Dissertations / Theses on the topic 'Anomaly'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Anomaly.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ståhl, Björn. "Online Anomaly Detection." Thesis, Blekinge Tekniska Högskola, Avdelningen för för interaktion och systemdesign, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2825.
Full textSutton, Patrick James. "The dimensional-reduction anomaly." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ59681.pdf.
Full textTran, Thi Minh Hanh. "Anomaly detection in video." Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/22443/.
Full textBarone, Joshua M. "Automated Timeline Anomaly Detection." ScholarWorks@UNO, 2013. http://scholarworks.uno.edu/td/1609.
Full textSamuelsson, Jonas. "Anomaly Detection in ConsoleLogs." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-314514.
Full textDas, Mahashweta. "Spatio-Temporal Anomaly Detection." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1261540196.
Full textMazel, Johan. "Unsupervised network anomaly detection." Thesis, Toulouse, INSA, 2011. http://www.theses.fr/2011ISAT0024/document.
Full textAnomaly detection has become a vital component of any network in today’s Internet. Ranging from non-malicious unexpected events such as flash-crowds and failures, to network attacks such as denials-of-service and network scans, network traffic anomalies can have serious detrimental effects on the performance and integrity of the network. The continuous arising of new anomalies and attacks create a continuous challenge to cope with events that put the network integrity at risk. Moreover, the inner polymorphic nature of traffic caused, among other things, by a highly changing protocol landscape, complicates anomaly detection system's task. In fact, most network anomaly detection systems proposed so far employ knowledge-dependent techniques, using either misuse detection signature-based detection methods or anomaly detection relying on supervised-learning techniques. However, both approaches present major limitations: the former fails to detect and characterize unknown anomalies (letting the network unprotected for long periods) and the latter requires training over labeled normal traffic, which is a difficult and expensive stage that need to be updated on a regular basis to follow network traffic evolution. Such limitations impose a serious bottleneck to the previously presented problem.We introduce an unsupervised approach to detect and characterize network anomalies, without relying on signatures, statistical training, or labeled traffic, which represents a significant step towards the autonomy of networks. Unsupervised detection is accomplished by means of robust data-clustering techniques, combining Sub-Space clustering with Evidence Accumulation or Inter-Clustering Results Association, to blindly identify anomalies in traffic flows. Correlating the results of several unsupervised detections is also performed to improve detection robustness. The correlation results are further used along other anomaly characteristics to build an anomaly hierarchy in terms of dangerousness. Characterization is then achieved by building efficient filtering rules to describe a detected anomaly. The detection and characterization performances and sensitivities to parameters are evaluated over a substantial subset of the MAWI repository which contains real network traffic traces.Our work shows that unsupervised learning techniques allow anomaly detection systems to isolate anomalous traffic without any previous knowledge. We think that this contribution constitutes a great step towards autonomous network anomaly detection.This PhD thesis has been funded through the ECODE project by the European Commission under the Framework Programme 7. The goal of this project is to develop, implement, and validate experimentally a cognitive routing system that meet the challenges experienced by the Internet in terms of manageability and security, availability and accountability, as well as routing system scalability and quality. The concerned use case inside the ECODE project is network anomaly
Leto, Kevin. "Anomaly detection in HPC systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textMartin, Xiumin. "Accrual persistence and accrual anomaly." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4824.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on September 28, 2007) Vita. Includes bibliographical references.
Nguyen, Quyen Do. "Anomaly handling in visual analytics." Worcester, Mass. : Worcester Polytechnic Institute, 2008. http://www.wpi.edu/Pubs/ETD/Available/etd-122307-132119/.
Full textNordlöf, Jonas. "Anomaly detection in videosurveillance feeds." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-105521.
Full textTraditionell övervakning är ofta ineffektiv i och med att antalet tillgängliga övervakningskameror ofta överstiger en operatörs förmåga att bevaka dessa. Vidare kräver övervakning ett fokus som en operatör endast klarar av att upprätthålla under en kort tidsperiod. I detta arbete har därför algoritmer för automatisk anomalidetektion i övervakningskameror skapats, med hjälp hidden Markov models (HMM) samt ett Gaussian mixture probability hypothesis density (GM-PHD) filter. Fyra olika modeller har implementerats och utvärderats med hjälp av PETS2009 datasetet samt ett simulerat dataset från FOI. De tre första modellerna är skapade för att modellera normalt beteende bland folksamlingar och kan därefter användas för att upptäcka anomalier. Den första modellen använder sig av endast en HMM för att modellera olika beteenden. Den andra modellen använder sig av två olika HMMer, skapade genom att manuellt dela upp observationerna i träningssetet i två delar så att dessa motsvarar olika beteenden. Denna modell fungerar inte lika bra som den första modellen. Den tredje modellen har konstruerats genom att klustra samtliga observationer, med hjälp av dynamic time warping (DTW) och zscores, därefter skapas en HMM för varje kluster. Denna modell anses vara den mest effektiva anomalidetektorn. Den sista modellen använder information från alla grupper i det bevakade området men fungerar inte tillräckligt bra för att kunna upptäcka anomalier.
Nguyen, Quyen Do. "Anomaly Handling in Visual Analytics." Digital WPI, 2007. https://digitalcommons.wpi.edu/etd-theses/1144.
Full textTurcotte, Melissa. "Anomaly detection in dynamic networks." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/24673.
Full textZhang, Dongyang. "PRAAG Algorithm in Anomaly Detection." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-194193.
Full textAtt upptäcka avvikelser har varit en av de viktigaste tillämpningarna avdatautvinning (data mining). Det används stor utsträckning i branscher somfinans, medicin, telekommunikation, och även tillverkning. I många fallströmmas stora mängder data och då är det mest effektivt att analysera utanatt lagra data. Med andra ord är nyckeln att förbättra algoritmernasutrymmeseffektivitet till exempel genom att extraheraden statistiskasammanfattning avdatat. PRAAGär en kollektiv algoritm för att upptäckaavvikelser. Den ärbaserad på kvantilenegenskapernai datat, såutrymmeseffektiviteten beror i huvudsak på egenskapernahoskvantilalgoritmen.Examensarbetet undersöker kvantilsammanfattande algoritmer som gerkvantilinformationen av ett dataset utan att spara alla datapunkter. Vikommer fram till att GKalgoritmenuppfyllervåra krav. Sedan implementerarvialgoritmerna och genomför experiment för att testa prestandan. Slutligenfokuserar rapporten påexperiment på PRAAG för att förstå hur parametrarnapåverkar prestandan. Vi jämför även mot andra algoritmer för att upptäckaavvikelser.Sammanfattningsvis ger GK ett mer utrymmeseffektiv sätt att uppskattakvantiler än att lagra alla datapunkter. Dessutom är PRAAG, jämfört med enstandardalgoritm (CUSUM), effektiv när det gäller True Prediction Rate (TPR)och False Prediction Rate (FPR). Det finns fortfarande flertalet möjligaförbättringar som ska undersökas, t.ex. parallelisering av algoritmen.
Ohlsson, Jonathan. "Anomaly Detection in Microservice Infrastructures." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231993.
Full textAnomalitetsdetektering i tidsserier är ett brett område med många användningsområden och har undersökts under många år. De senaste åren har behovet av övervakning och DevOps ökat, delvis på grund av ökad användning av microservice-infrastrukturer. Att tillämpa tidsserieanomalitetsdetektering på de mätvärden som emitteras av dessa microservices kan ge nya insikter i systemhälsan och kan möjliggöra detektering av avvikande förhållanden innan de eskaleras till en fullständig incident. Denna avhandling undersöker hur två föreslagna anomalitetsdetektorer, en baserad på RPCA-algoritmen och den andra på HTM neurala nätverk, presterar på mätvärden som emitteras av en microservice-infrastruktur, med målet att förbättra infrastrukturövervakningen. Detektorerna utvärderas mot ett slumpmässigt urval av mätvärden från en microservice-infrastruktur på en digital underhållningstjänst, och från det öppet tillgängliga NAB-dataset. Det illustreras att båda algoritmerna kunde upptäcka alla kända incidenter i de testade underhållningstjänst-mätvärdena. Deras förmåga att upptäcka avvikelser visar sig vara beroende av det definierade tröskelvärdet för vad som kvalificeras som en anomali. RPCA-detektorn visade sig bättre på att upptäcka anomalier i underhållningstjänstens mätvärden, men HTM-detektorn presterade bättre på NAB-datasetet. Fynden markerar också svårigheten med att manuellt annotera avvikelser, även med domänkunskaper. Ett problem som visat sig vara sant för datasetet skapat för detta projekt och NAB-datasetet. Avhandlingen slutleder att de föreslagna detektorerna har olikaförmågor, vilka båda har sina respektive avvägningar. De har liknande detekteringsnoggrannhet, men har olika inerta förmågor för att utföra uppgifter som kontinuerlig övervakning, eller enkelhet att installera i en befintlig övervakningsinstallation.
Aradhye, Hrishikesh Balkrishna. "Anomaly Detection Using Multiscale Methods." The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu989701610.
Full textIoannidou, Polyxeni. "Anomaly Detection in Computer Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295762.
Full textI detta examensarbete studerar vi problemet med att upptäcka avvikelser i loggfiler från ett datanätverk. Specifikt försöker vi hitta ett effektivt sätt att upptäcka avvikelser i datan, som består av olika loggningsmeddelanden från olika system i CERNs nätverk för LHC-b-experimentet. Avhandlingens dubbla bidrag är: 1)Avhandlingen kan anses som en undersökning om hur vi kan upptäcka hot och fel i system som loggar en enorm mängd meddelanden i databaser från ett datanätverk. 2) Forskare i LHC-bexperimentet använder sig av Elasticsearch, som är en sökmotor och loggningsplattform med öppen källkod och ett avsevärt rykte, som tillhandahåller loggövervakning och automatisk datahantering. Dessutom är Elasticsearch försedd med en maskinlärningsfunktion som automatiskt modellerar beteenden med hjälp av data, trender och periodicitet för att identifiera avvikelser. Vi bygger, testar och utvärderar ett fåtal maskininlärningsmodeller som ett alternativt till Elasticsearch maskininlärningsfunktion. Forskarna i experimentet kan använda maskininlärningsmodellerna till samma ändamål som Elasticsearch maskininlärningsfunktion. Vi presenterar också resultat som visar att våra modeller generaliserar väl för osedda loggmeddelanden i databasen.
Patton, Michael Dean. "Seedlet Technology for anomaly detection." Diss., Mississippi State : Mississippi State University, 2002. http://library.msstate.edu/etd/show.asp?etd=etd-08022002-142101.
Full textAlkadi, Alaa. "Anomaly Detection in RFID Networks." UNF Digital Commons, 2017. https://digitalcommons.unf.edu/etd/768.
Full textTuma, Soraya Ivonne Lozada. ""Inversão por etapas de anomalias magnéticas bi-dimensionais"." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/14/14132/tde-12062006-173944/.
Full textThis work presents a three step magnetic inversion procedure in which invariant quantities related to source parameters are sequentially inverted to provide i) cross-section of two-dimensional sources; ii)intensity of source magnetization, and iii) inclination of source magnetization. The first inverted quantity (called geometrical function) is obtained by rationing intensity gradient of total field anomaly and intensity of vector anomalous field. For homogenous sources, geometrical function depends only on source geometry thus allowing shape reconstruction by using arbitrary values for source magnetization. In the second step, source shape is fixed and magnetization intensity is estimated by fitting intensity gradient of total field anomaly, an invariant quantity with magnetization direction and equivalent to amplitude of the analytical signal. In the last step, source shape and magnetization intensity are fixed and magnetization inclination is determined by fitting magnetic anomaly. Besides furnishing shape and magnetization of homogeneous two-dimensional sources, this technique allows to check in some cases if causative sources are homogeneous. It is possible because geometrical function from inhomogeneous sources can be fitted by a homogeneous model but a model thus obtained does not fit the amplitude of analytical signal nor magnetic anomaly itself. This is a criterion that seems efective in recognizing strongly inhomogeneous sources. The proposed technique is tested with numerical experiments, and used to model a magnetic anomaly from intrusive basic rocks of Paraná Basin, Brazil.
Aussel, Nicolas. "Real-time anomaly detection with in-flight data : streaming anomaly detection with heterogeneous communicating agents." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLL007/document.
Full textWith the rise of the number of sensors and actuators in an aircraft and the development of reliable data links from the aircraft to the ground, it becomes possible to improve aircraft security and maintainability by applying real-time analysis techniques. However, given the limited availability of on-board computing and the high cost of the data links, current architectural solutions cannot fully leverage all the available resources limiting their accuracy.Our goal is to provide a distributed algorithm for failure prediction that could be executed both on-board of the aircraft and on a ground station and that would produce on-board failure predictions in near real-time under a communication budget. In this approach, the ground station would hold fast computation resources and historical data and the aircraft would hold limited computational resources and current flight's data.In this thesis, we will study the specificities of aeronautical data and what methods already exist to produce failure prediction from them and propose a solution to the problem stated. Our contribution will be detailed in three main parts.First, we will study the problem of rare event prediction created by the high reliability of aeronautical systems. Many learning methods for classifiers rely on balanced datasets. Several approaches exist to correct a dataset imbalance and we will study their efficiency on extremely imbalanced datasets.Second, we study the problem of log parsing as many aeronautical systems do not produce easy to classify labels or numerical values but log messages in full text. We will study existing methods based on a statistical approach and on Deep Learning to convert full text log messages into a form usable as an input by learning algorithms for classifiers. We will then propose our own method based on Natural Language Processing and show how it outperforms the other approaches on a public benchmark.Last, we offer a solution to the stated problem by proposing a new distributed learning algorithm that relies on two existing learning paradigms Active Learning and Federated Learning. We detail our algorithm, its implementation and provide a comparison of its performance with existing methods
Di, Felice Marco. "Unsupervised anomaly detection in HPC systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textBrauckhoff, Daniela. "Network traffic anomaly detection and evaluation." Aachen Shaker, 2010. http://d-nb.info/1001177746/04.
Full textBrax, Christoffer. "Anomaly detection in the surveillance domain." Doctoral thesis, Örebro universitet, Akademin för naturvetenskap och teknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-16373.
Full textChristoffer Brax forskar också vid högskolan i Skövde, Informatics Research Centre / Christoffer Brax also does research at the University of Skövde, Informatics Research Centre
Riveiro, María José. "Visual analytics for maritime anomaly detection." Doctoral thesis, Örebro universitet, Akademin för naturvetenskap och teknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-12783.
Full textMaria Riveiro is also affiliated to Informatics Research Centre, Högskolan i Skövde
Information Fusion Research Program, Högskolan i Skövde
Satam, Shalaka Chittaranjan, and Shalaka Chittaranjan Satam. "Bluetooth Anomaly Based Intrusion Detection System." Thesis, The University of Arizona, 2017. http://hdl.handle.net/10150/625890.
Full textForstén, Andreas. "Unsupervised Anomaly Detection in Receipt Data." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215161.
Full textMed de framsteg inom datahantering och datorkraft som gjorts så kommer också möjligheten att automatisera uppgifter som ej nödvändigtvis utförs av människor. Denna studie gjordes i samarbete med ett företag som digitaliserar företags kvitton. Vi undersöker möjligheten att automatisera sökandet av avvikande kvittodata, vilket kan avlasta revisorer. Vti studerar både avvikande användarbeteenden och individuella kvitton. Resultaten indikerar att automatisering är möjligt, vilket kan reducera behovet av mänsklig inspektion av kvitton
Tjhai, Gina C. "Anomaly-based correlation of IDS alarms." Thesis, University of Plymouth, 2011. http://hdl.handle.net/10026.1/308.
Full textCheng, Leon. "Unsupervised topic discovery by anomaly detection." Thesis, Monterey, California: Naval Postgraduate School, 2013. http://hdl.handle.net/10945/37599.
Full textWith the vast amount of information and public comment available online, it is of increasing interest to understand what is being said and what topics are trending online. Government agencies, for example, want to know what policies concern the public without having to look through thousands of comments manually. Topic detection provides automatic identification of topics in documents based on the information content and enhances many natural language processing tasks, including text summarization and information retrieval. Unsupervised topic detection, however, has always been a difficult task. Methods such as Latent Dirichlet Allocation (LDA) convert documents from word space into document space (weighted sums over topic space), but do not perform any form of classification, nor do they address the relation of generated topics with actual human level topics. In this thesis we attempt a novel way of unsupervised topic detection and classification by performing LDA and then clustering. We propose variations to the popular K-Mean Clustering algorithm to optimize the choice of centroids, and we perform experiments using Facebook data and the New York Times (NYT) corpus. Although the results were poor for the Facebook data, our method performed acceptably with the NYT data. The new clustering algorithms also performed slightly and consistently better than the normal K-Means algorithm.
Tziakos, Ioannis. "Subspace discovery for video anomaly detection." Thesis, Queen Mary, University of London, 2010. http://qmro.qmul.ac.uk/xmlui/handle/123456789/387.
Full textHuang, Chengqiang. "Featured anomaly detection methods and applications." Thesis, University of Exeter, 2018. http://hdl.handle.net/10871/34351.
Full textSoares, Nuno Domingues Mateus Pedroso. "The accruals anomaly in the UK." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505405.
Full textPellissier, Muriel. "Anomaly detection technique for sequential data." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM078/document.
Full textNowadays, huge quantities of data can be easily accessible, but all these data are not useful if we do not know how to process them efficiently and how to extract easily relevant information from a large quantity of data. The anomaly detection techniques are used in many domains in order to help to process the data in an automated way. The anomaly detection techniques depend on the application domain, on the type of data, and on the type of anomaly.For this study we are interested only in sequential data. A sequence is an ordered list of items, also called events. Identifying irregularities in sequential data is essential for many application domains like DNA sequences, system calls, user commands, banking transactions etc.This thesis presents a new approach for identifying and analyzing irregularities in sequential data. This anomaly detection technique can detect anomalies in sequential data where the order of the items in the sequences is important. Moreover, our technique does not consider only the order of the events, but also the position of the events within the sequences. The sequences are spotted as anomalous if a sequence is quasi-identical to a usual behavior which means if the sequence is slightly different from a frequent (common) sequence. The differences between two sequences are based on the order of the events and their position in the sequence.In this thesis we applied this technique to the maritime surveillance, but this technique can be used by any other domains that use sequential data. For the maritime surveillance, some automated tools are needed in order to facilitate the targeting of suspicious containers that is performed by the customs. Indeed, nowadays 90% of the world trade is transported by containers and only 1-2% of the containers can be physically checked because of the high financial cost and the high human resources needed to control a container. As the number of containers travelling every day all around the world is really important, it is necessary to control the containers in order to avoid illegal activities like fraud, quota-related, illegal products, hidden activities, drug smuggling or arm smuggling. For the maritime domain, we can use this technique to identify suspicious containers by comparing the container trips from the data set with itineraries that are known to be normal (common). A container trip, also called itinerary, is an ordered list of actions that are done on containers at specific geographical positions. The different actions are: loading, transshipment, and discharging. For each action that is done on a container, we know the container ID and its geographical position (port ID).This technique is divided into two parts. The first part is to detect the common (most frequent) sequences of the data set. The second part is to identify those sequences that are slightly different from the common sequences using a distance-based method in order to classify a given sequence as normal or suspicious. The distance is calculated using a method that combines quantitative and qualitative differences between two sequences
Udd, Robert. "Anomaly Detection in SCADA Network Traffic." Thesis, Linköpings universitet, Programvara och system, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122680.
Full textSvensson, Carolin. "Anomaly Detection in Encrypted WLAN Traffic." Thesis, Linköpings universitet, Kommunikationssystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-172689.
Full textPutina, Andrian. "Unsupervised anomaly detection : methods and applications." Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAT012.
Full textAn anomaly (also known as outlier) is an instance that significantly deviates from the rest of the input data and being defined by Hawkins as 'an observation, which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism'. Anomaly detection (also known as outlier or novelty detection) is thus the machine learning and data mining field with the purpose of identifying those instances whose features appear to be inconsistent with the remainder of the dataset. In many applications, correctly distinguishing the set of anomalous data points (outliers) from the set of normal ones (inliers) proves to be very important. A first application is data cleaning, i.e., identifying noisy and fallacious measurement in a dataset before further applying learning algorithms. However, with the explosive growth of data volume collectable from various sources, e.g., card transactions, internet connections, temperature measurements, etc. the use of anomaly detection becomes a crucial stand-alone task for continuous monitoring of the systems. In this context, anomaly detection can be used to detect ongoing intrusion attacks, faulty sensor networks or cancerous masses.The thesis proposes first a batch tree-based approach for unsupervised anomaly detection, called 'Random Histogram Forest (RHF)'. The algorithm solves the curse of dimensionality problem using the fourth central moment (aka kurtosis) in the model construction while boasting linear running time. A stream based anomaly detection engine, called 'ODS', that leverages DenStream, an unsupervised clustering technique is presented subsequently and finally Automated Anomaly Detection engine which alleviates the human effort required when dealing with several algorithm and hyper-parameters is presented as last contribution
Joshi, Vineet. "Unsupervised Anomaly Detection in Numerical Datasets." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1427799744.
Full textJirwe, Marcus. "Online Anomaly Detection on the Edge." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299565.
Full textDagens samhälle är väldigt beroende av industrin och automatiseringen av fabriksuppgifter är mer förekommande än någonsin. Dock kräver maskinerna som tar sig an dessa uppgifter underhåll för att forsätta arbeta. Detta underhåll ges typiskt periodvis och kan vara dyrt och samtidigt kräva expertkunskap. Därför skulle det vara väldigt fördelaktigt om det kunde förutsägas när en maskin behövde underhåll och endast göra detta när det är nödvändigt. En metod för att förutse när underhåll krävs är att samla in sensordata från en maskin och analysera det för att hitta anomalier. Anomalier fungerar ofta som en indikator av oväntat beteende, och kan därför visa att en maskin behöver underhåll. På grund av frågor som integritet och säkerhet är det ofta inte tillåtet att datan lämnar det lokala systemet. Därför är det nödvändigt att denna typ av anomalidetektering genomförs sekventiellt allt eftersom datan samlas in, och att detta sker på nätverkskanten. Miljön som detta sker i påtvingar begränsningar på både hårdvara och beräkningsförmåga. I denna avhandling så överväger vi fyra anomalidetektorer som med användning av maskininlärning lär sig och upptäcker anomalier i denna sorts miljö. Dessa metoder är LoOP, iForestASD, KitNet och xStream. Vi analyserar först de fyra anomalidetektorerna genom Skoltech Anomaly Benchmark där vi använder deras föreslagna mått samt ”Receiver Operating Characteristic”-kurvor. Vi genomför även vidare analys på två dataset som vi har tillhandhållit av företaget Gebhardt. De experimentella resultaten är lovande och indikerar att de övervägda metoderna presterar väl när det kommer till detektering av anomalier. Slutligen föreslår vi några idéer som kan utforskas för framtida arbete, som att implementera en tröskel för anomalidetektering som anpassar sig dynamiskt.
Wu, Mingxi. "Statistical methods for fast anomaly detection." [Gainesville, Fla.] : University of Florida, 2008. http://purl.fcla.edu/fcla/etd/UFE0022572.
Full textRosario, Dalton S. "Algorithm development for hyperspectral anomaly detection." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8583.
Full textThesis research directed by: Applied Mathematics and Scientific Computation Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
GHORBANI, SONIYA. "Anomaly Detection in Electricity Consumption Data." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-35011.
Full textOriwoh, Edewede. "A smart home anomaly detection framework." Thesis, University of Bedfordshire, 2015. http://hdl.handle.net/10547/622486.
Full textRossell, Daniel. "Anomaly detection using adaptive resonance theory." Thesis, Boston University, 2013. https://hdl.handle.net/2144/12205.
Full textThis thesis focuses on the problem of anomaly detection in computer networks. Anomalies are often malicious intrusion attempts that represent a serious threat to network security. Adaptive Resonance Theory (ART) is used as a classification scheme for identifying malicious network traffic. ART was originally developed as a theory to explain how the human eye categorizes visual patterns. For network intrusion detection, the core ART algorithm is implemented as a clustering algorithm that groups network traffic into clusters. A machine learning process allows the number of clusters to change over time to best conform to the data. Network traffic is characterized by network flows, which represent a packet, or series of packets, between two distinct nodes on a network. These flows can contain a number of attributes, including IP addresses, ports, size, and duration. These attributes form a multi-dimensional vector that is used in the clustering process. Once data is clustered along the defined dimensions, anomalies are identified as data points that do not match known good or nominal network traffic. The ART clustering algorithm is tested on a realistic network environment that was generated using the network flow simulation tool FS. The clustering results for this simulation show very promising detection rates for the ART clustering algorithm.
Örneholm, Filip. "Anomaly Detection in Seasonal ARIMA Models." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388503.
Full textSreenivasulu, Ajay. "Evaluation of cluster based Anomaly detection." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-18053.
Full textDao, Quang Hoan <1992>. "Anomaly detection with time series forecasting." Master's Degree Thesis, Università Ca' Foscari Venezia, 2020. http://hdl.handle.net/10579/17320.
Full textZavanin, Eduardo Marcio 1989. "Mecanismo de Pontecorvo estendido." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278245.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-21T20:53:09Z (GMT). No. of bitstreams: 1 Zavanin_EduardoMarcio_M.pdf: 2031044 bytes, checksum: a24fad776402ee2c06c0d5c44baaf4bb (MD5) Previous issue date: 2013
Resumo: O objetivo desse trabalho é desenvolver um mecanismo que possa servir como solução para as anomalias dos antineutrinos de reatores e do Gálio. Relaxando a hipótese de Pontecorvo, permitindo que os ângulos de mistura que compõem um estado de sabor possuam diferentes valores, conseguimos explicar o fenômeno de desaparecimento de neutrinos/antineutrinos em baixas distâncias, através de um parâmetro livre. Para confrontar o mecanismo desenvolvido também fazemos uma analise criteriosa de alguns limites experimentais obtidos por aceleradores de partículas e identificamos uma possível dependência desse parâmetro livre com a energia. Adotando esse dependência energética para o parâmetro livre, conseguimos acomodar a grande maioria dos dados experimentais em física de neutrinos através de um único modelo
Abstract: This project aims the development of a mechanism that provides a possible solution to reactor antineutrino anomaly and Gallium anomaly. Relaxing the Pontecorvo\'s hypothesis, allowing the mixing angles that compose a flavor state possesses different values, it is possible to explain the phenomenon of desappearance in short-baselines, through a free parameter. To confront the mechanism developed we also perform an analysis of some experimental limits obtained by particle accelerators and identify a possible dependence of this free parameter with the energy. Adopting this energetic dependence for the free parameter, we can¿t almost every experiment in neutrino physics through a single model
Mestrado
Física
Mestre em Física
Balocchi, Leonardo. "Anomaly detection mediante algoritmi di machine learning." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textSUNDHOLM, JOEL. "Feature Extraction for Anomaly Detection inMaritime Trajectories." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155898.
Full textBalupari, Ravindra. "Real-time network-based anomaly intrusion detection." Ohio : Ohio University, 2002. http://www.ohiolink.edu/etd/view.cgi?ohiou1174579398.
Full text