Academic literature on the topic 'Anodizing process'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Anodizing process.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Anodizing process"
Rattanasatitkul, Aunyanat, Suksan Prombanpong, and Pongsak Tuengsook. "An Effect of Process Parameters to Anodic Thickness in Hard Anodizing Process." Materials Science Forum 872 (September 2016): 168–72. http://dx.doi.org/10.4028/www.scientific.net/msf.872.168.
Full textTorng, Chau Chen, Chi Kong Huang, and Hsien Ming Chang. "Reliability Evaluation for Aerospace Anodizing Process of Aluminum." Materials Science Forum 638-642 (January 2010): 419–24. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.419.
Full textXiong, Zhong Ping, Yu Jun Si, and Min Jiao Li. "Analysis on the Anodizing Process of AZ31 Magnesium Alloy in an Environmental Friendly Alkaline Electrolyte." Applied Mechanics and Materials 665 (October 2014): 128–31. http://dx.doi.org/10.4028/www.scientific.net/amm.665.128.
Full textJuyana, A. Wahab, and Mohd Nazree Derman. "Characterization of Porous Anodic Aluminium Oxide Film on Aluminium Templates Formed in Anodizing Process." Advanced Materials Research 173 (December 2010): 55–60. http://dx.doi.org/10.4028/www.scientific.net/amr.173.55.
Full textMa, Yan Long, and Yi Liao. "Visual Detection of Machining Damage on Aerospace Aluminium Alloys during Manufacturing Process." Applied Mechanics and Materials 252 (December 2012): 302–5. http://dx.doi.org/10.4028/www.scientific.net/amm.252.302.
Full textLuo, Sheng-lian, Lei Dai, Hai-hui Zhou, Li-yuan Chai, and Ya-fei Kuang. "New anodizing process for magnesium alloys." Journal of Central South University of Technology 13, no. 2 (April 2006): 141–45. http://dx.doi.org/10.1007/s11771-006-0145-y.
Full textTsuchiya, Shoichi. "Applied technology in aluminum anodizing process." Journal of Japan Institute of Light Metals 70, no. 11 (November 15, 2020): 530–35. http://dx.doi.org/10.2464/jilm.70.530.
Full textSetyarini, Putu Hadi, and Purnomo. "Molarity Relationship of Electrolyte Solution to Aluminum Anodizing Process on Morphology and Corrosion Resistance." Materials Science Forum 961 (July 2019): 91–96. http://dx.doi.org/10.4028/www.scientific.net/msf.961.91.
Full textVoon, C. H., Mohd Nazree Derman, U. Hashim, and K. R. Ahmad. "Effect of Anodizing Voltage on the Growth Kinetics of Porous Anodic Alumina on Al-0.5 wt% Mn Alloys." Advanced Materials Research 795 (September 2013): 56–59. http://dx.doi.org/10.4028/www.scientific.net/amr.795.56.
Full textEo, Jae Dong, Jingyu Kim, Yongsug Jung, Jong-Hang Lee, and Wook Bae Kim. "Effects of Two-Step Anodization on Surface Wettability in Surface Treatment of Aluminum Alloy." Korean Journal of Metals and Materials 59, no. 2 (February 5, 2021): 73–80. http://dx.doi.org/10.3365/kjmm.2021.59.2.73.
Full textDissertations / Theses on the topic "Anodizing process"
Brace, A. W. "The development of an expert system for the identification anodic coating process defects as a contribution to the dissemination of anodizing technology." Thesis, Aston University, 1995. http://publications.aston.ac.uk/15286/.
Full textRemešová, Michaela. "Výzkum a vývoj technologie přípravy tvrdé anodizace neželezných slitin." Doctoral thesis, Vysoké učení technické v Brně. CEITEC VUT, 2020. http://www.nusl.cz/ntk/nusl-433636.
Full textAppusamy, Boopathy Harish, and Pavan Kumar Bonthala. "Electrochemical etching and anodizing as key stages of surface treatment of aluminium foil for electrolytic capacitor industry : Application of Electro Chemical Impedance Spectroscopy as non-destructive characterization of etched anode foil with an anodized dielectric oxide layer." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Produktutveckling, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-37858.
Full textSammanfattning Avhandlingsarbetet har genomförts på KEMET AB i samarbete med yttekniklaboratoriet vid JTH i syfte att karakterisera den etsade anodiska aluminiumfolien som grundprov med anodisering och etsning för ytbehandling. I inledningsskedet gjordes provberedningen med användning av teknikerna för anodisk etsning och anodbildande processer där en upprepad provnings- och felmetod för provberedning ledde ut mot att utarbeta en lämplig provuppsättning med avseende på karakterisering. Efter detta steg infördes uppsättningen av 2 olika industriella prover och anodoxidbildande process utfördes i olika elektrolyter. I provpreparaten användes 4 olika elektrolyter 15 % vikt Ammoniumadiphat, 1,5 vikt% Ammoniumfosfat, 7 vikt% Borsyra och 15 % Penta-borat vid olika steg för utförande av anodoxidbildningsförfarandet. Minimala formningsspänningar på 20V till ett maximum av 100V användes i provframställningen och för att övervinna väntetiden vid bildning av de etsade proven användes en högre ström av 0,5A. Efter provberedningen användes elektrokemisk impedansspektroskopi som ett verktyg för att karakterisera de olika grupperna av prover och för att observera mikrostrukturerna i olika prover, de bröts och de observerades i tvärsnittet av SEM. Efter att analysen av de etsade proverna gjordes ett försök att jämföra resultaten av data från dessa prover till den för de två uppsättningarna av industriella prover. Det är konstaterat att de resulterande data inte var stabila nog att karakterisera eftersom stor spridning inträffade och varigenom simuleringen av CPE-kretsen för den valda kretsen i analysen inte var möjlig. Under analysen användes också ett slumpmässigt valt industriellt prov och de resulterande data användes för att förstå systemets respons till olika elektrolyter.
Souza, Edivaldo Luis de 1968. "Emprego de material nanoestruturado sobre Ti na degradação de fármacos = Use of nanostructured titanium dioxide for treatment of pharmaceuticals." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267729.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Tecnologia
Made available in DSpace on 2018-08-27T04:30:52Z (GMT). No. of bitstreams: 1 Souza_EdivaldoLuisde_M.pdf: 3079610 bytes, checksum: a78db6078a721c74f963b944bae72f47 (MD5) Previous issue date: 2015
Resumo: A sociedade e seus processos produtivos têm gerado e lançado quantidades elevadas e diversificadas de compostos orgânicos, inorgânicos e biológicos no meio ambiente. Juntamente com as emissões naturais, houve um grande acúmulo destes materiais nos diferentes compartimentos ambientais. A produção e o uso de medicamentos, como hormônios e antibióticos contribuíram muito para a ampliação deste quadro. Por serem persistentes não são totalmente metabolizados nos seres vivos e acabam sendo excretados e lançados em corpos receptores. Os mecanismos naturais de degradação e métodos de tratamento convencionais de efluentes não são suficientemente eficientes na remoção completa destes compostos; em função disso, é necessário o desenvolvimento e aplicação de tecnologias alternativas para a redução destes impactos. Entre estas tecnologias podemos citar os Processos Oxidativos Avançados (POA) que são mais eficientes para o tratamento destes tipos de efluentes. Objetivamos neste trabalho desenvolver, caracterizar e utilizar eletrodos nanoestruturados de TiO2 para a confecção de um reator fotoeletroquímico para a degradação do antibiótico amoxicilina e do citrato de sildenafil, este último, princípio ativo do medicamento Viagra®, submetidos à radiação UV e solar. Foram desenvolvidos eletrodos nanoestruturados com TiO2 sobre substrato de titânio, a partir de processos de anodização eletroquímica, na qual foram variados diferentes parâmetros que influenciaram nas características dos nanotubos de TiO2 desenvolvidos. Os nanotubos formados foram avaliados por Microscopia Eletrônica de Varredura quanto ao comprimento, espessura de parede e homogeneidade de distribuição. Testou-se contra-eletrodos de platina, Anodo Dimensionalmente Estável (ADE), níquel, aço-inoxidável 304 e 316L e obteve-se nanotubos de TiO2 com comprimentos entre 100 e 650 nm. Observou-se na maioria dos eletrodos nanoestruturados uma distribuição homogênea dos nanotubos. Visando a obtenção de nanoestruturas mais fotoativas, realizou-se cristalização por aquecimento em estufa. Na cristalização dos nanotubos, as análises de Difratometria de Raios-X evidenciaram intenso sinal no ângulo 2? próximo a 25º para todas as amostras significando que os nanotubos de TiO2 se cristalizaram na fase anatase, a qual é mais fotoativa. A degradação de amoxicilina apresentou rendimento de aproximadamente 85% em um intervalo de 4 horas de tratamento, enquanto que o rendimento na degradação do citrato de sildenafil foi de aproximadamente 88%, para um volume de amostra de 160,0 mL etanol/água destilada à 20% V/V em Na2SO4 0,1 M, concentração do fármaco de 10,0 mg L-1, lâmpada de vapor de mercúrio, WUV=13 W/m2, disposição horizontal dos eletrodos, distância de 3,0 mm entre lâmpada e ânodo de TiO2, cátodo de platina em tela, tensão de 1,5 volts, anodo de titânio nanoestruturado obtido a partir de contra-eletrodo de ADE 70%TiO2/30%RuO2 com d = 5,0 mm a 700 rpm e t = 120 min, 2 horas de tratamento. As nanoestruturas apresentaram-se com baixa resistência mecânica em relação à aplicação de valores de potencial elétrico superiores a 1,5 V. No entanto, abaixo destes valores, as estruturas de TiO2 mostraram-se altamente estáveis em relação à durabilidade. A eletrólise apresentou eficiência insignificante na degradação do fármaco citrato de sildenafil, sendo então aplicado um potencial aos eletrodos para fotoassistir ao processo fotocatalítico o qual se mostrou fortemente dependente da drenagem eletrônica
Abstract: The modern society and its production processes have generated and released high amounts of synthetic organic compounds which accumulate in different environmental compartments. The production and use of drugs such as hormones and antibiotics have greatly contributed to the expansion of this problem. Due to persistent-profile of these drugs, they are not completely metabolized and the conventional Wastewater Treatment Plants are not fully effective for the removal of these compounds. Thus, the development and application of alternative technologies is needed. In the other hand, the Advanced Oxidation Processes (AOP) has been effective for the treatment of pharmaceutical residues. This work aimed to produce, characterize and use nanostructured TiO2 electrodes and an photoelectrochemical reactor for the degradation of the antibiotic amoxicillin and sildenafil citrate, the latter, the active ingredient of Viagra©. The experiments were carried out using ultraviolet (UV) and solar radiation. Nanostructured TiO2 electrodes were developed from titanium substrate by electrochemical anodization process in which the different parameters were varied in order to verify its influence on the length, thickness and uniformity of distribution of TiO2 nanotubes formed, evaluated by Scanning Electron Microscopy. It was tested different counter-electrodes such as platinum, dimensionally stable anode (DSA), nickel, stainless-steel 304 and stainless-steel 316L and were obtained TiO2 nanotubes with lengths between 100 and 650 nm. It was observed in most nanostructured electrodes a homogeneous distribution of the nanotubes. Also, in order to obtain nanostructures more photoactive, crystallization was performed by heating in an oven. After crystallization process, analysis of X-Ray diffraction showed intense signal at 2? close to 25º for all samples, meaning that the TiO2 nanotubes were crystallized in the anatase phase which is more photoactive. Photocatalytic experiments with the Amoxicillin solution resulted in approximately 85% of degradation in 4 hours of treatment, whereas the degradation of sildenafil citrate was about 88%. The samples consisted of 160.0 mL ethanol / distilled water at 20 % V/V in 0.1 M Na2SO4, drug concentration of 10.0 mg L-1. The experimental setup consisted of a mercury vapor lamp or a solar simulator, horizontal arrangement of the electrodes and a platinum screen cathode. It was applied 1.5 volts, distance of 3,0 mm between the lamp and TiO2 nanostructured anode, obtained from the anodization using a DSA (70%TiO2/30%RuO2) counter-electrode placed at 5.0 mm, under stirring of 700 rpm over 120 minutes. The nanostructures had low strength to the application of higher electrical potential values than 1.5 V. However, below this value the TiO2 structures were more stable and with greater durability. Electrolytic process had a negligible efficiency in the degradation of sildenafil citrate; thus the applied potential was more important to help the photocatalytic process, which is strongly dependent of the electronic drainage
Mestrado
Tecnologia e Inovação
Mestre em Tecnologia
Santos, Thais Cristina Lemes dos. "Síntese de nanotubos de TiO2 pelo processo de anodização e caracterização para aplicações fotoeletroquímicas." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/165225.
Full textIn recent years, the use of TiO2 nanotubes (Nts) has attracted technological and scientific interests in a significant way due to its unique properties, such as large specific surface area, high absorption capacity and excellent photoelectrochemical activities. One way to improve these properties is to control the nanotubular morphology during its synthesis through the anodizing process. The objective of this study is to evaluate the influence of the applied potential during the anodization process to obtain titanium dioxide (TiO2) nanotubes and applying these nanotubes as a photoelectrochemical catalyst. In order to crystallize the Nts, heat treatment was carried out at 400 ° C in air for 3 h at a heating rate of 10 ° C / min. The effect of the applied potential during the anodizing process on the morphology of the nanotubes and their photoelectrochemical response were analyzed. The characterization was carried out using scanning electron microscopy (SEM), X-ray diffraction (XRD), visible ultraviolet spectrophotometry (UV-VIS) and electrochemical impedance spectroscopy (EIS). It was observed that the anodization potential influences the geometry of the nanotubes, that is, their length, wall thickness and diameter, altering their light absorption properties; consequently, influencing the photoelectrochemical performance of the samples. The results obtained from the electrochemical impedance spectroscopy showed a slightly small difference in the charge transportation resistance of the studied samples. However, the currents developed in the linear voltammetry tests indicated that the Nt30 sample is a promising photoelectrode to apply for other applications such as heterostructures and cationic/anionic doped structures based on titanium dioxide nanotubes.
Li, Hsin-Chun, and 李欣純. "Enhancement of osseointegration on titanium surface by anodizing process." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/xb4ctx.
Full text國立臺北科技大學
化學工程研究所
97
In this work, titania nanotubular were fabricated by anodizing technique. Effects of anodization condition such as the applied voltage, anodizing time and rotated the anode were investigated. It was found that, the growth rate, length and pore diameter is depending on the applied voltage. When the anode to rotate, the titanium nanotubes readily causing crack of nanotubes and turns into the structure of nanowire or nanobelt. The surface properties of titanium plays an important role in cell morphology and behaviors such as cell adhesion, migration, proliferation and differentiation. We seeded the Osteoblast-like cells on three different morphology of titania film ( flat, nanotubes and nanowires). The results indicated that the titania film with nanowires yield the best biological effects for cell adhesion and proliferation.
Chang, Po Wei, and 張伯維. "Fabricated of nano/micro structured molds aluminum anodizing oxide process." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/54799336747401225188.
Full text長庚大學
機械工程學系
99
This paper reports the fabrication of dual-side nanostructured anti-reflection films for the protective layer of solar cells using anodic aluminum oxide (AAO) and infrared assisted roller embossing techniques. To emboss nanostructures on two sides of the plastic films, a template was first manufactured using an anodic aluminum oxide (AAO) process. Super purity aluminum sheets (99.999%) with a thickness of 0.25 mm were used as the substrates. The aluminum template was used to replicate the nanostructures onto 60 μm thick polyethylene terephthalate (PET) films by using a hot embossing facility in the experiments. The patterned solar cell was characterized using UV/VIS spectrophotometer, and scanning electron microscope (SEM), and its total conversion efficiency was measured by a solar simulator. The experimental results showed that the fabricated films could effectively reduce the reflectance and increase the conversion efficiency of solar cells. The proposed method shows great potential for fabrication of the anti-reflection protective layer of solar cells due to its simplicity and versatility
Yeh, Chi-Chen, and 葉啟禎. "Heat Treatment and Pulsed Anodizing Process of ADC14 Aluminum Alloy Cast." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/cy7bk5.
Full text國立高雄應用科技大學
化學工程與材料工程系碩士在職專班
105
The aim of this work is to study ADC14 aluminum alloy the influence of time of pulsed hard anodizing and the temperature of heat treatment. The ADC14 castings anodized using the pulsating voltage of 35 V / 50 ms -2 V / 5 ms in the mixed-acid of H2SO4, H2C2O4 2H2O, Al2(SO4)3 Solution. The anodized film was subjected to a 5000 times reciprocating abrasion test using a Taber CS17 linear friction tester.The anodized film wear loss was 1mg. The optimum hard anodized conditions were applied to the CVT (continuous variable transmission) test. The oxidized film applied in CVT can reduce friction loss.The test result showed .When it was combined with the belt.
WANG, WEI-YIN, and 王威尹. "Integrally colored anodizing process of A6063 aluminum alloy by pulse current." Thesis, 1992. http://ndltd.ncl.edu.tw/handle/31666573446991027902.
Full textJiu, Chang Wen, and 張文. "Study of modifiers on integrally colored anodizing process of by pulse current." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/95725859678827995081.
Full textBooks on the topic "Anodizing process"
Brace, Arthur william. The development of an expert system for the identification anodic coating process defects as a contribution tothe dissemination of anodizing technology. Birmingham: Aston University. Department of Mechanical and Electrical Engineering, 1995.
Find full textBook chapters on the topic "Anodizing process"
Runge, Jude Mary. "Anodizing as an Industrial Process." In The Metallurgy of Anodizing Aluminum, 149–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72177-4_3.
Full textRunge, Jude Mary. "Anodizing as a Corrosion Process." In The Metallurgy of Anodizing Aluminum, 249–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72177-4_5.
Full textQian, Jian Gang, Di Li, and Feng Zhang. "Process of Film Formation By Anodizing AZ91D Magnesium Alloy." In Materials Science Forum, 3905–8. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.3905.
Full textLee, Ji Eon, Kye Sung Kim, Young Rae Cho, Kwang Ho Kim, and Won Sub Chung. "Ti Oxide Films Formed by an Anodizing Process for Use in Dental Implants." In Solid State Phenomena, 1777–80. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.1777.
Full textJamaati, R., M. R. Toroghinejad, and E. Mohammadi Zahrani. "A Low Cost Method for Manufacturing of Aluminum/Alumina Composite by Anodizing and CRB Process." In Supplemental Proceedings, 669–76. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062173.ch85.
Full textYousri, S. "AN ELECTROCHEMICAL METHOD TO CONTROL THE ANODIZING PROCESS." In Materials Performance Maintenance, 335–42. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-08-041441-6.50032-1.
Full textBatzias, A. F., and F. A. Batzias. "Computer Aided Neuro-fuzzy Control in Anodizing of Aluminium." In European Symposium on Computer Aided Process Engineering-12, 35th European Symposium of the Working Party on Computer Aided Process Engineering, 433–38. Elsevier, 2002. http://dx.doi.org/10.1016/s1570-7946(02)80100-6.
Full textLópez, C. Y. Torres, J. J. Pérez Bueno, I. Zamudio Torres, M. L. Mendoza-López, A. Hurtado Macías, and J. E. Urbina. "Novel Synthesis of 4nm Anatase Nanoparticles at Room Temperature Obtained from TiO2 Nanotube Structures by Anodizing Ti." In Advances in Environmental Engineering and Green Technologies, 87–115. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-6304-6.ch004.
Full textLópez, Celeste Yunueth Torres, Jose de Jesus Perez Bueno, Ildefonso Zamudio Torres, Maria Luisa Mendoza López, Abel Hurtado Macias, and José Eleazar Urbina Álvarez. "TiO2 Nanotubes Transformation Into 4nm Anatase Nanoparticles." In Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials, 810–30. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8591-7.ch034.
Full textRama Krishna, L., and G. Sundararajan. "Corrosion and Wear Protection through Micro Arc Oxidation Coatings in Aluminum and Its Alloys." In Encyclopedia of Aluminum and Its Alloys. Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9781351045636-140000207.
Full textConference papers on the topic "Anodizing process"
Darmawan, Agung Setyo, Tri Widodo Besar Riyadi, Abdul Hamid, Bambang Waluyo Febriantoko, and Budi Satria Putra. "Corrosion resistance improvement of aluminum under anodizing process." In HUMAN-DEDICATED SUSTAINABLE PRODUCT AND PROCESS DESIGN: MATERIALS, RESOURCES, AND ENERGY: Proceedings of the 4th International Conference on Engineering, Technology, and Industrial Application (ICETIA) 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5042862.
Full textVagaska, Alena, Peter Michal, Miroslav Gombar, Jan Kmec, Emil Spisak, and Miroslav Badida. "Modelling of the anodizing process of aluminum using neural networks." In 2014 15th International Carpathian Control Conference (ICCC). IEEE, 2014. http://dx.doi.org/10.1109/carpathiancc.2014.6843681.
Full textMércia Franca de Carvalho, Rebeka Oliveira Domingues, Andréa Gonçalves de Sousa, Ricardo Artur Sanguinetti Ferreira, and Yogendra Prasad Yadava. "Waste recycling of aluminum anodizing process for internal coating of oil refining pipes." In 23rd ABCM International Congress of Mechanical Engineering. Rio de Janeiro, Brazil: ABCM Brazilian Society of Mechanical Sciences and Engineering, 2015. http://dx.doi.org/10.20906/cps/cob-2015-2445.
Full textHuang, Chen-Kang, and Chih-Wei Lee. "Boiling Enhancements by Anodizing and Pre-Boiling in Nanofluid." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88552.
Full textBatalova, Malika, Balaussa Alpysbayeva, and Natalya E. Korobova. "Dependence of the Pore Wall Thickness on the Anodizing Process Parameters for Nanoporous Alumina Membranes." In 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). IEEE, 2021. http://dx.doi.org/10.1109/elconrus51938.2021.9396213.
Full textKao, Tzung-Ta, Tung-Kuan Liu, and Yu-Wei Tsai. "Optimization of anodizing process parameters for the volume expansion of anodic aluminum oxide film by taguchi method." In 2014 11th IEEE International Conference on Control & Automation (ICCA). IEEE, 2014. http://dx.doi.org/10.1109/icca.2014.6870985.
Full textBARA, Marek, Sławomir KULIG, and Joanna KORZEKWA. "THE INFLUENCE OF DISTANCE BETWEEN ELECTRODES USED IN ANODIZING PROCESS ON THE PROPERTIES OF ALUMINUM OXIDE COATINGS." In METAL 2019. TANGER Ltd., 2019. http://dx.doi.org/10.37904/metal.2019.904.
Full textAdyono, Ndaru, W. D. Lestari, and Luluk Endahwati. "Military Type III Anodizing: The Optimal Limit Within Hardening Process of Aluminium Alloy in a Near Zero Temperature." In 2nd Borobudur International Symposium on Science and Technology (BIS-STE 2020). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/aer.k.210810.024.
Full textFranetovic, Vjekoslav, and James G. Schroth. "Improved Hot Aluminum Forming Tribology by Anodization." In ASME/STLE 2007 International Joint Tribology Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ijtc2007-44386.
Full textRibeiro, A., C. Vilarinho, J. Araújo, and J. Carvalho. "Development of an Integrated Process for Eggshell Valorization." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38836.
Full text