Academic literature on the topic 'Anonymizing network'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Anonymizing network.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Anonymizing network"
Das, Sudipto, Omer Egecioglu, and Amr El Abbadi. "Anónimos: An LP-Based Approach for Anonymizing Weighted Social Network Graphs." IEEE Transactions on Knowledge and Data Engineering 24, no. 4 (April 2012): 590–604. http://dx.doi.org/10.1109/tkde.2010.267.
Full textSiddula, Madhuri, Yingshu Li, Xiuzhen Cheng, Zhi Tian, and Zhipeng Cai. "Privacy-Enhancing Preferential LBS Query for Mobile Social Network Users." Wireless Communications and Mobile Computing 2020 (September 1, 2020): 1–13. http://dx.doi.org/10.1155/2020/8892321.
Full textMoreno-Sanchez, Pedro, Tim Ruffing, and Aniket Kate. "PathShuffle: Credit Mixing and Anonymous Payments for Ripple." Proceedings on Privacy Enhancing Technologies 2017, no. 3 (July 1, 2017): 110–29. http://dx.doi.org/10.1515/popets-2017-0031.
Full textNaumov, A. I., V. I. Radygin, and M. N. Ivanov. "IDENTIFICATION OF MIXER TRANSACTIONS IN THE BITCOIN NETWORK IN THE FRAMEWORK OF SOLVING THE PROBLEMS OF PREVENTING MONEY LAUNDERING AND TERRORIST FINANCING." SOFT MEASUREMENTS AND COMPUTING 1, no. 2 (2021): 78–90. http://dx.doi.org/10.36871/2618-9976.2021.02.007.
Full textNastuła, Anna. "New threats in the cyberspace based on the analysis of the TOR (The Onion Router) network." ASEJ Scientific Journal of Bielsko-Biala School of Finance and Law 22, no. 4 (January 23, 2019): 28–31. http://dx.doi.org/10.5604/01.3001.0012.9839.
Full textMartyniuk, Hanna, Valeriy Kozlovskiy, Serhii Lazarenko, and Yuriy Balanyuk. "Data Mining Technics and Cyber Hygiene Behaviors in Social Media." South Florida Journal of Development 2, no. 2 (May 26, 2021): 2503–15. http://dx.doi.org/10.46932/sfjdv2n2-108.
Full textPsaroudakis, Ioannis, Vasilios Katos, and Pavlos S. Efraimidis. "A novel mechanism for anonymizing Global System for Mobile Communications calls using a resource-based Session Initiation Protocol community network." Security and Communication Networks 8, no. 3 (June 26, 2014): 486–500. http://dx.doi.org/10.1002/sec.995.
Full textFranchi, Enrico, Agostino Poggi, and Michele Tomaiuolo. "Blogracy." International Journal of Distributed Systems and Technologies 7, no. 2 (April 2016): 37–56. http://dx.doi.org/10.4018/ijdst.2016040103.
Full textQiu, Ying, Yi Liu, Xuan Li, and Jiahui Chen. "A Novel Location Privacy-Preserving Approach Based on Blockchain." Sensors 20, no. 12 (June 21, 2020): 3519. http://dx.doi.org/10.3390/s20123519.
Full textZhou, Fan, Kunpeng Zhang, Shuying Xie, and Xucheng Luo. "Learning to Correlate Accounts Across Online Social Networks: An Embedding-Based Approach." INFORMS Journal on Computing 32, no. 3 (July 2020): 714–29. http://dx.doi.org/10.1287/ijoc.2019.0911.
Full textDissertations / Theses on the topic "Anonymizing network"
Freedman, Michael J. (Michael Joseph) 1979. "A peer-to-peer anonymizing network layer." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/87212.
Full textIncludes bibliographical references (leaves 51-53).
by Michale J. Freedman.
M.Eng.
Amati, Michele. "Design and implementation of an anonymous peer-to-peer iaas cloud." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8426/.
Full textGaertner, Jared Glen. "Anonymizing subsets of social networks." Thesis, 2012. http://hdl.handle.net/1828/4157.
Full textGraduate
Ferreira, Francisco Martins. "Anonymizing Private Information: From Noise to Data." Master's thesis, 2021. http://hdl.handle.net/10316/95554.
Full textIn the Information Age data has become more important for all types of organizations. The information carried by large datasets habilitates the creation of intelligent systems that overcome inefficiencies and create a safer and better quality of life. Because of this, organizations have come to see data as a competitive advantage.Fraud Detection solutions are one example of intelligent systems that are highly dependent on having access to large amounts of data. These solutions receive information about monetary transactions and classify them as legitimate or fraudulent in real time. This field has benefitted from higher availability of data, allowing the application of Machine Learning (ML) algorithms that leverage the information in datasets to finding fraudulent activity in real-time.In a context of systematic gathering of information, privacy dictates how data can be used and shared, in order to protect the information of users and organizations. In order to retain the utility of data, a growing amount of effort has been dedicated to creating and exploring avenues for privacy conscious data sharing.Generating synthetic datasets that carry the same information as real data allows for the creation of ML solutions while respecting the limitations placed on data usage. In this work, we introduce Duo-GAN and DW-GAN as frameworks for synthetic data generation that learn the specificities of financial transactions data and generate fictitious data that keeps the utility of the original collections of data. Both these frameworks use two generators, one for generating fraudulent instances and one for generating legitimate instances. This allows each generator to learn the distribution for each class, avoiding the problems created by highly unbalanced data. Duo-GAN achieves positive results, in some instances achieving a disparity of only 4% in F1 score between classifiers trained with synthetic data and classifiers trained with real data and both tested on the same real data. DW-GAN presents positive results too with disparity of 3% in F1 score in the same conditions.
Na Idade da Informação os dados tornaram-se mais importantes para todos os tipos de organizações. A informação contida pelos grandes datasets permite a criação de sistemas inteligentes que ultrapassam ineficiências e criam qualidade de vida melhor e mais segura. Devido a isto, as organizações começaram a ver os dados com uma vantagem competitiva.As soluções de Deteção de Fraude são exemplos de sistemas inteligentes que dependem do acesso a grandes quantidades de dados. Estas soluções recebem informação relativas a transações monetárias e atribuem classificações de legítimas ou fraudulentas em tempo real. Este é um dos campos que beneficiou da maior disponibilidade de dados, sendo capaz de aplicar algoritmos de Machine Learning que utilizam a informação contida nos datasets para detetar atividade fraudulenta em tempo real.Num contexto de agregação sistemática de informação, a privacidade dita como os dados podem ser utilizados e partilhados, com o objetivo de proteger a informação dos utilizadores de sistemas e de organizações. De forma a reter a utilidade dos dados, uma quantidade crescente de esforço tem sido dispendido em criar e explorar avenidas para a partilha de dados respeitando a privacidade.A geração de dados sintéticos que contém a mesma informação que os dados reais permite a criação de soluções de Machine Learning (ML) mantendo o respeito pelas limitações colocadas sobre a utilização de dados.Neste trabalho introduzimos Duo-GAN e DW-GAN como frameworks para geração de dados sintéticos que aprendem as especificidades dos dados de transações financeiras e geram dados fictícios que retém a utilidade das coleções de dados originais. Ambos os frameworks utilizam dois geradores, um para gerar instâncias fraudulentas e outro para gerar instâncias legítimas. Isto permite que cada gerador aprenda a distribuição de cada uma das classes, evitando assim os problemas criados por datasets desiquilibrados. O Duo- GAN atinge resultados positivos, em certos casos atingindo uma disparidade de apenas 4% no F1 score entre classificadores treinados com dados sintéticos e classificadores treinados com dados reais, e ambos testados nos mesmos dados reais. O DW-GAN também apresenta resultados positivos, com disparidade de 3% no F1 score para as mesmas condições.
Outro - This work is partially funded by national funds through the FCT - Foundation for Science and Technology, I.P., within the scope of the project CISUC - UID/CEC/00326/2020 and by European Social Fund, through the Regional Operational Program Centro 2020. and by the CMU|Portugal project CAMELOT (POCI-01-0247-FEDER-045915).
Book chapters on the topic "Anonymizing network"
Wang, Shyue-Liang, Zheng-Ze Tsai, Tzung-Pei Hong, and I.-Hsien Ting. "Anonymizing Shortest Paths on Social Network Graphs." In Intelligent Information and Database Systems, 129–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20039-7_13.
Full textFreedman, Michael J., Emil Sit, Josh Cates, and Robert Morris. "Introducing Tarzan, a Peer-to-Peer Anonymizing Network Layer." In Peer-to-Peer Systems, 121–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45748-8_12.
Full textFung, Benjamin C. M., Yan’an Jin, Jiaming Li, and Junqiang Liu. "Anonymizing Social Network Data for Maximal Frequent-Sharing Pattern Mining." In Lecture Notes in Social Networks, 77–100. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14379-8_5.
Full textLiu, Xiangyu, and Xiaochun Yang. "A Generalization Based Approach for Anonymizing Weighted Social Network Graphs." In Web-Age Information Management, 118–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23535-1_12.
Full textPsaroudakis, Ioannis, Vasilios Katos, and Pavlos S. Efraimidis. "A Framework for Anonymizing GSM Calls over a Smartphone VoIP Network." In IFIP Advances in Information and Communication Technology, 543–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30436-1_46.
Full textLan, Lihui, and Biao Cong. "Weighted Social Networks Anonymizing Publication." In Recent Advances in Computer Science and Information Engineering, 413–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25781-0_63.
Full textPiacentino, Esteban, and Cecilio Angulo. "Anonymizing Personal Images Using Generative Adversarial Networks." In Bioinformatics and Biomedical Engineering, 395–405. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45385-5_35.
Full textLiu, Xiangyu, Jiajia Li, Dahai Zhou, Yunzhe An, and Xiufeng Xia. "Preserving the d-Reachability When Anonymizing Social Networks." In Web-Age Information Management, 40–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39958-4_4.
Full textZhang, Hongyan, Li Xu, Limei Lin, and Xiaoding Wang. "De-anonymizing Social Networks with Edge-Neighborhood Graph Attacks." In Communications in Computer and Information Science, 726–37. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9129-7_49.
Full textWang, Huanjie, Peng Liu, Shan Lin, and Xianxian Li. "A Local-Perturbation Anonymizing Approach to Preserving Community Structure in Released Social Networks." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 36–45. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60717-7_4.
Full textConference papers on the topic "Anonymizing network"
Das, Sudipto, Omer Egecioglu, and Amr El Abbadi. "Anonymizing weighted social network graphs." In 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icde.2010.5447915.
Full textMasoumzadeh, Amirreza, and James Joshi. "Anonymizing geo-social network datasets." In the 4th ACM SIGSPATIAL International Workshop. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2071880.2071886.
Full textKayem, Anne V. D. M., Azhar Deshai, and Stuart Hammer. "On anonymizing social network graphs." In 2012 Information Security for South Africa (ISSA). IEEE, 2012. http://dx.doi.org/10.1109/issa.2012.6320456.
Full textLan, Lihui, Shiguang Ju, and Hua Jin. "Anonymizing Social Network Using Bipartite Graph." In 2010 International Conference on Computational and Information Sciences (ICCIS). IEEE, 2010. http://dx.doi.org/10.1109/iccis.2010.245.
Full textSong, Wenlue, Yan Zhang, and Wenyang Bai. "Anonymizing Path Nodes in Social Network." In 2010 2nd International Workshop on Database Technology and Applications (DBTA). IEEE, 2010. http://dx.doi.org/10.1109/dbta.2010.5658931.
Full textQardaji, Wahbeh, and Ninghui Li. "Anonymizing Network Traces with Temporal Pseudonym Consistency." In 2012 32nd International Conference on Distributed Computing Systems Workshops (ICDCS Workshops). IEEE, 2012. http://dx.doi.org/10.1109/icdcsw.2012.11.
Full textTang, Yi, and Yuanyuan Wu. "Anonymizing Network Addresses Based on Clustering Subnets." In 2010 International Conference on Internet Technology and Applications (iTAP). IEEE, 2010. http://dx.doi.org/10.1109/itapp.2010.5566245.
Full textCoull, Scott E., Fabian Monrose, Michael K. Reiter, and Michael Bailey. "The Challenges of Effectively Anonymizing Network Data." In Technology Conference for Homeland Security (CATCH). IEEE, 2009. http://dx.doi.org/10.1109/catch.2009.27.
Full textHan, Jinsong, and Yunhao Liu. "Rumor Riding: Anonymizing Unstructured Peer-to-Peer Systems." In 2006 IEEE International Conference on Network Protocols. IEEE, 2006. http://dx.doi.org/10.1109/icnp.2006.320195.
Full textYi Tang, Yuanyuan Wu, and Quan Zhou. "AASC: Anonymizing network addresses based on subnet clustering." In 2010 IEEE International Conference on Wireless Communications, Networking and Information Security (WCNIS). IEEE, 2010. http://dx.doi.org/10.1109/wcins.2010.5541864.
Full textReports on the topic "Anonymizing network"
Moskowitz, Ira S., Daniel P. Crepeau, Richard E. Newman, and Allen R. Miller. Covert Channels and Anonymizing Networks. Fort Belvoir, VA: Defense Technical Information Center, October 2003. http://dx.doi.org/10.21236/ada465268.
Full textMoskowitz, Ira S., Richard E. Newman, Daniel P. Crepeau, and Allen R. Miller. A Detailed Mathematical Analysis of a Class of Covert Channels Arising in Certain Anonymizing Networks. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada417139.
Full text