Journal articles on the topic 'Ankle-foot prosthesis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Ankle-foot prosthesis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
De Pauw, Kevin, Pierre Cherelle, Bart Roelands, Dirk Lefeber, and Romain Meeusen. "The efficacy of the Ankle Mimicking Prosthetic Foot prototype 4.0 during walking: Physiological determinants." Prosthetics and Orthotics International 42, no. 5 (2018): 504–10. http://dx.doi.org/10.1177/0309364618767141.
Full textNaseri, Amirreza, Majid Mohammadi Moghaddam, Mohammad Gharini, and Maziar Ahmad Sharbafi. "A Novel Adjustable Damper Design for a Hybrid Passive Ankle Prosthesis." Actuators 9, no. 3 (2020): 74. http://dx.doi.org/10.3390/act9030074.
Full textCohen-Sobel, E., MA Caselli, and J. Rizzuto. "Prosthetic management of a Chopart amputation variant." Journal of the American Podiatric Medical Association 84, no. 10 (1994): 505–10. http://dx.doi.org/10.7547/87507315-84-10-505.
Full textAu, Samuel, and Hugh Herr. "Powered ankle-foot prosthesis." IEEE Robotics & Automation Magazine 15, no. 3 (2008): 52–59. http://dx.doi.org/10.1109/mra.2008.927697.
Full textRussell Esposito, Elizabeth, Jennifer M. Aldridge Whitehead, and Jason M. Wilken. "Step-to-step transition work during level and inclined walking using passive and powered ankle–foot prostheses." Prosthetics and Orthotics International 40, no. 3 (2015): 311–19. http://dx.doi.org/10.1177/0309364614564021.
Full textHerr, Hugh M., and Alena M. Grabowski. "Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation." Proceedings of the Royal Society B: Biological Sciences 279, no. 1728 (2011): 457–64. http://dx.doi.org/10.1098/rspb.2011.1194.
Full textSafaeepour, Zahra, Ali Esteki, Farhad Tabatabai Ghomshe, and Mohammad E. Mousavai. "Design and development of a novel viscoelastic ankle-foot prosthesis based on the human ankle biomechanics." Prosthetics and Orthotics International 38, no. 5 (2014): 400–404. http://dx.doi.org/10.1177/0309364613505108.
Full textVerheul, Floor Jacoba Marie-Georgette, Olaf Verschuren, Maremka Zwinkels, et al. "Effectiveness of a crossover prosthetic foot in active children with a congenital lower limb deficiency: an explorative study." Prosthetics and Orthotics International 44, no. 5 (2020): 305–13. http://dx.doi.org/10.1177/0309364620912063.
Full textSedki, Imad, and Raymond Moore. "Patient evaluation of the Echelon foot using the Seattle Prosthesis Evaluation Questionnaire." Prosthetics and Orthotics International 37, no. 3 (2012): 250–54. http://dx.doi.org/10.1177/0309364612458448.
Full textMulder, Inge A., Herman R. Holtslag, Leonardus FA Beersma, and Bart FJM Koopman. "Keep moving forward: A new energy returning prosthetic device with low installation height after Syme or Pirogoff amputation." Prosthetics and Orthotics International 38, no. 1 (2013): 12–20. http://dx.doi.org/10.1177/0309364613485112.
Full textMontgomery, Jana R., and Alena M. Grabowski. "Use of a powered ankle–foot prosthesis reduces the metabolic cost of uphill walking and improves leg work symmetry in people with transtibial amputations." Journal of The Royal Society Interface 15, no. 145 (2018): 20180442. http://dx.doi.org/10.1098/rsif.2018.0442.
Full textWurdeman, Shane R., Phillip M. Stevens, and James H. Campbell. "Mobility analysis of AmpuTees (MAAT 5): Impact of five common prosthetic ankle-foot categories for individuals with diabetic/dysvascular amputation." Journal of Rehabilitation and Assistive Technologies Engineering 6 (January 2019): 205566831882078. http://dx.doi.org/10.1177/2055668318820784.
Full textAlleva, Stefano, Michele Gabrio Antonelli, Pierluigi Beomonte Zobel, and Francesco Durante. "Biomechanical Design and Prototyping of a Powered Ankle-Foot Prosthesis." Materials 13, no. 24 (2020): 5806. http://dx.doi.org/10.3390/ma13245806.
Full textLacraz, Alain, Stéphane Armand, Katia Turcot, et al. "Comparison of the Otto Bock solid ankle cushion heel foot with wooden keel to the low-cost CR-Equipements™solid ankle cushion heel foot with polypropylene keel: A randomized prospective double-blind crossover study assessing patient satisfaction and energy expenditure." Prosthetics and Orthotics International 41, no. 3 (2016): 258–65. http://dx.doi.org/10.1177/0309364616677649.
Full textEndo, Ken, and Hugh Herr. "1P1-J13 A Powered Ankle-foot Prosthesis with an Artificial Gastrocnemius." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2009 (2009): _1P1—J13_1—_1P1—J13_2. http://dx.doi.org/10.1299/jsmermd.2009._1p1-j13_1.
Full textMarkowitz, Jared, Pavitra Krishnaswamy, Michael F. Eilenberg, Ken Endo, Chris Barnhart, and Hugh Herr. "Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model." Philosophical Transactions of the Royal Society B: Biological Sciences 366, no. 1570 (2011): 1621–31. http://dx.doi.org/10.1098/rstb.2010.0347.
Full textDebta, Sanghamitra, and Kaushik Kumar. "Design and Analysis of Powered Ankle-Foot Mechanism Using Hydraulic System." Applied Mechanics and Materials 877 (February 2018): 384–90. http://dx.doi.org/10.4028/www.scientific.net/amm.877.384.
Full textMcNealy, Lexyne L., and Steven A. Gard. "Effect of prosthetic ankle units on the gait of persons with bilateral trans-femoral amputations." Prosthetics and Orthotics International 32, no. 1 (2008): 111–26. http://dx.doi.org/10.1080/02699200701847244.
Full textEilenberg, Michael F., Jiun-Yih Kuan, and Hugh Herr. "Development and Evaluation of a Powered Artificial Gastrocnemius for Transtibial Amputee Gait." Journal of Robotics 2018 (2018): 1–15. http://dx.doi.org/10.1155/2018/5951965.
Full textEilenberg, Michael F., Ken Endo, and Hugh Herr. "Biomechanic and Energetic Effects of a Quasi-Passive Artificial Gastrocnemius on Transtibial Amputee Gait." Journal of Robotics 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/6756027.
Full textCurran, Sarah A., and David K. Lyle. "Adaptive Sports Ankle Prosthetics." Prosthetics and Orthotics International 36, no. 3 (2012): 370–75. http://dx.doi.org/10.1177/0309364612453249.
Full textAbdelaal, Osama, Saied Darwish, Khaled Abd Elmougoud, and Saleh Aldahash. "A new methodology for design and manufacturing of a customized silicone partial foot prosthesis using indirect additive manufacturing." International Journal of Artificial Organs 42, no. 11 (2019): 645–57. http://dx.doi.org/10.1177/0391398819847682.
Full textCherelle, Pierre, Karen Junius, Victor Grosu, Heidi Cuypers, Bram Vanderborght, and Dirk Lefeber. "The AMP-Foot 2.1 : actuator design, control and experiments with an amputee." Robotica 32, no. 8 (2014): 1347–61. http://dx.doi.org/10.1017/s026357471400229x.
Full textHarnroongroj, Thos. "The Talar Body Prosthesis Treated End Stage Ankle Arthrosis." Foot & Ankle Orthopaedics 2, no. 3 (2017): 2473011417S0001. http://dx.doi.org/10.1177/2473011417s000189.
Full textHwang, Yeokgu, Kwang Hwan Park, Seung Hwan Han, and Jin Woo Lee. "Long-Term Outcomes of Total Ankle arthroplasty with mobile bearing in 124 ankles, Over eight years of follow-up." Foot & Ankle Orthopaedics 3, no. 3 (2018): 2473011418S0025. http://dx.doi.org/10.1177/2473011418s00258.
Full textAbbott, Emily M., Zoe Merchant, Erica Lee, et al. "Evaluation of True Ankle Motion Following Total Ankle Replacement Utilizing XROMM technology." Foot & Ankle Orthopaedics 5, no. 4 (2020): 2473011420S0001. http://dx.doi.org/10.1177/2473011420s00017.
Full textAu, S. K., J. Weber, and H. Herr. "Powered Ankle--Foot Prosthesis Improves Walking Metabolic Economy." IEEE Transactions on Robotics 25, no. 1 (2009): 51–66. http://dx.doi.org/10.1109/tro.2008.2008747.
Full textQuesada, P. M., M. Pitkin, and J. Colvin. "Biomechanical evaluation of a prototype foot/ankle prosthesis." IEEE Transactions on Rehabilitation Engineering 8, no. 1 (2000): 156–59. http://dx.doi.org/10.1109/86.830960.
Full textKoehler-McNicholas, Sara R., Billie C. Savvas Slater, Karl Koester, Eric A. Nickel, John E. Ferguson, and Andrew H. Hansen. "Bimodal ankle-foot prosthesis for enhanced standing stability." PLOS ONE 13, no. 9 (2018): e0204512. http://dx.doi.org/10.1371/journal.pone.0204512.
Full textHeidarzadeh, Siamak, Mojtaba Sharifi, Hassan Salarieh, and Aria Alasty. "A Novel Robust Model Reference Adaptive Impedance Control Scheme for an Active Transtibial Prosthesis." Robotica 37, no. 9 (2019): 1562–81. http://dx.doi.org/10.1017/s0263574719000146.
Full textSchipper, Oliver, Steven Haddad, and Alexander Van den Avont. "Outcomes of Revision Ankle Arthroplasty using a Fixed-bearing, Stemmed Intramedullary Prosthesis." Foot & Ankle Orthopaedics 2, no. 3 (2017): 2473011417S0003. http://dx.doi.org/10.1177/2473011417s000357.
Full textDongo, Tafadzwa, Benard W. Ikua, Daniel Nyamongo Sagwe, and Elliot J. Rouse. "Development of a Passive Ankle Foot Prosthesis with Manually Adjustable Ankle Stiffness." Open Journal of Therapy and Rehabilitation 07, no. 04 (2019): 131–39. http://dx.doi.org/10.4236/ojtr.2019.74009.
Full textBrackx, Branko, Michaël Van Damme, Arnout Matthys, Bram Vanderborght, and Dirk Lefeber. "Passive Ankle-Foot Prosthesis Prototype with Extended Push-Off." International Journal of Advanced Robotic Systems 10, no. 2 (2013): 101. http://dx.doi.org/10.5772/55170.
Full textDebta, Sanghamitra, and Kaushik Kumar. "Biomedical Design of Powered Ankle- Foot Prosthesis – A Review." Materials Today: Proceedings 5, no. 2 (2018): 3273–82. http://dx.doi.org/10.1016/j.matpr.2017.11.569.
Full textParadisi, Francesco, Anna Sofia Delussu, Stefano Brunelli, et al. "The Conventional Non-Articulated SACH or a Multiaxial Prosthetic Foot for Hypomobile Transtibial Amputees? A Clinical Comparison on Mobility, Balance, and Quality of Life." Scientific World Journal 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/261801.
Full textHansen, Andrew. "Effects of Alignment on the Roll-Over Shapes of Prosthetic Feet." Prosthetics and Orthotics International 32, no. 4 (2008): 390–402. http://dx.doi.org/10.1080/03093640802366158.
Full textHansen, Andrew H., Margrit R. Meier, Pinata H. Sessoms, and Dudley S. Childress. "The Effects of Prosthetic Foot Roll-Over Shape Arc Length on the Gait of Trans-Tibial Prosthesis Users." Prosthetics and Orthotics International 30, no. 3 (2006): 286–99. http://dx.doi.org/10.1080/03093640600816982.
Full textSanders, Michael, Anton E. Bowden, Spencer Baker, Ryan Jensen, McKenzie Nichols, and Matthew K. Seeley. "The Influence of Ambulatory Aid on Lower-Extremity Muscle Activation During Gait." Journal of Sport Rehabilitation 27, no. 3 (2018): 230–36. http://dx.doi.org/10.1123/jsr.2016-0148.
Full textDarter, Benjamin J., and Jason M. Wilken. "Energetic consequences of using a prosthesis with adaptive ankle motion during slope walking in persons with a transtibial amputation." Prosthetics and Orthotics International 38, no. 1 (2013): 5–11. http://dx.doi.org/10.1177/0309364613481489.
Full textLisboa Neto, Waldo Campos, Marco Túlio Costa, and Ricardo Cardenuto Ferreira. "Preliminary short-term results of ankle arthroplasty with the Taric® prosthesis." Journal of the Foot & Ankle 14, no. 1 (2020): 29–35. http://dx.doi.org/10.30795/jfootankle.2020.v14.1132.
Full textXiaojun, Liang, and Zhao Hong-Mou. "Short-Term Effect of the INBONE II Total Ankle Arthroplasty in the Treatment of End-Stage Ankle Arthritis." Foot & Ankle Orthopaedics 5, no. 4 (2020): 2473011420S0050. http://dx.doi.org/10.1177/2473011420s00501.
Full textThermann, Hajo. "Total Ankle Arthroplasty: Why does it fail?" Journal of Foot and Ankle Surgery (Asia Pacific) 1, no. 2 (2014): 41–47. http://dx.doi.org/10.5005/jp-journals-10040-1010.
Full textShepherd, Max K., and Elliott J. Rouse. "The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness." IEEE Transactions on Neural Systems and Rehabilitation Engineering 25, no. 12 (2017): 2375–86. http://dx.doi.org/10.1109/tnsre.2017.2750113.
Full textDebta, Sanghamitra, and Kaushik Kumar. "Static Structural Analysis of a Powered Ankle Foot Prosthesis Mechanism." Materials Today: Proceedings 5, no. 5 (2018): 11616–21. http://dx.doi.org/10.1016/j.matpr.2018.02.131.
Full textFylstra, Bretta L., I.-Chieh Lee, Stephanie Huang, Andrea Brandt, Michael D. Lewek, and He (Helen) Huang. "Human-prosthesis coordination: A preliminary study exploring coordination with a powered ankle-foot prosthesis." Clinical Biomechanics 80 (December 2020): 105171. http://dx.doi.org/10.1016/j.clinbiomech.2020.105171.
Full textMarencakova, Jitka, Tomas Gryc, and Frantisek Zahalka. "THE EFFECT OF SPEED ON GAIT ASYMMETRY IN SUBJECT WITH CONGENITAL TIBIAL DEFICIENCY: A CASE STUDY." Lékař a technika - Clinician and Technology 49, no. 4 (2020): 112–18. http://dx.doi.org/10.14311/ctj.2019.4.02.
Full textAgrawal, Vibhor, Robert Gailey, Christopher O’Toole, Ignacio Gaunaurd, and Adam Finnieston. "Influence of gait training and prosthetic foot category on external work symmetry during unilateral transtibial amputee gait." Prosthetics and Orthotics International 37, no. 5 (2013): 396–403. http://dx.doi.org/10.1177/0309364612473501.
Full textKaib, T., J. Schäfer, J. Block, et al. "Biomechanical analysis of stair ascent in persons with Chopart amputation." Prosthetics and Orthotics International 44, no. 3 (2020): 164–71. http://dx.doi.org/10.1177/0309364619900737.
Full textSchlafly, Millicent, and Kyle B. Reed. "Novel passive ankle-foot prosthesis mimics able-bodied ankle angles and ground reaction forces." Clinical Biomechanics 72 (February 2020): 202–10. http://dx.doi.org/10.1016/j.clinbiomech.2019.12.016.
Full textRachmat, Nur, and Herawati Priangi . "STUDI KASUS : GAMBARAN DIRI PASIEN AMPUTASI COPART PROSTHESIS AKIBAT TRAUMA KECELAKAN UNTUK PASIEN AMPUTASI ANKLE." Jurnal Sehat Mandiri 14, no. 1 (2019): 18–28. http://dx.doi.org/10.33761/jsm.v14i1.87.
Full text