To see the other types of publications on this topic, follow the link: Anorganische Synthese.

Journal articles on the topic 'Anorganische Synthese'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 22 journal articles for your research on the topic 'Anorganische Synthese.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

St�ger, Harald, Paul Lassacher, and Edwin Hengge. "Anorganische Bi(cyclopentasilanyle): Synthese und spektroskopische Charakterisierung." Zeitschrift f�r anorganische und allgemeine Chemie 621, no. 9 (September 1995): 1517–22. http://dx.doi.org/10.1002/zaac.19956210914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kilimann, Ulrike, Mathias Noltemeyer, and Frank T. Edelmann. "Viergliedrige anorganische ringsysteme des zweiwertigen zinns und bleis: Synthese und struktur von chelatstabilisierten stannylenen und plumbylenen." Journal of Organometallic Chemistry 443, no. 1 (January 1993): 33–42. http://dx.doi.org/10.1016/0022-328x(93)80006-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Peng, Zhonghua. "Rationale Synthese kovalent gebundener organisch-anorganischer Hybdridverbindungen." Angewandte Chemie 116, no. 8 (February 13, 2004): 948–53. http://dx.doi.org/10.1002/ange.200301682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baghbanzadeh, Mostafa, Luigi Carbone, P. Davide Cozzoli, and C. Oliver Kappe. "Mikrowellen-unterstützte Synthese von kolloidalen anorganischen Nanokristallen." Angewandte Chemie 123, no. 48 (November 4, 2011): 11510–61. http://dx.doi.org/10.1002/ange.201101274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wiskamp, Volker. "Aufarbeitung anorganischer Reste aus der organischen Synthese." Chemie in unserer Zeit 29, no. 4 (August 1995): 211–13. http://dx.doi.org/10.1002/ciuz.19950290408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Farrell, Joshua R, Chad A Mirkin, Ilia A Guzei, Louise M Liable-Sands, and Arnold L Rheingold. "Der Weak-Link-Ansatz zur Synthese anorganischer Makrocyclen." Angewandte Chemie 110, no. 4 (February 16, 1998): 484–87. http://dx.doi.org/10.1002/(sici)1521-3757(19980216)110:4<484::aid-ange484>3.0.co;2-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Scherer, O. J. "Synthese und Entsorgung: Anorganische Synthesechemie. Ein integriertes Praktikum. Von B. Heyn, B. Hipler, G Kreisel, H. Schreer und D. Walther, Springer-Verlag, Berlin - Heidelberg - New York- Tokyo 1986. 235 S., DM 64,-. ISBN 3-540-16588-6." Nachrichten aus Chemie, Technik und Laboratorium 35, no. 10 (October 1987): 1062. http://dx.doi.org/10.1002/nadc.19870351016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wolf, Silke, and Claus Feldmann. "Mikroemulsionen: neue Möglichkeiten zur Erweiterung der Synthese anorganischer Nanopartikel." Angewandte Chemie 128, no. 51 (November 15, 2016): 15958–84. http://dx.doi.org/10.1002/ange.201604263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xiong, Wei-Wei, and Qichun Zhang. "Tenside als Reaktionsmedien zur Synthese von kristallinen anorganischen Materialien." Angewandte Chemie 127, no. 40 (August 12, 2015): 11780–88. http://dx.doi.org/10.1002/ange.201502277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tenne, Reshef. "Fortschritte bei der Synthese anorganischer Nanoröhren und Fulleren-artiger Nanopartikel." Angewandte Chemie 115, no. 42 (November 3, 2003): 5280–89. http://dx.doi.org/10.1002/ange.200301651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

von Hänisch, Carsten, Oliver Hampe, Florian Weigend, and Sven Stahl. "Ein anorganischer Cryptand: schrittweise Synthese und Koordination von Li+-Ionen." Angewandte Chemie 119, no. 25 (June 18, 2007): 4859–63. http://dx.doi.org/10.1002/ange.200604673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Antonietti, Markus, Daibin Kuang, Bernd Smarsly, and Yong Zhou. "Ionische Flüssigkeiten für die Synthese funktioneller Nanopartikel und anderer anorganischer Nanostrukturen." Angewandte Chemie 116, no. 38 (September 27, 2004): 5096–100. http://dx.doi.org/10.1002/ange.200460091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Huang, Song-Ping, and Mercouri G. Kanatzidis. "Synthese und Struktur des Clusters [NaAu12Se8]3−, eines anorganischen Cryptand-Komplexes." Angewandte Chemie 104, no. 6 (June 1992): 799–801. http://dx.doi.org/10.1002/ange.19921040637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Plenio, Herbert, Herbert W. Roesky, Mathias Noltemeyer, and George M. Sheldrick. "Triazatrimetallabenzole, eine neue Klasse anorganischer Heterocyclen; Synthese und Struktur von [CpTaN(Cl)]3." Angewandte Chemie 100, no. 10 (October 1988): 1377–78. http://dx.doi.org/10.1002/ange.19881001011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

von Hänisch, Carsten, Oliver Hampe, Florian Weigend, and Sven Stahl. "Innentitelbild: Ein anorganischer Cryptand: schrittweise Synthese und Koordination von Li+-Ionen (Angew. Chem. 25/2007)." Angewandte Chemie 119, no. 25 (June 18, 2007): 4672. http://dx.doi.org/10.1002/ange.200790113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ali, Wael, Valbone Shabani, Jochen S. Gutmann, Thomas Mayer-Gall, Omid Etemad-Parishanadeh, Alaa Salma, and Torsten Textor. "Stickstoff- und phosphormodifizierte Verbindungen für den Sol-Gelbasierten Flammschutz von Textilien." Technische Textilien 64, no. 3 (2021): 78–81. http://dx.doi.org/10.51202/0323-3243-2021-3-078.

Full text
Abstract:
Im IGF-Projekt Nr. 19617 N wurden stickstoff- und phosphorsubstituierte Alkoxysilane hergestellt und ihre flammhemmenden Eigenschaften für Textilien untersucht. Die Synthesen erfolgten nach unterschiedlichen Strategien wie der Klick-Chemie und der nukleophilen Substitution kommerziell erhältlicher Organophosphorverbindungen mit aminobasierten Trialkoxysilanen und/oder Cyanurchlorid. Diese neuartigen, halogen- und aldehydfreien Flammschutzmittel wurden auf Stoffe aus Baumwolle (BW), Polyethylenterephthalat (PET), Polyamid (PA), sowie Mischgeweben daraus mit der industriell etablierten Pad-Dry-Cure-Technik und mittels Sol-Gel-Verfahren aufgetragen. Die flammhemmenden Eigenschaften wurden mit den Prüfverfahren nach EN ISO 15025 (Schutzkleidung – Schutz gegen Hitze und Flammprüfverfahren für begrenzte Flammenausbreitung) bewertet. Eine gute Schwerentflammbarkeit der hybriden organisch-anorganischen Materialien wurde bei einer geringen Menge von 3-5 Gew.-% auf Baumwollgeweben erreicht. Darüber hinaus konnten die Wasserlöslichkeit und die Waschbeständigkeit durch die an das Phosphoratom gebundenen funktionellen Gruppen und durch die Optimierung der Härtungstemperatur kontrolliert werden. Insgesamt zeigte das Forschungsprojekt, dass N-P-Silane sehr gute permanente Flammschutzmittel für Textilien sind.
APA, Harvard, Vancouver, ISO, and other styles
17

Forster, Paul M., Norbert Stock, and Anthony K. Cheetham. "Hochdurchsatz-Untersuchung organisch-anorganischer Hybridmaterialien: Einfluss von pH-Wert, Temperatur, Konzentration und Zeit bei der Synthese." Angewandte Chemie 117, no. 46 (November 25, 2005): 7780–84. http://dx.doi.org/10.1002/ange.200501766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Haushalter, Robert C. "Synthese und Struktur neuer HgTe-Polyanionen: [Hg4Te12]4⊖, ein Clusteranion mit Te2⊖, Te2⊖2 und Te2⊖3, sowie [Hg2Te5]2⊖, ein neues eindimensionales anorganisches Polymer." Angewandte Chemie 97, no. 5 (May 1985): 414–15. http://dx.doi.org/10.1002/ange.19850970519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Imamaliyeva, Samira Zakir. "New Thallium Tellurides with Rare Earth Elements." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, no. 4 (December 15, 2020): 460–65. http://dx.doi.org/10.17308/kcmf.2020.22/3117.

Full text
Abstract:
Compounds of the Tl4LnTe3 (Ln-Nd, Sm, Tb, Er, Tm) composition were synthesized by the direct interaction of stoichiometric amounts of thallium telluride Tl2Te elementary rare earth elements (REE) and tellurium in evacuated (10-2 Pa) quartz ampoules. The samples obtained were identified by differential thermal and X-ray phase analyses. Based on the data from the heating thermograms, it was shown that these compounds melt with decomposition by peritectic reactions. Analysis of powder diffraction patterns showed that they were completely indexed in a tetragonal lattice of the Tl5Te3 type (space group I4/mcm). Using the Le Bail refinement, the crystal lattice parameters of the synthesized compounds were calculated.It was found that when the thallium atoms located in the centres of the octahedra were substituted by REE atoms, there occurred a sharp decrease in the а parameter and an increase in the с parameter. This was due to the fact that the substitution of thallium atoms with REE cations led to the strengthening of chemical bonds with tellurium atoms. This was accompanied by some distortion of octahedra and an increase in the с parameter. A correlation between the parameters of the crystal lattices and the atomic number of the lanthanide was revealed: during the transition from neodymium to thulium, therewas an almost linear decrease in both parameters of the crystal lattice, which was apparently associated with lanthanide contraction. The obtained new compounds complement the extensive class of ternary compounds - structural analogues of Tl5Te3 and are of interest as potential thermoelectric and magnetic materials. References1. Berger L. I., Prochukhan V. D. Troinye almazopodobnyepoluprovodniki [Ternary diamond-like semiconductors].Moscow: Metallurgiya; 1968. 151 p. (In Russ.)2. Villars P, Prince A. Okamoto H. Handbook ofternary alloy phase diagrams (10 volume set). MaterialsPark, OH: ASM International; 1995. 15000 p.3. Tomashyk V. N. Multinary Alloys Based on III-VSemiconductors. CRC Press; 2018. 262 p. DOI: https://doi.org/10.1201/97804290553484. Babanly M. B., Chulkov E. V., Aliev Z. S. et al. Phasediagrams in materials science of topological insulatorsbased on metal chalkogenides. Russian Journal ofInorganic Chemistry. 2017;62(13): 1703–1729. DOI:https://doi.org/10.1134/S00360236171300345. Imamaliyeva S. Z., Babanly D. M., Tagiev D. B.,Babanly M. B. Physicochemical aspects of developmentof multicomponent chalcogenide phases having theTl5Te3 structure. A Review. Russian Journal of InorganicChemistry. 2018;63(13): 1703–1724 DOI: https://doi.org/10.1134/s00360236181300416. Asadov M. M., Babanly M. B., Kuliev A. A. Phaseequilibria in the system Tl–Te. Izvestiya Akademii NaukSSSR, Neorganicheskie Materialy. 1977;13(8): 1407–1410.7. Okamoto H. Te-Tl (Tellurium-Thallium). Journalof Phase Equilibria. 2001;21(5): 501. DOI: https://doi.org/10.1361/1054971007703398338. Schewe I., Böttcher P., Schnering H. G. The crystalstructure of Tl5Te3 and its relationship to the Cr5B3.Zeitschrift für Kristallographie. 1989;188(3-4): 287–298.DOI: https://doi.org/10.1524/zkri.1989.188.3-4.2879. Böttcher P., Doert Th., Druska Ch., Brandmöller S.Investigation on compounds with Cr5B3 and In5Bi3structure types. Journal of Alloys and Compounds.1997;246(1-2): 209–215. DOI: https://doi.org/10.1016/S0925-8388(96)02455-310. Imamalieva S. Z., Sadygov F. M., Babanly M. B.New thallium neodymium tellurides. InorganicMaterials. 2008;44(9): 935–938. DOI: https://doi. org/10.1134/s002016850809007011. Babanly M. B., Imamalieva S. Z., Babanly D. М.,Sadygov F. M. Tl9LnTe6 (Ln-Ce, Sm, Gd) novel structuralTl5Te3 analogues. Azerbaijan Chemical Journal. 2009(1):122–125. (In Russ., abstract in Eng.)12. Imamaliyeva S. Z., Tl4GdTe3 and Tl4DyTe3 –novel structural Tl5Te3 analogues. Physics andChemistry of Solid State. 2020;21(3): 492–495. DOI:https://doi.org/10.15330/pcss.21.3.492-49513. Wacker K. Die kristalstrukturen von Tl9SbSe6und Tl9SbTe6. Z. Kristallogr. Supple. 1991;3: 281.14. Doert T., Böttcher P. Crystal structure ofbismuthnonathalliumhexatelluride BiTl9Te6. Zeitschrift für Kristallographie - Crystalline Materials. 1994;209(1):95. DOI: https://doi.org/10.1524/zkri.1994.209.1.9515. Bradtmöller S., Böttcher P. Darstellung undkristallostructur von SnTl4Te3 und PbTl4Te3. Zeitschriftfor anorganische und allgemeine Chemie. 1993;619(7):1155–1160. DOI: https://doi.org/10.1002/zaac.1993619070216. Voroshilov Yu. V., Gurzan M. I., Kish Z. Z.,Lada L. V. Fazovye ravnovesiya v sisteme Tl-Pb-Te ikristallicheskaya struktura soedinenii tipa Tl4BIVX3 iTl9BVX6 [Phase equilibria in the Tl-Pb-Te system andthe crystal structure of Tl4BIVX3 and Tl9BVX6 compounds].Izvestiya Akademii nauk SSSR. Neorganicheskiematerialy. 1988;24: 1479–1484. (In Russ.)17. Bradtmöller S., Böttcher P. Crystal structure ofcopper tetrathallium tritelluride, CuTl4Te3. CuTl4Te3.Zeitschrift für Kristallographie - Crystalline Materials.1994;209(1): 97. DOI: https://doi.org/10.1524/zkri.1994.209.1.9718. Bradtmöller S., Böttcher P. Crystal structure ofmolybdenum tetrathallium tritelluride, MoTl4Te3.Zeitschrift für Kristallographie – Crystalline Materials.1994;209(1): 75. DOI: https://doi.org/10.1524/zkri.1994.209.1.7519. Babanly M. B., Imamalieva S. Z., Sadygov F. M.New thallium tellurides with indium and aurum.Chemical Problems (Kimya Problemlәri). 2009; 171–174.(In Russ., abstract in Eng.)20. Guo Q., Chan M., Kuropatwa B. A., Kleinke H.Enhanced thermoelectric properties of variants ofTl9SbTe6 and Tl9BiTe6. Chemistry of Materials.2013;25(20): 4097–4104. DOI: https://doi.org/10.1021/cm402593f21. Guo Q., Assoud A., Kleinke H. Improved bulkmaterials with thermoelectric figure-of-merit greaterthan 1: Tl10–xSnxTe6 and Tl10–xPbxTe6. Advanced EnergyMaterials. 2014;4(14): 1400348-8. DOI: https://doi.org/10.1002/aenm.20140034822. Bangarigadu-Sanasy S., Sankar C. R., SchlenderP., Kleinke H. Thermoelectric properties of Tl10-xLnxTe6, with Ln = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Hoand Er, and 0.25<x<1.32. Journal of Alloys andCompounds. 2013;549: 126–134. DOI: https://doi.org/10.1016/j.jallcom.2012.09.02323. Shi Y., Sturm C., Kleinke H. Chalcogenides asthermoelectric materials. Journal of Solid StateChemistry. 2019; 270: 273–279. DOI: https://doi.org/10.1016/j.jssc.2018.10.04924. Piasecki M., Brik M. G., Barchiy I. E., Ozga K.,Kityk I. V., El-Naggar A. M., Albassam A. A.,Malakhovskaya T. A., Lakshminarayana G. Bandstructure, electronic and optical features of Tl4SnX3(X= S, Te) ternary compounds for optoelectronicapplications. Journal of Alloys and Compounds.2017;710: 600–607. DOI: https://doi.org/10.1016/j.jallcom.2017.03.28025. Reshak A. H., Alahmed Z. A., Barchij I. E.,Sabov M. Yu., Plucinski K. J., Kityk I. V., Fedorchuk A. O.The influence of replacing Se by Te on electronicstructure and optical properties of Tl4PbX3 (X = Se orTe): experimental and theoretical investigations. RSCAdvances. 2015;5(124): 102173–102181. DOI: https://doi.org/10.1039/C5RA20956K26. Malakhovskay-Rosokha T. A., Filep M. J.,Sabov M. Y., Barchiy I. E., Fedorchuk A. O. Plucinski K. J.IR operation by third harmonic generation of Tl4PbTe3and Tl4SnS3 single crystals. Journal of Materials Science:Materials in Electronics. 2013;24(7): 2410–2413. DOI:https://doi.org/10.1007/s10854-013-1110-927. Isaeva A., Schoenemann R., Doert T. Syntheses,crystal structure and magnetic properties of Tl9RETe6(RE = Ce, Sm, Gd). Crystals. 2020;10(4): 277–11. DOI:https://doi.org/10.3390/cryst1004027728. Bangarigadu-Sanasy S., Sankar C. R., Dube P. A.,Greedan J. E., Kleinke H. Magnetic properties ofTl9LnTe6, Ln = Ce, Pr, Tb and Sm. Journal of Alloys andCompounds. 2014;589: 389–392. DOI: https://doi.org/10.1016/j.jallcom.2013.11.22929. Arpino K. E., Wasser B. D., and McQueen T. M.Superconducting dome and crossover to an insulatingstate in [Tl4]Tl1-xSnxTe3. APL Materials. 2015;3(4):041507. DOI: https://doi.org/10.1063/1.491339230. Arpino K. E., Wallace D. C., Nie Y. F., Birol T.,King P. D. C., Chatterjee S., Uchida M., Koohpayeh S.M., Wen J.-J., Page K., Fennie C. J., Shen K. M.,McQueen T. M. Evidence for topologically protectedsurface states and a superconducting phase in [Tl4](Tl1-xSnx)Te3 using photoemission, specific heat, andmagnetization measurements, and density functionaltheory. Physical Review Letters. 2014;112(1): 017002-5.DOI: https://doi.org/10.1103/physrevlett.112.01700231. Niu C., Dai Y., Huang B. et al. Natural threedimensionaltopological insulators in Tl4PbTe3 andTl4SnTe3. Frühjahrstagung der Deutschen PhysikalischenGesellschaft. Dresden, Germany, 30 Mar 2014 – 4 Apr2014.32. Imamalieva S. Z. Phase diagrams in thedevelopment of thallium-REE tellurides with Tl5Te3structure and multicomponent phases based on them.Overview. Kondensirovannye sredy i mezhfaznye granitsy =Condensed Matter and Interphases. 2018;20(3): 332–347.DOI: https://doi.org/10.17308/kcmf.2018.20/57033. Jia Y.Q. Crystal radii and effective ionic radii ofthe rare earth ions. Journal of Solid State Chemistry.1991; 95(1): 184-187. DOI: https://doi.org/10.1016/0022-4596(91)90388-X
APA, Harvard, Vancouver, ISO, and other styles
20

Мамедов, Шарафат Гаджиага оглы. "Исследование квазитройной системы FeS–Ga2S3–Ag2S по разрезу FeGa2S4–AgGaS2." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, no. 2 (June 25, 2020): 232–37. http://dx.doi.org/10.17308/kcmf.2020.22/2835.

Full text
Abstract:
Интерес к изучению систем, содержащих сульфиды формулой АIВIIIСVI2, обусловлен, прежде всего, открывающимися возможностями их практического использования в изготовлении нелинейных оптических приборов, детекторов, солнечных батарей, фотодиодов, люминофоров и др. Поэтому в связи с поиском новых перспективных материаловна основе тиогаллата серебра и железа целью этой работы является исследование квазибинарного разреза FeGa2S4–AgGaS2 четырехкомпонентной системы Fe–Ag–Ga–S.Синтез сплавов системы AgGaS2–FeGa2S4 проводили из лигатур с использованием высокой чистоты: железа – 99.995 %, галлия – 99.999 %, серебра – 99.99 % и серы – 99.99 %. Исследование сплавов проводили методами дифференциально-термического, рентгенофазового, микроструктурного анализов, а также измерением микротвердости и определениемплотности.Методами физико-химического анализа впервые изучена и построена Т-x фазовая диаграмма разреза AgGaS2–FeGa2S4, который является внутренним сечением квазитройной системы FeS–Ga2S3–Ag2S. Установлено, что система относится к простому эвтектическому типу. Состав эвтектической точки: 56 мол. % FeGa2S4 и Т = 1100 К. На основе исходных компонентов были определены области твердых растворов. Растворимость на основе FeGa2S4 и AgGaS2 при эвтектической температуре достигает до 10 и 16 мол. % соответственно. С уменьшением температуры твердые растворы сужаются и при комнатной температуре составляют на основе тиогаллата железа (FeGa2S4) 4 мол. % AgGaS2,а на основе тиогаллата серебра (AgGaS2) 11 мол. % FeGa2S4. ЛИТЕРАТУРА 1. Zhаo B., Zhu S., Li Z., Yu F., Zhu X., Gao D. Growth of AgGaS2 single crystal by descending cruciblewith rotation method and observation of properties. Chinese Sci. Bull. 2001; 46(23): 2009–2013. DOI:https://doi.org/10.1007/BF029019182. Горюнова Н. А. Сложные алмазоподобные полупроводники. М.: Сов. радио; 1968. 215 с.3. Абрикосов Н. Х., Шелимова Л. Е. Полупроводниковые материалы на основе соединений АIVBVI..М.:Наука; 1975. 195 с.4. Kushwaha A. K., Khenata R., Bouhemadou A., Bin-Omran S., Haddadi K. Lattice dynamical propertiesand elastic constants of the ternary chalcopyrite compounds CuAlS2, CuGaS2, CuInS2, and AgGaS2. Journalof Electronic Materials. 2017;46(7): 4109–4118. DOI: https://doi.org/10.1007/s11664-017-5290-65. Uematsu T., Doi T., Torimoto T., Kuwabata S. Preparation of luminescent AgInS2-AgGaS2 solid solutionnanoparticles and their optical properties. The Journal of Physical Chemistry Letters. 2010;1(22):3283–3287. DOI: https://doi.org/10.1021/jz101295w6. Karaagac H., Parlak M. The investigation of structural, electrical, and optical properties of thermalevaporated AgGaS2 thin films. J. Thin Solid Films. 2011;519(7): 2055–2061. DOI: https://doi.org/10.1016/j.tsf.2010.10.0277. Karunagaran N., Ramasamy P. Synthesis, growth and physical properties of silver gallium sulfi de singlecrystals. Materials Science in Semiconductor Processing. 2016;41: 54–58. DOI: https://doi.org/10.1016/j.mssp.2015.08.0128. Zhou H., Xiong L., Chen L., Wu L. Dislocations that decrease size mismatch within the lattice leadingto ultrawide band gap, large second-order susceptibility, and high nonlinear optical performance of AgGaS2.Angewandte Chemie International Edition. 2019;58(29): 9979–9983. DOI: https://doi.org/10.1002/anie.2019039769. Li G., Chu Y., Zhou Z. From AgGaS2 to Li2ZnSiS4: Realizing impressive high laser damage thresholdtogether with large second-harmonic generation response. Journal Chemistry of Materials. 2018;30(3):602–606. DOI: https://doi.org/10.1021/acs.chemmater.7b0535010. Yang J., Fan Q., Yu Y., Zhang W. Pressure effect of the vibrational and thermodynamic properties ofchalcopyrite-type compound AgGaS2: A fi rst-principles investigation. Journal Materials. 2018;11(12): 2370.DOI: https://doi.org/10.3390/ma1112237011. Paderick S., Kessler M., Hurlburt T. J., Hughes S. M. Synthesis and characterization of AgGaS2nanoparticles: a study of growth and fl uorescence. Journal Chemical Communications. 2018;54(1): 62–65.DOI: https://doi.org/10.1039/C7CC08070K12. Kato K., Okamoto T., Grechin S., Umemura N. New sellmeier and thermo-optic dispersion formulasfor AgGaS2. Journal Crystals. 2019;9(3): 129–135. DOI: https://doi.org/10.3390/cryst903012913. Li W., Li Y., Xu Y., Lu J., Wang P., Du J., Leng Y. Measurements of nonlinear refraction in the mid-infraredmaterials ZnGeP2 and AgGaS2. Journal Applied Physics B. 2017;123(3). DOI: https://doi.org/10.1007/s00340-017-6643-914. Jahangirova S. K., Mammadov Sh. H., Ajdarova D. S., Aliyev O. M., Gurbanov G. R. Investigation ofthe AgGaS2–PbS and some properties of phases of variable composition. Russian Journal of InorganicChemistry. 2019;64(9): 1169–1171. DOI: https://doi.org/10.1134/S003602361909009215. Asadov S. M., Mustafaeva S. N., Guseinov D. T. X-ray dosimetric characteristics of AgGaS2 singlecrystals grown by chemical vapor transport. Inorganic Materials. 2017;53(5): 457–461. DOI: https://doi.org/10.1134/S002016851705002816. Mys O., Adamenko D., Skab I., Vlokh R. Anisotropy of acousto-optic fi gure of merit for the collineardiffraction of circularly polarized optical waves at the wavelength of isotropic point in AgGaS2 crystals.Ukrainian Journal of Physical Optics. 2019;20(2): 73–80.DOI: https://doi.org/10.3116/16091833/20/2/73/20117. Karunagaran N., Ramasamy P. Investigation on synthesis, growth, structure and physical propertiesof AgGa0.5In0.5S2 single crystals for Mid-IR application. Journal of Crystal Growth. 2018;483: 169–174.DOI: https://doi.org/10.1016/j.jcrysgro.2017.11.03018. Ranmohotti K. G. S., Djieutedjeu H., Lopez J., Page A., Haldolaarachchige N., Chi H., Sahoo P., Uher C.,Young D., Poudeu P. F. P. Coexistence of high-Tc ferromagnetism and n-type electrical conductivity inFeBi2Se4. J. of the American Chemical Society. 2015;137(2): 691–698. DOI: https://doi.org/10.1021/ja508425519. Karthikeyan N., Aravindsamy G., Balamurugan P., Sivakumar K. Thermoelectric properties of layeredtype FeIn2Se4 chalcogenide compound. Materials Research Innovations. 2018;22(5): 278–281. DOI:https://doi.org/10.1080/14328917.2017.131488220. Nakafsuji S., Tonomura H., Onuma K., Nambu Y., Sakai O., Maeno Y., Macaluso R. T., Chan J. Y.Spin disorder and order in quasi-2D triangular Heisenberg antiferromagnets: comparative study ofFeGa2S4, Fe2Ga2S5 and NiGa2S4. Phys. Rev. Letters. 2007;99(1–4): 157–203. DOI: https://doi.org/10.1103/PhysRevLett.99.15720321. Rushchanskii K. Z., Haeuseler H., Bercha D. M. Band structure calculations on the layered compoundsFeGa2S4 and NiGa2S4. J. Phys. Chem. Solids. 2002;63(11): 2019–2028. DOI: https://doi.org/10.1016/S0022-3697(02)00188-922. Dalmas de Reotier P., Yaouanc A., MacLaughlin D. E., Songrui Zhao. Evidence for an exotic magnetictransition in the triangular spin system FeGa2S4. J. Phys. Rev. B. 2012;85(14): 140407.1–140407.5. DOI: https://doi.org/10.1103/physrevb.85.14040723. Myoung B. R., Lim J. T., Kim C. S. Investigation of magnetic properties on spin-ordering effects ofFeGa2S4 and FeIn2S4. Journal of Magnetism and Magnetic Materials. 2017;438: 121–125. DOI: https://doi.org/10.1016/j.jmmm.2017.04.05624. Asadov M. M., Mustafaeva S. N., Hasanova U. A., Mamedov F. M., Aliev O. M., Yanushkevich K. I., NikitovS. A., Kuli-Zade E. S. Thermodynamics of FeS–PbS–In2S3 and properties of intermediate phases. JournalDefect and Diffusion Forum.2018;385: 175–181. DOI: https://doi.org/10.4028/www.scientific.net/DDF.385.17525. Li K., Yuan D., Shen S., Guo J. Crystal structures and property characterization of two magneticfrustration compounds. Journal Powder Diffraction. 2018;33(3): 190–194. DOI: https://doi.org/10.1017/S088571561800050726. Chen B., Zhu S., Zhao B., Lei Y., Wu X., Yuan Z., He Z. Differential thermal analysis and crystal growthof AgGaS2. Journal of Crystal Growth. 2008;310(3): 635–638. DOI: https://doi.org/10.1016/j.jcrysgro.2007.10.06727. Sinyakova E. F., Kosyakov V. I., Kokh K. A. Oriented crystallization of AgGaS2 from the melt systemAg–Ga–S. J. Inorganic Materials. 2009;45(11): 1217–1221. DOI: https://doi.org/10.1134/S002016850911004128. Chykhrij S. I., Parasyuk O. V., Halka V. O. Crystal structure of the new quaternary phase AgCd2GaS4and phase diagram of the quasibinary system AgGaS2–CdS. Journal of Alloys and Compounds.2000;312(1–2):189–195. DOI: https://doi.org/10.1016/S0925-8388(00)01145-229. Olekseyuk I. D., Parasyuk O. V., Halka V. O., Piskach L. V. F., Pankevych V. Z. Romanyuk Ya. E. Phaseequilibria in the quasi-ternary system Ag2S–CdS–Ga2S3. J. Alloys and compounds. 2001;325(10): 167–179. DOI:https://doi.org/10.1016/S0925-8388(01)01361-530. Brand G., Kramer V. Phase equilibrium in the quasi-binary system Ag2S–Ga2S3. Mater. Res. Bull.1976;11(11): 1381–1388. DOI: https://doi.org/10.1016/0025-5408(76)90049-031. Лазарев В. Б., Киш З. З., Переш Е. Ю., Семрад Е. Е. Сложные халькогениды в системе Аэ–Вэээ–СVI. М.: Металлургия; 1993. 229 с.32. Угай Я. А. Введение в химию полупроводников.М.: Высшая школа; 1975. 302 с.33. Pardo M. E, Dogguy-Smiri L., Flahaut J., Nguyen H. D. System Ga2S3–FeS Diagramme dephase — etude cristallographique. Mater. Res. Bull. 1981;16(11): 1375–1384. DOI: https://doi.org/10.1016/0025-5408(81)90056-834. Wintenberger M. About the unit cells and crystal structures of ~MGa2X4 (M = Mn, Fe, Co; X = S,Se) and ZnAI2S4 Type. In: Proc. VII Int. Conf. on Solid Compounds of Transition Elements, CNRS. Grenoble,France: IA 14/1-3, 1983.35. Rustamov P. G., Babaeva P. K., Azhdarova D. S., Askerova N. A., Ailazov M. R. Nature of interaction inMn(Fe,Co,Ni)–Ga(In)–S(Se) ternary systems. Azerb. Khim. Zh. 1984;15: 101–103.36. Raghavan V. Fe-Ga-S (Iron-Gallium-Sulfur). J. Phase Equil. 1998;19: 267–268. DOI: https://doi.org/10.1361/10549719877034231937. Ueno T., Scott S. D. Phase relations in the Ga-Fe-S system at 900 and 800 C. The Canadian Mineralogist.2002;40(2): 568–570. DOI: https://doi.org/10.2113/gscanmin.40.2.56338. Allazov M. R. The system of FeS–GaS–S. Bulletin of Baku State University. 2009;(2): 42-47. Режимдоступа: http://static.bsu.az/w8/Xeberler%20Jurnali/Tebiet%202009%203/42-47.pdf39. Dogguy-Smiri L., Dung Nguyen Huy, Pardo M. P. Structure crystalline du polytype FeGa2S4 a 1T. Mater.Res. Bull. 1980;15(7): 861–866. DOI: https://doi.org/10.1016/0025-5408(80)90208-140. Hahn H., Klingler W. Unter such ungen uber ternare chalkogenide. I. Uber die, kristall structureiniger ternaerer sulfi de, die sichvom In2S3 ableiten. Zeitschrift fur Anorganische und Allgemeine Chemie.1950; 263(4): 177–190. DOI: https://doi.org/10.1002/zaac.1950263040641. Dogguy-Smiri L., Pardo M. P. Etude cristallographique du systeme FeS–Ga2S3. Compt. Rend. Acad.Sci. 1978;287: 415–418.42. Аллазов М. Р., Мусаева С. С., Аббасова Р. Ф., Гусейнова А. Г. Области кристаллизации фаз поизотермическим сечениям систем Fe-Ga-S. Известия Бакинского государственного университета.2013;(3): 11–14. Режим доступа: http://static.bsu.az/w8/Xeberler%20Jurnali/Tebiet%20%202013%20%203/11-15.pdf43. Рзагулуев В. А., Керимли О. Ш., Аждарова Д. С., Мамедов Ш. Г., Алиев О. М. Фазовые рав-новесия в системах Ag8SnS6–Cu2SnS3 и Ag2SnS3–Cu2Sn4S9. Конденсированные среды и межфазныеграницы. 2019;21(4): 544–551. DOI: https://doi.org/10.17308/kcmf.2019.21/2365
APA, Harvard, Vancouver, ISO, and other styles
21

"Organische Synthese: A. Pfaltz ausgezeichnet / Molekulare Selbstorganisation: Preis für J. Rebek / Anorganische Chemie: H. Braunschweig geehrt." Angewandte Chemie 121, no. 5 (January 19, 2009): 858. http://dx.doi.org/10.1002/ange.200806018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zhang, Tao, Thomas Doert, Hui Wang, Suojiang Zhang, and Michael Ruck. "Ionische Flüssigkeiten und stark eutektische Lösungsmittel in der anorganischen Synthese." Angewandte Chemie, July 2021. http://dx.doi.org/10.1002/ange.202104035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography