/s0042-207x(01)00418-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Morozov, O. V., and I. I. Amirov. "Aspect-ratio-independent anisotropic silicon etching in a plasma chemical cyclic process." Russian Microelectronics 36, no. 5 (September 2007): 333–41. http://dx.doi.org/10.1134/s1063739707050071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zou, H. "Anisotropic Si deep beam etching with profile control using SF6/O2 Plasma." Microsystem Technologies 10, no. 8-9 (November 2004): 603–7. http://dx.doi.org/10.1007/s00542-003-0338-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Castro, Marcelo S. B., Sebastien Barnola, and Barbara Glück. "Selective and Anisotropic Dry Etching of Ge over Si." Journal of Integrated Circuits and Systems 8, no. 2 (December 28, 2013): 104–9. http://dx.doi.org/10.29292/jics.v8i2.380.

Full text
Abstract:
Inductively coupled plasma (ICP) etching of Ge with high selectivity over Si and anisotropic etched profiles using CF4, HBr, SF6, and Cl2 reactive gases has been studied. Because pressure and biased power should be the most important parameters to drive selectivity and etch profile, they were varied from 4 to 50 mTorr and from 0 to 50 W, respectively, so as to investigate their influence on process. Total gas flow (100 sccm) and source power (350 W) were initially held constant. Selectivity greater than 100:1 of Ge over Si was achieved using 100 % Cl2 etch gas at 50 mTorr and zero bias power but the profile of the etched features was isotropic. With the addition of N2 to the feed gas (Cl2) the profile became more anisotropic. A three steps ICP etch process was developed with a final Ge/Si etch selectivity of 5:1 and anisotropic profiles.
APA, Harvard, Vancouver, ISO, and other styles
48

Etrillard, J., P. Ossart, G. Patriarche, M. Juhel, J. F. Bresse, and C. Daguet. "Anisotropic etching of InP with low sidewall and surface induced damage in inductively coupled plasma etching using SiCl4." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 15, no. 3 (May 1997): 626–32. http://dx.doi.org/10.1116/1.580695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

SAMUKAWA, Seiji. "Damage-free and Anisotropic Magnetic Tunneling Junction Etching by Pulse-Time-Modulated Plasma." Journal of the Vacuum Society of Japan 51, no. 9 (2008): 594–98. http://dx.doi.org/10.3131/jvsj2.51.594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Amirov, I. I., and V. A. Fedorov. "Fabrication of 0.5-μm structures by dry electron lithography and anisotropic plasma etching." Russian Microelectronics 29, no. 5 (September 2000): 311–15. http://dx.doi.org/10.1007/bf02773282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography