Academic literature on the topic 'Ankyrine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ankyrine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ankyrine"

1

Kordeli, E., and V. Bennett. "Distinct ankyrin isoforms at neuron cell bodies and nodes of Ranvier resolved using erythrocyte ankyrin-deficient mice." Journal of Cell Biology 114, no. 6 (1991): 1243–59. http://dx.doi.org/10.1083/jcb.114.6.1243.

Full text
Abstract:
Isoforms of ankyrin (ankyrinsR) immunologically related to erythrocyte ankyrin (ankyrinRo) are associated with distinct neuronal plasma membrane domains of functional importance, such as cell bodies and dendrites, axonal hillock and initial segments, and nodes of Ranvier. AnkyrinRo is expressed in brain, and accounts for at least one of the ankyrinR isoforms. Another ankyrin isoform of brain, ankyrinB, is encoded by a distinct gene and is immunologically distinct from ankyrinsR. Mutant mice with normoblastosis (nb/nb) constitute the first described genetic model of ankyrin deficiency: they display a severe hemolytic anemia due to a significantly reduced expression of the ankyrinRo gene in reticulocytes as well as brain (Peters L. L., C. S. Birkenmeier, R. T. Bronson, R. A. White, S. E. Lux, E. Otto, V. Bennett, A. Higgins, and J. E. Barker. 1991. J. Cell Biol. 114:1233-1241). In the present report, we distinguish between ankyrinRo and other ankyrinR isoforms using immunoblot analysis and immunofluorescence localization of ankyrinsR throughout the nervous system (forebrain, cerebellum, brain stem, spinal cord, and sciatic nerve) of nb/nb and normal mice. This is the first immunocytochemical characterization of the neurological component of the nb mutation and shows the following. (a) The isoform of ankyrin at the nodes of Ranvier and initial axonal segments is present in the nb/nb mice and does not cross-react with an ankyrinRo-specific antibody; this isoform, therefore, is distinct from both ankyrin isoforms identified in brain, ankyrinRo and ankyrinB, and is probably the product of a distinct gene and a unique component of the specialized membrane skeleton associated with nodes of Ranvier. (b) AnkyrinRo missing from nb/nb mice is selectively associated with neuronal cell bodies and dendrites, excluded from myelinated axons, and displays a selective pattern of expression in the nervous system whereby expression is almost ubiquitous in neurons of the cerebellum (Purkinje and granule cells) and spinal cord, and restricted to a very minor subset of neurons in hippocampus and neocortex of forebrain.
APA, Harvard, Vancouver, ISO, and other styles
2

Otto, E., M. Kunimoto, T. McLaughlin, and V. Bennett. "Isolation and characterization of cDNAs encoding human brain ankyrins reveal a family of alternatively spliced genes." Journal of Cell Biology 114, no. 2 (1991): 241–53. http://dx.doi.org/10.1083/jcb.114.2.241.

Full text
Abstract:
Ankyrins are a family of membrane-associated proteins that can be divided into two immunologically distinct groups: (a) erythrocyte-related isoforms (ankyrinR) that have polarized distributions in particular cell types; and (b) brain-related isoforms (ankyrinB) that display a broader distribution. In this paper, we report the isolation and sequences of cDNAs related to two ankyrinB isoforms, human brain ankyrin 1 and 2, and show that these isoforms are produced from alternatively spliced mRNAs of a single gene. Human brain ankyrin 1 and 2 share a common NH2-terminus that is similar to human erythrocyte ankyrins, with the most striking conservation occurring between areas composed of a repeated 33-amino acid motif and between areas corresponding to the central portion of the spectrin-binding domain. In contrast, COOH-terminal sequences of brain ankyrin 1 and 2 are distinct from one another and from human erythrocyte ankyrins, and thus are candidates to mediate protein interactions that distinguish these isoforms. The brain ankyrin 2 cDNA sequence includes a stop codon and encodes a polypeptide with a predicted molecular mass of 202 kD, which is similar to the Mr of the major form of ankyrin in adult bovine brain membranes. Moreover, an antibody raised against the conserved NH2-terminal domain of brain ankyrin cross-reacts with a single Mr = 220 kD polypeptide in adult human brain. These results strongly suggest that the amino acid sequence of brain ankyrin 2 determined in this report represents the complete coding sequence of the major form of ankyrin in adult human brain. In contrast, the brain ankyrin 1 cDNAs encode only part of a larger isoform. An immunoreactive polypeptide of Mr = 440 kD, which is evident in brain tissue of young rats, is a candidate to be encoded by brain ankyrin 1 mRNA. The COOH-terminal portion of brain ankyrin 1 includes 15 contiguous copies of a novel 12-amino acid repeat. Analysis of DNA from a panel of human/rodent cell hybrids linked this human brain ankyrin gene to chromosome 4. This result, coupled with previous reports assigning the human erythrocyte ankyrin gene to chromosome 8, demonstrates that human brain and erythrocyte ankyrins are encoded by distinct members of a multigene family.
APA, Harvard, Vancouver, ISO, and other styles
3

Kordeli, E., M. A. Ludosky, C. Deprette, T. Frappier, and J. Cartaud. "AnkyrinG is associated with the postsynaptic membrane and the sarcoplasmic reticulum in the skeletal muscle fiber." Journal of Cell Science 111, no. 15 (1998): 2197–207. http://dx.doi.org/10.1242/jcs.111.15.2197.

Full text
Abstract:
Ankyrins are a multi-gene family of peripheral proteins that link ion channels and cell adhesion molecules to the spectrin-based skeleton in specialized membrane domains. In the mammalian skeletal myofiber, ankyrins were immunolocalized in several membrane domains, namely the costameres, the postsynaptic membrane and the triads. Ank1 and Ank3 transcripts were previously detected in skeletal muscle by northern blot analysis. However, the ankyrin isoforms associated with these domains were not identified, with the exception of an unconventional Ank1 gene product that was recently localized at discrete sites of the sarcoplasmic reticulum. Here we study the expression and subcellular distribution of the Ank3 gene products, the ankyrinsG, in the rat skeletal muscle fiber. Northern blot analysis of rat skeletal muscle mRNAs using domain-specific Ank3 cDNA probes revealed two transcripts of 8.0 kb and 5.6 kb containing the spectrin-binding and C-terminal, but not the serine-rich, domains. Reverse transcriptase PCR analysis of rat skeletal muscle total RNA confirmed the presence of Ank3 transcripts that lacked the serine-rich and tail domains, a major insert of 7813 bp at the junction of the spectrin-binding and C-terminal domains that was previously identified in brain Ank3 transcripts. Immunoblot analysis of total skeletal muscle homogenates using ankyrinG-specific antibodies revealed one major 100 kDa ankyrinG polypeptide. Immunofluorescence labeling of rat diaphragm cryosections showed that ankyrin(s)G are selectively associated with (1) the depths of the postsynaptic membrane folds, where the voltage-dependent sodium channel and N-CAM accumulate, and (2) the sarcoplasmic reticulum, as confirmed by codistribution with the sarcoplasmic reticulum Ca2+-ATPase (SERCA 1). At variance with ankyrin(s)G, ankyrin(s)R (ank1 gene products) accumulate at the sarcolemma and at sarcoplasmic structures, in register with A-bands. Both ankyrin isoforms codistributed over Z-lines and at the postsynaptic membrane. These data extend the notion that ankyrins are differentially localized within myofibers, and point to a role of the ankyrinG family in the organization of the sarcoplasmic reticulum and the postsynaptic membrane.
APA, Harvard, Vancouver, ISO, and other styles
4

Kunimoto, M., E. Otto, and V. Bennett. "A new 440-kD isoform is the major ankyrin in neonatal rat brain." Journal of Cell Biology 115, no. 5 (1991): 1319–31. http://dx.doi.org/10.1083/jcb.115.5.1319.

Full text
Abstract:
This report describes initial characterization of a 440-kD isoform of brain ankyrin (ankyrinB) representing an alternatively spliced mRNA product of the gene encoding the major isoform of ankyrin in adult human brain (Otto, E., M. Kunimoto, T. McLaughlin, V. Bennett, J. Cell Biology. 114:241-253). Northern and immunoblot analyses indicate that 440-kD ankyrinB includes the spectrin and membrane-binding domains as well as a regulatory domain of the major 220-kD isoform. 440-kD ankyrinB contains, in addition, a sequence of a predicted size of 220 kD which is inserted between the regulatory domain and spectrin/membrane-binding domains. 440-kD ankyrinB has properties expected of a peripherally associated membrane-skeletal protein: it is exclusively present in the particulate fraction of brain homogenates, is extracted with NaOH, and remains associated with Triton-X-100-resistant structures. Expression of 440-kD ankyrinB in rat brain began at birth before other ankyrins could be detected, peaked 10 d after birth, and then decreased progressively to 30% of the maximum in adults. Expression of the 220-kD ankyrinB and ankyrinR (erythroid ankyrin) began approximately 10 d after the 440-kD isoform, increased rapidly between 10 and 15 d after birth, and finally achieved their maximal levels in adults. 440-kD ankyrinB is present in approximately equivalent amounts in all regions of neonatal brain while in adult brain it is present in highest levels in cerebellum and lowest in brain stem. 440-kD ankyrinB was localized by immunofluorescence in regions of neonatal and adult brain containing primarily dendrites and unmyelinated axons. 440-kD ankyrinB thus may play a specialized role in neuronal processes.
APA, Harvard, Vancouver, ISO, and other styles
5

Kordeli, E., J. Davis, B. Trapp, and V. Bennett. "An isoform of ankyrin is localized at nodes of Ranvier in myelinated axons of central and peripheral nerves." Journal of Cell Biology 110, no. 4 (1990): 1341–52. http://dx.doi.org/10.1083/jcb.110.4.1341.

Full text
Abstract:
Two variants of ankyrin have been distinguished in rat brain tissue using antibodies: a broadly distributed isoform (ankyrinB) that represents the major form of ankyrin in brain and another isoform with a restricted distribution (ankyrinR) that shares epitopes with erythrocyte ankyrin. The ankyrinR isoform was localized by immunofluorescence in cryosections of rat spinal cord gray matter and myelinated central and peripheral nerves to: (a) perikarya and initial axonal segments of neuron cells, (b) nodes of Ranvier of myelinated nerve with no detectable labeling in other areas of the myelinated axons, and (c) the axolemma of unmyelinated axons. Immunogold EM on ultrathin cryosections of myelinated nerve showed that ankyrinR was localized on the cytoplasmic face of the axolemma and was restricted to the nodal and, in some cases, paranodal area. The major isoform of ankyrin in brain (ankyrinB) displayed a broad distribution on glial and neuronal cells of the gray matter and a mainly glial distribution in central myelinated axons with no significant labeling on the axolemma. These results show that (a) ankyrin isoforms display a differential distribution on glial and neuronal cells of the nervous tissue; (b) an isoform of ankyrin codistributes with the voltage-dependent sodium channel in both myelinated and unmyelinated nerve fibers. Ankyrin interacts in vitro with the voltage-dependent sodium channel (Srinivasan, Y., L. Elmer, J. Davis, V. Bennett, and K. Angelides. 1988. Nature (Lond.). 333:177-180). A specific interaction of an isoform of ankyrin with the sodium channel thus may play an important role in the morphogenesis and/or maintenance of the node of Ranvier.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Xu, and Vann Bennett. "Restriction of 480/270-kD Ankyrin G to Axon Proximal Segments Requires Multiple Ankyrin G-specific Domains." Journal of Cell Biology 142, no. 6 (1998): 1571–81. http://dx.doi.org/10.1083/jcb.142.6.1571.

Full text
Abstract:
AnkyrinG (−/−) neurons fail to concentrate voltage-sensitive sodium channels and neurofascin at their axon proximal segments, suggesting that ankyrinG is a key component of a structural pathway involved in assembly of specialized membrane domains at axon proximal segments and possibly nodes of Ranvier (Zhou, D., S. Lambert, D.L. Malen, S. Carpenter, L. Boland, and V. Bennett, manuscript submitted for publication). This paper addresses the mechanism for restriction of 270-kD ankyrinG to axon proximal segments by evaluation of localization of GFP-tagged ankyrinG constructs transfected into cultured dorsal root ganglion neurons, as well as measurements of fluorescence recovery after photobleaching of neurofascin– GFP-tagged ankyrinG complexes in nonneuronal cells. A conclusion is that multiple ankyrinG-specific domains, in addition to the conserved membrane-binding domain, contribute to restriction of ankyrinG to the axonal plasma membrane in dorsal root ganglion neurons. The ankyrinG-specific spectrin-binding and tail domains are capable of binding directly to sites on the plasma membrane of neuronal cell bodies and axon proximal segments, and presumably have yet to be identified docking sites. The serine-rich domain, which is present only in 480- and 270-kD ankyrinG polypeptides, contributes to restriction of ankyrinG to axon proximal segments as well as limiting lateral diffusion of ankyrinG–neurofascin complexes. The membrane-binding, spectrin-binding, and tail domains of ankyrinG also contribute to limiting the lateral mobility of ankyrinG–neurofascin complexes. AnkyrinG thus functions as an integrated mechanism involving cooperation among multiple domains heretofore regarded as modular units. This complex behavior explains ability of ankyrinB and ankyrinG to sort to distinct sites in neurons and the fact that these ankyrins do not compensate for each other in ankyrin gene knockouts in mice.
APA, Harvard, Vancouver, ISO, and other styles
7

Hoock, Thomas C., Luanne L. Peters, and Samuel E. Lux. "Isoforms of Ankyrin-3 That Lack the NH2-terminal Repeats Associate with Mouse Macrophage Lysosomes." Journal of Cell Biology 136, no. 5 (1997): 1059–70. http://dx.doi.org/10.1083/jcb.136.5.1059.

Full text
Abstract:
We have recently cloned and characterized ankyrin-3 (also called ankyrinG), a new ankyrin that is widely distributed, especially in epithelial tissues, muscle, and neuronal axons (Peters, L.L., K.M. John, F.M. Lu, E.M. Eicher, A. Higgins, M. Yialamas, L.C. Turtzo, A.J. Otsuka, and S.E. Lux. 1995. J. Cell Biol. 130: 313–330). Here we show that in mouse macrophages, ankyrin-3 is expressed exclusively as two small isoforms (120 and 100 kD) that lack the NH2-terminal repeats. Sequence analysis of isolated Ank3 cDNA clones, obtained by reverse transcription and amplification of mouse macrophage RNA (GenBank Nos. U89274 and U89275), reveals spectrin-binding and regulatory domains identical to those in kidney ankyrin-3 (GenBank No. L40631) preceded by a 29–amino acid segment of the membrane (“repeat”) domain, beginning near the end of the last repeat. Antibodies specific for the regulatory and spectrin-binding domains of ankyrin-3 localize the protein to the surface of intracellular vesicles throughout the macrophage cytoplasm. It is not found on the plasma membrane. Also, epitope-tagged mouse macrophage ankyrin-3, transiently expressed in COS cells, associates with intracellular, not plasma, membranes. In contrast, ankyrin-1 (erythrocyte ankyrin, ankyrinR), which is also expressed in mouse macrophages, is located exclusively on the plasma membrane. The ankyrin-3–positive vesicles appear dark on phasecontrast microscopy. Two observations suggest that they are lysosomes. First, they are a late compartment in the endocytic pathway. They are only accessible to a fluorescent endocytic tracer (FITC-dextran) after a 24-h incubation, at which time all of the FITC-dextran– containing vesicles contain ankyrin-3 and vice versa. Second, the ankyrin-3–positive vesicles contain lysosomal-associated membrane glycoprotein (LAMP-1), a recognized lysosomal marker. This is the first evidence for the association of an ankyrin with lysosomes and is an example of two ankyrins present in the same cell that segregate to different locations.
APA, Harvard, Vancouver, ISO, and other styles
8

Nishimura, Kazunari, Fumie Yoshihara, Takuro Tojima, et al. "L1-dependent neuritogenesis involves ankyrinB that mediates L1-CAM coupling with retrograde actin flow." Journal of Cell Biology 163, no. 5 (2003): 1077–88. http://dx.doi.org/10.1083/jcb.200303060.

Full text
Abstract:
The cell adhesion molecule L1 (L1-CAM) plays critical roles in neurite growth. Its cytoplasmic domain (L1CD) binds to ankyrins that associate with the spectrin–actin network. This paper demonstrates that L1-CAM interactions with ankyrinB (but not with ankyrinG) are involved in the initial formation of neurites. In the membranous protrusions surrounding the soma before neuritogenesis, filamentous actin (F-actin) and ankyrinB continuously move toward the soma (retrograde flow). Bead-tracking experiments show that ankyrinB mediates L1-CAM coupling with retrograde F-actin flow in these perisomatic structures. Ligation of the L1-CAM ectodomain by an immobile substrate induces L1CD–ankyrinB binding and the formation of stationary ankyrinB clusters. Neurite initiation preferentially occurs at the site of these clusters. In contrast, ankyrinB is involved neither in L1-CAM coupling with F-actin flow in growth cones nor in L1-based neurite elongation. Our results indicate that ankyrinB promotes neurite initiation by acting as a component of the clutch module that transmits traction force generated by F-actin flow to the extracellular substrate via L1-CAM.
APA, Harvard, Vancouver, ISO, and other styles
9

Darweesh Jabbar, Ahmed. "Alu and Poet Ankyrine Detection and Quantization in Cell Free Dna of Cancer Patients." Cancer Research Journal 6, no. 1 (2018): 20. http://dx.doi.org/10.11648/j.crj.20180601.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boutroux, H., A. Petit, A. Auvrignon, et al. "Childhood diagnosis of genetic thrombocytopenia with mutation in the ankyrine repeat domain 26 gene." European Journal of Pediatrics 174, no. 10 (2015): 1399–403. http://dx.doi.org/10.1007/s00431-015-2549-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ankyrine"

1

Rouget, Jean-Baptiste. "Study of the physical basis of pressure effects on proteins using model ankyrin repeat constructs." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20203/document.

Full text
Abstract:
Le dépliement thermique et chimique est raisonnablement compris, mais pas les effets déstabilisants de la pression. Dans une tentative de caractérisation des facteurs à la base des effets de la pression sur les protéines, nous avons étudié le dépliement sous pression d'une protéine modulaire, le domaine ankyrine du récepteur Notch (Nank1-7*), ainsi que plusieurs mutants en nombre de motifs. Nos expériences montrent un dépliement à deux états sous pression. La dépendance à la température des sauts de pression a montré qu'à faibles températures l'ensemble d'état de transition(TSE) est proche en volume de l'état replié alors que son énergie est proche de celle de l'état déplié,ce qui est significatif d'une déshydratation importante de la barrière énergétique, et a montré que l'augmentation de la température conduit à un TSE plus grand en volume que l'état replié. Ce comportement révèle une grande plasticité du TSE de Nank1-7*. L'étude des mutants (délétion demotifs) nous a montré que le ΔV n'est déterminé ni par l'hydratation des liaisons peptidiques ni par l'hydratation différentielle des acides aminés, mais par l'existence de vides internes exclus du solvant. Seule une petite fraction des cavités est déterminante pour le ΔV, celles qui ne sont pas significativement solvatées dans les coeurs hydrophobes. Finalement, nous avons déterminé que le TSE possède même des cavités plus grandes, et nous émettons l'hypothèse que l'énergétique et la dynamique contribuent aux effets de la pression sur les protéines<br>Thermal and chemical unfolding of proteins are reasonably well understood, but the destabilizingeffects of pressure are not. In an attempt to characterize the factors at the basis of pressure effects,we investigated the pressure unfolding of a modular protein, the ankyrin domain of the Notch receptor(Nank17*) and several of its deletion constructs. All our experiments were consistent with a simpletwo-state folding/unfolding transition under pressure. The temperature dependence of pressure-jumpsdemonstrated that at low temperature, the transition state ensemble (TSE) lies close in volume to thefolded state despite its unfolded-like energetics, consistent with significant dehydration at the barrier,and that increasing temperature leads to a volume of the TSE larger than that of the folded state. Thisbehavior reveals a high degree of plasticity of the TSE of Nank17*. Studies of the deletion mutantsshowed us that ΔV is determined not by hydration of peptide bonds or by differential hydration ofresidues, but by the existence of internal solvent-excluded void volumes. Only a small fraction of theinternal cavities are relevant of the ΔV, those that are not significantly solvated in the hydrophobiccore. Finally, we determined that the transition state ensemble show even larger cavities, and wehypothesize both energetics and dynamics contribute to pressure effects on proteins
APA, Harvard, Vancouver, ISO, and other styles
2

Tardy, Philippe. "Caractérisation du trafic cellulaire du canal potassique à deux domaines P UNC-58 par la protéine UNC-44 chez le nématode C. elegans." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1157.

Full text
Abstract:
Les canaux potassiques à deux domaines P (K2P) contrôlent l’excitabilité cellulaire et jouent un rôle central dans l’établissement et le maintien du potentiel de repos membranaire dans la majorité des cellules animales. Depuis leur identification dans les années 90, ces canaux ont été impliqués dans de nombreuses fonctions comme la modulation de l’activité neuronale, l’activité du muscle cardiaque ou encore la physiologie rénale. Malgré l’importance de ces canaux, peu de données existent sur les processus cellulaires qui contrôlent leur fonction in vivo. Au cours de ma thèse, j’ai utilisé des approches génétiques, d’imagerie et d’électrophysiologie pour comprendre comment l’expression, la distribution et l’activité du canal K2P UNC-58 sont contrôlés chez le nématode modèle C. elegans.Pour cela, j’ai effectué un crible suppresseur du phénotype locomoteur du mutant gain de fonction unc-58(e665). J’ai ainsi obtenu 133 mutants présentant une large gamme de niveaux de suppression, suggérant l’implication de plusieurs gènes dans les processus de régulation du canal. En utilisant les technologies de reséquençage complet de génome, j’ai pu cloner six nouveaux gènes requis pour la fonction d’unc 58.J’ai ensuite caractérisé en détail le rôle d’unc-44/ankyrine dans le contrôle du trafic d’unc 58. Ce travail a conduit à 4 conclusions majeures : (1) UNC-58, malgré sa structure de canal potassique, possède en réalité une sélectivité ionique altérée favorisant le passage des ions sodium, (2) l’addition à UNC 58 de protéine fluorescente par approche CRISPR/Cas9 nous a permis pour la première fois d’observer directement la distribution du canal UNC-58 in vivo, (3) l’ankyrine est nécessaire à l’adressage du canal UNC-58 à la surface des muscles et dans les axones des neurones mécanosenseurs ALM. Cette fonction fait intervenir une poche d’interaction lipidique localisée au sein du module Zu5N-Zu5C-UPA d’UNC-44, (4) ce mécanisme est hautement sélectif puisqu’il n’est pas requis pour l’adressage de 6 autres canaux potassiques musculaires. Mon crible a également identifié une interaction génétique entre unc-70/ß-spectrine et unc-44/ankyrine. Toutefois, la nature moléculaire de cette interaction reste encore à préciser<br>Two-pore potassium channels (K2P) control cell excitability and play a central role in the establishment and the maintenance of the resting membrane potential of almost all animal cells. Since their identification in the late 90s, these channels have been implicated in a large number of functions ranging from neuronal and cardiac activity to kidney physiology. Despite the crucial functions of these channels, comparatively little is known about the cellular processes controlling their function in vivo. During my PhD, I used a wide range of strategies including genetics, microscopy and electrophysiology to understand how the expression, the distribution and the activity of the K2P channel UNC-58 are controlled in the model nematode C. elegans. I have first performed a genetic suppressor screen targeting the locomotion phenotype of the gain of function mutant unc-58(e665). The screen yielded 133 mutants, displaying a wide range of suppression level, suggesting that several genes may be implicated in the channel regulation process. By using whole genome sequencing technologies, I’ve been able to clone six new genes required for the function of UNC-58.Then, I’ve characterized in detail the role of unc-44/ankyrin in the trafficking of UNC 58. This project led to 4 main conclusions : (1) UNC-58, despite its potassium channel structure, has an altered ionic selectivity, allowing preferably sodium ions to pass through the channel (2) the addition of a fluorescent protein to UNC-58 by CRISPR/Cas9 approaches allowed us for the first time to directly observe the addressing of the UNC-58 channel to the muscle surface and axons of ALM mechanosensory neurons. This function involves a lipid binding pocket located within the Zu5N-Zu5C-UPA module of UNC-44, (4) this mechanism is highly selective since it is not required for the addressing of 6 other muscular channels.My screen also identified a genetic interaction between unc-70/ß-spectrin and unc-44/ankyrin. However, the exact molecular nature of this interaction remains to be elucidated
APA, Harvard, Vancouver, ISO, and other styles
3

Blanie, Sophie. "Les protéines à motif Ankyrine du virus myxomateux : caractérisation et implication dans le pouvoir pathogène." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/495/.

Full text
Abstract:
Les Poxviridae codent une famille originale de protéines présentant des répétitions ANK et un motif PRANC en C-terminal. Ce travail de thèse présente l'étude de 3 des 4 protéines (ANK-PRANC) codées par le virus de la myxomatose (MYXV): M148R, M149R et M150R (MNF), qui sont organisées en cluster. Les études montrent qu'elles sont exprimées séquentiellement au cours du cycle viral et qu'elles présentent des localisations cellulaires originales. In vivo, M148R, M149R et MNF sont des facteurs de pathogénicité du MYXV bien qu'elles n'aient pas de rôle dans le tropisme cellulaire ni dans son spectre d'hôte. En outre, les études d'histopathologie suggèrent que M148R et MNF inhibent de la réponse inflammatoire. De plus, nous avons montré que M148R, M149R et MNF font partie d'un complexe SCF (Skp, Culline, F-box) permettant l'ubiquitination de protéines cibles qu'il reste à identifier<br>The Poxviridae encode a unique class of proteins characterized by ANK repeats and PRANC motif in C-terminus. This study presents characterization of 3 of the 4 ANK-PRANC proteins encoded by myxoma virus (MYXV): M148R, M149R and M150R (MNF), organized in cluster. This work show that they are sequentially expressed during replication cycle and that they present original sub-cellular localizations. In vivo, M148R, M149R and MNF are MYXV virulence factors although they are not likely to be implicated in cell tropism or host range functions. Moreover, histological analysis suggests that M148R and MNF play a role in the subversion of host inflammatory response by MYXV. Furthermore, we show that M148R, M149R and MNF are components of SCF complexes (Skp, Cullin, F-box), allowing ubiquitination of a substrate that it remains to identify
APA, Harvard, Vancouver, ISO, and other styles
4

Freal, Amélie. "Etude de la construction du segment initial de l’axone." Paris 6, 2013. http://www.theses.fr/2013PA066315.

Full text
Abstract:
Le segment initial de l’axone (AIS) est une région cruciale pour le fonctionnement du neurone ; c’est le site de génération des potentiels d’action, grâce à une forte densité en canaux sodiques voltage-dépendants (Nav). De plus, l’AIS permet le maintien de la polarité neuronale, en particulier de l’identité axonale. L’AIS est construit autour de l’ankyrine G (ankG), protéine d’échafaudage qui relie des protéines transmembranaires : Nav et neurofascine-186 (NF-186) avec les cytosquelettes d’actine et de microtubules via la βIV-spectrine et les protéines EB1/3 respectivement. S’il a clairement été montré que l’ankG permet le recrutement de ces différentes protéines à l’AIS, les mécanismes de construction de ce domaine axonal restent inconnus. Nous avons tout d’abord déterminé les étapes de construction de l’AIS dans un modèle in vivo chez la souris. L’ankG est exprimée dès la différenciation axonale, d’abord tout le long des axones des motoneurones, puis elle se retreint à l’AIS. La NF-186 est aussi précoce que l’ankG, alors que les Nav et la βIV-spectrine sont exprimés dans un second temps. Nous avons déterminé que, des deux isoformes neuronales d’ankG; 270- et 480kDa, seule l’ankG 480kDa est nécessaire et suffisante à la construction de l’AIS et au maintien de l’identité axonale dans des neurones d’hippocampe en culture<br>The axon initial segment is a highly specialized region, responsible for both the generation of action potentials through a high density of voltage-dependant sodium channels (Nav) and for the maintenance of neuronal polarity. Ankyrin G (ankG) is expressed in the AIS and is a scaffolding protein that links transmembrane proteins like Nav and neurofascin-186 (NF-186) to actin and microtubules cytoskeletons via βIV-spectrin and EB1/3 proteins respectively. AnkG has been described as AIS masterorganizer since its expression is necessary and sufficient to recruit all other AIS proteins, but the mechanisms responsible for the building of the AIS remain largely unknown. We characterized the steps involved in the building of the AIS in vivo during the embryonnic development in the mouse. AnkG is expressed all along the motor neurons’ axons as soon as they exit the spinal cord. AnkG is then restricted to the proximal regions of the axons. NF-186 is expressed at the same time as ankG whereas Nav and βIV-spectrin can be detected later. Two neuronal isoforms of ankG have been reported ; 270- and 480kDa. We determined that ankG-480kDa and not the smaller isoform is necessary and sufficient for the building of AIS and for the maintenance of neuronal polarity in cultured hippocampal neurons
APA, Harvard, Vancouver, ISO, and other styles
5

Chinchilla, Delphine. "Le rôle des ankyrine protéines kinases dans le développement végétal." Paris 11, 2003. http://www.theses.fr/2003PA112067.

Full text
Abstract:
Les protéines kinases constituent des régulateurs essentiels des voies de signalisation. Chez Medicago spp. , le gène Msapk1 " Medicago saliva ankyrin protéine kinase " a été identifié comme exprimé dans les nodosités spontanées de luzerne. Il code pour un nouveau type de kinase, composée d'un domaine aminoterminal à motif ankyrine fusionné à un domaine catalytique. Cette structure est retrouvée au sein de protéines "Integrin-Linked Kinases" animales, impliquées dans l'adhésion cellulaire. Mon travail de thèse a porté sur la caractérisation des gènes APK chez Medicago spp. , et de leurs homologues chez Arabidopsis thaliana, afin de comprendre leur fonction dans le développement végétal. Chez Medicago spp. , l'expression du gène Msapkl est induite dans les racines en réponse au choc osmotique. Par ailleurs, une protéine de fusion MsAPK1-GFP localiserait sur le cytosquelette des cellules d'oignon, en réponse à ce choc. Nous avons également montré que la protéine MsAPK1 purifiée chez E. Coli phosphoryle la tubuline in vitro. Ces résultats suggèrent que MsAPK1 pourrait être un régulateur des modifications du cytosquelette observées en réponse au choc osmotique. Chez Arabidopsis, les gènes AtAPK, homologues à Msapkl, s'expriment différentiellement dans plusieurs organes. Malgré la forte conservation observée entre les gènes d'Arabidopsis et de Medicago truncatula, les AtAPK ne seraient pas impliqués dans la réponse osmotique. Plusieurs approches de génétique inverse, de type " perte de fonction " et " gain de fonction ", réalisées sur les APK suggèrent leur redondance fonctionnelle chez Arabidopsis. Parallèlement à cette étude, nous avons caractérisé l'induction de l'expression du gène MsCPK3, codant pour une CDPK, au cours du développement de la nodosité de la luzerne. Cette activation a lieu simultanément à une augmentation d'activité CDPK, durant les étapes précoces de la nodulation. Cette CDPK constitue une cible potentielle de l'action du calcium chez les Fabacées. Ces résultats contribuent à la caractérisation de nouvelles protéines kinases dans la réponse de Medicago spp. Au choc osmotique et au cours du développement de la nodosité. En particulier, la caractérisation des APK ouvre de nouvelles perspectives sur la participation de ces kinases dans les modifications de l'adhésion cellulaire végétale<br>Protein kinases are key components of signalling pathways. The Msapk1 gene (for Medicago saliva ankyrin protein kinase), coding for a novel protein kinase, was isolated as expressed in spontaneous nodules in alfalfa. This kinase has an unique aminoterminal domain containing three ankyrin repeats. This structure resembles that from animal Integrin Linked Kinases which are involved in cell adhesion in mammalian cells. The major objective of this work was to characterize the APK gene in Medicago spp. And their homologues in Arabidopsis thaliana, in order to understand their function in plant development. Msapkl expression was round to be induced upon hyperosmotic stress in Medicago roots. Moreover, a MsAPK1-GFP fusion protein localized to a cytoskeletal network after an osmotic shock in onion cells. By heterologous expression in E. Coli, we also showed that MsAPK1 phosphorylates tubulin in vitro. These results suggest that MsAPK1 may regulate cytoskeleton modifications occurring during cellular responses to osmotic stress in plants. In Arabidopsis, the AtAPK genes, homologues of Msapk1, were round to be differentially expressed in several organs. Despite the high conservation between Arabidopsis and Medicago truncatula genes, the AtAPKs seem not to be involved in osmotic responses in this species. Reverse genetics approaches on APK, developed to create "loss of function" and "gain of function" effects, suggest that APK genes are functionally redundant in Arabidopsis. In parallel, we characterized the induction of a CDPK gene expression, called MsCPK3, during nodule development in alfalfa. This activation takes place concomitantly with the induction of CDPK activity in alfalfa roots, during the early steps of nodulation. This CDPK is a potential target for calcium action in Fabaceae. These results add to the characterization of new protein kinases in Medicago spp. Involved in osmotic stress responses and nodule organogenesis. Moreover, the studies on APK may open new perspectives on their participation in plant cell adhesion processes
APA, Harvard, Vancouver, ISO, and other styles
6

Schischmanoff, Olivier. "Etude de l'interaction ankyrine-protéine bande 3 dans les sphérocytoses héréditaires." Paris 5, 1993. http://www.theses.fr/1993PA05P180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moussif, Anissa. "Mécanismes cellulaires et moléculaires de la ségrégation des canaux sodium neuronaux au segment initial de l'axone." Aix-Marseille 2, 2006. http://www.theses.fr/2006AIX20657.

Full text
Abstract:
Le segment initial de l'axone (SI), situé à la jonction entre le soma et l'axone, se distingue notamment par la ségrégation des canaux sodium voltage-dépendant (Nav), de l'ankyrine G et de la IV-spectrine. Dans les neurones d'hippocampe en culture, Nav1. 2 est ségrégé et ancré au SI. Pour caractériser les mécanismes responsables de cette compartimentation, nos objectifs étaient d'identifier : (1) les déterminants et partenaires moléculaires impliqués (2) la/les voie(s) d'adressage au SI. En se basant sur l'expression de protéines chimériques, nous avons identifié la région liant les domaines transmembranaires II et III de Nav1. 2 (Nav1. 2 II-III) comme suffisante pour ségréger une protéine non polarisée au SI. Nav1. 2 II-III porte deux motifs distincts et indépendants : (1) un motif de tri et d'ancrage au SI conservé dans tous les Nav1 et liant l'ankyrine G (2) un motif d'endocytose. En utilisant le système double hybride dans la levure, Nav1. 2 II-III comme appât, nous avons identifié plusieurs partenaires potentiels de Nav1. 2 au SI. La protéine Schwannomin Interacting protein 1 (SCHIP-1) a été identifiée et son interaction avec Nav1. 2 II-III confirmée in vitro. SCHIP-1 est enrichie au SI des neurones d'hippocampe en culture et in vivo au SI et aux nœuds de Ranvier. Sa fonction reste encore à définir. L'analyse du trafic d'une protéine ségrégée au SI nous a permis d'établir un modèle d'adressage : (1) la protéine adressée initialement à la membrane somato-dendritique (2) diffuse jusqu'au SI où elle est piégée par l'ankyrine G (3) sa ségrégation au SI s'achève par l'endocytose des protéines insérées dans les domaine somato-dendritique et axonal distal<br>The axonal initial segment (IS), located at the boundary between the soma and the axon is characterised notably by the segregation of voltage-gated sodium channels (Nav), ankyrin G and IV spectrin. In cultured hippocampal neurons, Nav1. 2 is segregated and anchored in the IS. To obtain new insights into the mechanisms involved in Nav1. 2 compartmentalization, our objectives were to identify: (1) the molecular signals and partners implicated (2) the pathway(s) of targeting in the IS. By using a strategy based on the expression of chimera proteins, we showed that the large cytoplasmic loop linking the transmembrane domains II and III of Nav1. 2 (Nav1. 2 II-III ) contain two independent and distinct motifs : (1) a motif of targeting and anchoring in the IS. This motif is conserved in all the Nav1 and interacts with ankyrin G (2) an endocytosis motif. To identify other proteins involved in Nav1. 2 segregation in the IS, we used the yeast-two hybrid system, with Nav1. 2 II-III as bait. Schwannomin Interacting Protein 1 (SCHIP-1) was identified and its interaction with Nav1. 2 II-III confirmed in vitro. SCHIP-1 is enriched in the IS of cultured hippocampal neurons and in vivo in the IS and the nodes of Ranvier. Its function is still unknown. The analysis of the traffic of a reporter protein segregated in the IS led us to propose the following model : (1) proteins initially inserted in the somato-dendritic plasma membrane (2) reach the axonal domain by diffusion (3) in the IS, the proteins are trapped by interaction with ankyrin G (4) their segregation in the IS is achieved by selective endocytosis in the somato-dendritic domain and in the distal part of the axon
APA, Harvard, Vancouver, ISO, and other styles
8

Nicolas, Virginie. "Interaction du complexe membranaire RH avec le squelette erythrocytaire spectrine-dépendant : caractérisation moléculaire et altération dans des phénotypes variants." Paris 7, 2004. http://www.theses.fr/2004PA077132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nangola, Sawitree. "The interference of human immunodeficiency virus assembly and maturation by ankyrin repeat proteins." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112044.

Full text
Abstract:
Le but de ce travail est de découvrir des nouvelles protéines suceptibles d'interférer avec le cycle vital du virus HIV. De par leur repliement, les protéines à motifs ankyrines peuvent constituer une ossature protéique trés bien adaptée à cet objectif. Plusieurs interacteurs spécifiques de la protéine MA-CA du HIV ont été sélectionnées par exposition sur phage à partir d'une bibliothèque de variants d'ankyrines. Trois protéines isolées ont été produites à partir de clones ayant une forte activité de liaison. Le meilleur interacteur protéique (1D4) interagit avec un épitope situié sur le domaine CA. La constante de dissociation entre 1D4 et la protéine HACA a été déterminée par Calorimétrie de Titrage Isotherme (ou ITC) et est égale à 0,45M. La protéine 1D4 n'a pas d'effet détectable sur la maturation virale suivie par une technique ELISA de dosage de la Protease du HIV. En revanche, cette protéine interfere avec l'assemblage viral dans des cellules supT1 qui exprime de façon stable la protéine 1D4 sous forme myristoylée. Ce resultat ouvre une perspective d'appoche pour interferer avec le cycle vital du HIV<br>Presently, the standard regimen for antiretroviral treatment is highly active antiretroviral therapy (HAART). However, this strategy inherits the well-known side effects and is prone to promote the HIV drug-resistant strains. As a consequence, gene therapy has been introduced as an alternative approach. In this study, we aimed to discover the novel protein-based agents for intervening viral replication by gene targeting procedure. Regarding the efficient folding dynamic in cytoplasm, ankyrin repeat protein was considered to be a candidate scaffold. Several engineered ankyrin binders specific to HIV MA-CA domain were successfully retrieved from the ankyrin-displayed phage library. Three positive clones with high binding activity by ELISA were selected for further analyzing their binding property in soluble form. The best binder, 1D4, recognized its epitope located on CA domain as shown by Western immunobloting and ELISA. The affinity of 1D4 against H6MA-CA was 0.45 μM with one to two moles of target molecule determined by isothermal titration calorimetry (ITC). Although 1D4 exhibited no effect on viral maturation as verified by an ELISA based HIV protease assay technique, it disturbed the viral assembly process in Sup-T1 cells which stably expressed the myristoylated 1D4. This finding has provided a concrete prospect for HIV life cycle interruption by stem cell gene therapy in the future
APA, Harvard, Vancouver, ISO, and other styles
10

Bouzidi, Mourad. "Etude des protéines associées au canal sodium potentiel-dépendant neuronal." Aix-Marseille 2, 2002. http://www.theses.fr/2002AIX20672.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ankyrine"

1

Wong, Wei. Mapping the sodium channel-ankyrin interactiion. National Library of Canada, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

White, Robert Allen. An inherited erythroid ankyrin deficiency in normoblastosis: A mutation causing severe hemolytic anemia in the mouse. 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ankyrine"

1

Biswas-Fiss, Esther E., Stephanie Affet, Malissa Ha, et al. "Ankyrine-Rich TRP Channel, ANKTM1, TRPA1." In Encyclopedia of Signaling Molecules. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Collins, Robert E., and Xiaodong Cheng. "Methyl-Lysine Recognition by Ankyrin-Repeat Proteins." In Histone Recognition. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18102-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gewies, Andreas, Jürgen Ruland, Alexey Kotlyarov, et al. "Molecule Possessing Ankyrin-Repeats Induced by Lipopolysaccharide." In Encyclopedia of Signaling Molecules. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Appleton, Kathryn M., Ian Cushman, Yuri K. Peterson, et al. "IL-1 Inducible Nuclear Ankyrin-Repeat Protein (INAP)." In Encyclopedia of Signaling Molecules. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gewies, Andreas, Jürgen Ruland, Alexey Kotlyarov, et al. "Molecule Possessing Ankyrin Repeats Induced by Lipopolysaccharide (MAIL)." In Encyclopedia of Signaling Molecules. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gudmundsson, Hjalti, Francis Jareczek, and Peter J. Mohler. "Defects in Ankyrin-Based Protein Targeting Pathways in Human Arrhythmia." In Heart Rate and Rhythm. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17575-6_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dudley, Emma K., Holly C. Sucharski, Sara N. Koenig, and Peter J. Mohler. "Defects in Ankyrin-based Protein Targeting Pathways in Human Arrhythmia." In Heart Rate and Rhythm. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-33588-4_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Yi, Shelby Auger, Jonas V. Schaefer, Andreas Plückthun, and Mark D. Distefano. "Site-Selective Enzymatic Labeling of Designed Ankyrin Repeat Proteins Using Protein Farnesyltransferase." In Methods in Molecular Biology. Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9654-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tam, Heng Keat, Viveka Nand Malviya, and Klaas M. Pos. "High-Resolution Crystallographic Analysis of AcrB Using Designed Ankyrin Repeat Proteins (DARPins)." In Methods in Molecular Biology. Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7454-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Biswas-Fiss, Esther E., Stephanie Affet, Malissa Ha, et al. "ARF-GAP, RHO-GAP, Ankyrin Repeat, and Plekstrin Homology Domains Containing Protein 3." In Encyclopedia of Signaling Molecules. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100081.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ankyrine"

1

Gautam, Vertika, Wei Lim Chong, Tanchanok Wisitponchai, et al. "GPU-enabled molecular dynamics simulations of ankyrin kinase complex." In 3RD INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES (ICFAS 2014): Innovative Research in Applied Sciences for a Sustainable Future. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4898454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chakrabarty, Broto, and Nita Parekh. "Analysis of graph centrality measures for identifying Ankyrin repeats." In 2012 World Congress on Information and Communication Technologies (WICT). IEEE, 2012. http://dx.doi.org/10.1109/wict.2012.6409067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Balakrishnan, Ashwini, Alexander I. Salter, Andreas Plückthun, and Stanley R. Riddell. "Abstract A75: Designed Ankyrin Repeat Proteins (DARPins) as recognition motifs in chimeric antigen receptors." In Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 20-23, 2016; Boston, MA. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/2326-6074.tumimm16-a75.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gautam, Vertika, Nadia Hanim Sabri, Wei Lim Chong, et al. "Computational Alanine Scanning Mutagenesis: Characterizing the hotspots of ILK-Ankyrin Repeat and PINCH1 Complex." In 3rd International Conference on Computation for Science and Technology (ICCST-3). Atlantis Press, 2015. http://dx.doi.org/10.2991/iccst-15.2015.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chong, Wei Lim, Sharifuddin M. Zain, Noorsaadah Abd. Rahman, et al. "Exploration of Residue Binding Energy of Potential Ankyrin for Dengue Virus II from MD Simulations." In 3rd International Conference on Computation for Science and Technology (ICCST-3). Atlantis Press, 2015. http://dx.doi.org/10.2991/iccst-15.2015.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lei, Ying, Beric Ross Henderson, Catherine Emmanuel, Paul Harnett, and Anna de Fazio. "Abstract 4616: Chemo-sensitisation in epithelial ovarian cancer cell lines by targeting Ankyrin Repeat Domain 1 (ANKRD1)." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-4616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Goldstein, Robert, Berend Tolner, Julius Leyton, et al. "Abstract 3912: Pre-clinical developments of the G3 Designed ankyrin repeat protein (DARPin) forinvivoassessment of HER2 expression ." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-3912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pastore, Fiorella, Nadia Moretto, Fabrizio Facchinetti, and Riccardo Patacchini. "Non-Neuronal Transient Receptor Potential Ankyrin 1 (TRPA1) Is Involved In Ovalbumin-Evoked Contraction Of Guinea-Pig Trachea." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a4297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dalenogare, Diéssica Padilha, Diulle Spat Peres, Maria Fernanda Pessano Fialho, and Gabriela Trevisan dos Santos. "Periorbital nociception in a progressive multiple sclerosis mouse model is dependent on TRPA1 channel activation." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.610.

Full text
Abstract:
Background: Headache is one of the main painful symptoms described by multiple sclerosis patients. Previously, it was described that neuropathic pain-like behaviors were dependent on transient receptor potential ankyrin 1 (TRPA1) activation in a progressive multiple sclerosis model induced by experimental autoimmune encephalomyelitis (PMS- EAE) in mice. Objective: Here, we aimed to investigate if periorbital mechanical allodynia induced by PMS-EAE was also related to TRPA1 activation. Design and setting: Federal University of Santa Maria, Santa Maria, RS, Brazil. Methods: To induce a PMS-EAE we used female C57BL/6 wild-type and TRPA1- deficient (Trpa1-/-) mice. By the von Frey test, periorbital mechanical allodynia development was observed, and the nociception peak occurred 14 days after induction. At nociception peak day, the mice were treated with sumatriptan, TRPA1 antagonists (HC-030031, A-967079, metamizole, and propyphenazone. Results: The development of mechanical allodynia was showed as well as the antinociceptive effects for all treatments in induced mice. A significant reduction of TRPA1 expression was detected. Conclusion: Thus, these results suggest that headache-like symptoms induced by the PMS-EAE mouse model might occurring by TRPA1 activation.
APA, Harvard, Vancouver, ISO, and other styles
10

Patacchini, Riccardo, Nadia Moretto, Giorgia Volpi, et al. "Transient Receptor Potential Ankyrin 1 (TRPA1) Is Expressed In Non-Neuronal Pulmonary Cells And Underlies IL-8 Release Elicited By Cigarette Smoke." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a6039.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ankyrine"

1

Breeden, Linda. Structure and Function of the Ankyrin Repeats in the SWi4/SWi6 Transcription Complex of Budding Yeast. Defense Technical Information Center, 1997. http://dx.doi.org/10.21236/ada334020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Breeden, Linda. Structure and Function of the Ankyrin Repeats in the SWI4/SWI6 Transcription Complex of Budding Yeast. Defense Technical Information Center, 1995. http://dx.doi.org/10.21236/ada298704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shen, B. W. Contribution of ankyrin-band 3 complexes to the organization and mechanical properties of the membrane skeleton of human erythrocyte. Office of Scientific and Technical Information (OSTI), 1995. http://dx.doi.org/10.2172/10114973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography