Journal articles on the topic 'Anoxic environments'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Anoxic environments.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rogov, MA, EV Shchepetova, and VA Zakharov. "Late Jurassic – earliest Cretaceous prolonged shelf dysoxic–anoxic event and its possible causes." Geological Magazine 157, no. 10 (2020): 1622–42. http://dx.doi.org/10.1017/s001675682000076x.
Full textChild, R. E. "Anoxic Environments in Archive Conservation." Journal of the Society of Archivists 23, no. 2 (2002): 171–78. http://dx.doi.org/10.1080/0037981022000006354.
Full textNardelli, M. P., C. Barras, E. Metzger, et al. "Experimental evidence for foraminiferal calcification under anoxia." Biogeosciences 11, no. 14 (2014): 4029–38. http://dx.doi.org/10.5194/bg-11-4029-2014.
Full textNardelli, M. P., C. Barras, E. Metzger, et al. "Experimental evidence for foraminiferal calcification under anoxia." Biogeosciences Discussions 11, no. 3 (2014): 4669–94. http://dx.doi.org/10.5194/bgd-11-4669-2014.
Full textOrsi, William D., Raphaël Morard, Aurele Vuillemin, et al. "Anaerobic metabolism of Foraminifera thriving below the seafloor." ISME Journal 14, no. 10 (2020): 2580–94. http://dx.doi.org/10.1038/s41396-020-0708-1.
Full textKartal, Boran, Hans J. C. T. Wessels, Erwin van der Biezen, et al. "Effects of Nitrogen Dioxide and Anoxia on Global Gene and Protein Expression in Long-Term Continuous Cultures of Nitrosomonas eutropha C91." Applied and Environmental Microbiology 78, no. 14 (2012): 4788–94. http://dx.doi.org/10.1128/aem.00668-12.
Full textMeilijson, Aaron, Sarit Ashckenazi-Polivoda, Peter Illner, et al. "Evidence for specific adaptations of fossil benthic foraminifera to anoxic–dysoxic environments." Paleobiology 42, no. 1 (2015): 77–97. http://dx.doi.org/10.1017/pab.2015.31.
Full textSenior, Nicholas A., Taylor Martino, and Nikitas Diomidis. "The anoxic corrosion behaviour of carbon steel in anoxic alkaline environments simulating a Swiss L/ILW repository environment." Materials and Corrosion 72, no. 1-2 (2020): 131–40. http://dx.doi.org/10.1002/maco.202011780.
Full textde Beer, Dirk, Andreas Schramm, Cecilia M. Santegoeds, and Helle K. Nielsen. "Anaerobic processes in activated sludge." Water Science and Technology 37, no. 4-5 (1998): 605–8. http://dx.doi.org/10.2166/wst.1998.0726.
Full textRausch, Richard N., Larry I. Crawshaw, and Helen L. Wallace. "Effects of hypoxia, anoxia, and endogenous ethanol on thermoregulation in goldfish, Carassius auratus." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 278, no. 3 (2000): R545—R555. http://dx.doi.org/10.1152/ajpregu.2000.278.3.r545.
Full textKeppler, Frank, Mihály Boros, Christian Frankenberg, et al. "Methane formation in aerobic environments." Environmental Chemistry 6, no. 6 (2009): 459. http://dx.doi.org/10.1071/en09137.
Full textPorter, Susannah M., Heda Agić, and Leigh Anne Riedman. "Anoxic ecosystems and early eukaryotes." Emerging Topics in Life Sciences 2, no. 2 (2018): 299–309. http://dx.doi.org/10.1042/etls20170162.
Full textBoesen, C., and D. Postma. "Pyrite formation in anoxic environments of the Baltic." American Journal of Science 288, no. 6 (1988): 575–603. http://dx.doi.org/10.2475/ajs.288.6.575.
Full textKazumi, J., M. E. Caldwell, J. M. Suflita, D. R. Lovley, and L. Y. Young. "Anaerobic Degradation of Benzene in Diverse Anoxic Environments." Environmental Science & Technology 31, no. 3 (1997): 813–18. http://dx.doi.org/10.1021/es960506a.
Full textDawson, S. C., and N. R. Pace. "Novel kingdom-level eukaryotic diversity in anoxic environments." Proceedings of the National Academy of Sciences 99, no. 12 (2002): 8324–29. http://dx.doi.org/10.1073/pnas.062169599.
Full textZhou, Zhichao, Jie Pan, Fengping Wang, Ji-Dong Gu, and Meng Li. "Bathyarchaeota: globally distributed metabolic generalists in anoxic environments." FEMS Microbiology Reviews 42, no. 5 (2018): 639–55. http://dx.doi.org/10.1093/femsre/fuy023.
Full textDonard, Olivier F. X., and James H. Weber. "Volatilization of tin as stannane in anoxic environments." Nature 332, no. 6162 (1988): 339–41. http://dx.doi.org/10.1038/332339a0.
Full textCockell, C. S., P. Schwendner, A. Perras, et al. "Anaerobic microorganisms in astrobiological analogue environments: from field site to culture collection." International Journal of Astrobiology 17, no. 4 (2017): 314–28. http://dx.doi.org/10.1017/s1473550417000246.
Full textBarone, Varrella, Tangherlini, et al. "Marine Fungi: Biotechnological Perspectives from Deep-Hypersaline Anoxic Basins." Diversity 11, no. 7 (2019): 113. http://dx.doi.org/10.3390/d11070113.
Full textZhang, Shuichang, Xiaomei Wang, Huajian Wang, et al. "The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels." Biogeosciences 14, no. 8 (2017): 2133–49. http://dx.doi.org/10.5194/bg-14-2133-2017.
Full textSCHINK, B., T. J. PHELPS, B. EICHLER, and J. G. ZEIKUS. "Comparison of Ethanol Degradation Pathways in Anoxic Freshwater Environments." Microbiology 131, no. 3 (1985): 651–60. http://dx.doi.org/10.1099/00221287-131-3-651.
Full textStraub, Kristina L., Marcus Benz, and Bernhard Schink. "Iron metabolism in anoxic environments at near neutral pH." FEMS Microbiology Ecology 34, no. 3 (2001): 181–86. http://dx.doi.org/10.1111/j.1574-6941.2001.tb00768.x.
Full textEsteban, Genoveva F., Bland J. Finlay, and Ken J. Clarke. "Sequestered organelles sustain aerobic microbial life in anoxic environments." Environmental Microbiology 11, no. 2 (2009): 544–50. http://dx.doi.org/10.1111/j.1462-2920.2008.01797.x.
Full textO'Shea, K. J., M. C. Miles, P. Fritz, S. K. Frape, and D. E. Lawson. "Oxygen-18 and carbon-13 in the carbonates of the Salina formation of southwestern Ontario." Canadian Journal of Earth Sciences 25, no. 2 (1988): 182–94. http://dx.doi.org/10.1139/e88-021.
Full textBastviken, David, and Lars Tranvik. "The Leucine Incorporation Method Estimates Bacterial Growth Equally Well in Both Oxic and Anoxic Lake Waters." Applied and Environmental Microbiology 67, no. 7 (2001): 2916–21. http://dx.doi.org/10.1128/aem.67.7.2916-2921.2001.
Full textButler, Sara, James Pope, Subba Chaganti, Daniel Heath, and Christopher Weisener. "Biogeochemical Characterization of Metal Behavior from Novel Mussel Shell Bioreactor Sludge Residues." Geosciences 9, no. 1 (2019): 50. http://dx.doi.org/10.3390/geosciences9010050.
Full textGarcia, Elena, Julio Torres, Nuria Rebolledo, Raul Arrabal, and Javier Sanchez. "Corrosion of Steel Rebars in Anoxic Environments. Part I: Electrochemical Measurements." Materials 14, no. 10 (2021): 2491. http://dx.doi.org/10.3390/ma14102491.
Full textLomans, B. P., A. Pol, and H. J. M. Op den Camp. "Microbial cycling of volatile organic sulfur compounds in anoxic environments." Water Science and Technology 45, no. 10 (2002): 55–60. http://dx.doi.org/10.2166/wst.2002.0288.
Full textLovley, Derek R. "Anaerobes into heavy metal: Dissimilatory metal reduction in anoxic environments." Trends in Ecology & Evolution 8, no. 6 (1993): 213–17. http://dx.doi.org/10.1016/0169-5347(93)90102-u.
Full textSorial, George A., Spyridon P. Papadimas, Makram T. Suidan, and Thomas F. Speth. "Competitive adsorption of vocs and bom-oxic and anoxic environments." Water Research 28, no. 9 (1994): 1907–19. http://dx.doi.org/10.1016/0043-1354(94)90166-x.
Full textÇinar, Ö., T. Deniz, and C. P. L. Grady. "Effect of oxygen on the stability and inducibility of the biodegradative capability of benzoate." Water Science and Technology 48, no. 8 (2003): 247–54. http://dx.doi.org/10.2166/wst.2003.0475.
Full textLueders, Tillmann, Bianca Pommerenke, and Michael W. Friedrich. "Stable-Isotope Probing of Microorganisms Thriving at Thermodynamic Limits: Syntrophic Propionate Oxidation in Flooded Soil." Applied and Environmental Microbiology 70, no. 10 (2004): 5778–86. http://dx.doi.org/10.1128/aem.70.10.5778-5786.2004.
Full textSlotznick, Sarah P., Nicholas L. Swanson-Hysell, and Erik A. Sperling. "Oxygenated Mesoproterozoic lake revealed through magnetic mineralogy." Proceedings of the National Academy of Sciences 115, no. 51 (2018): 12938–43. http://dx.doi.org/10.1073/pnas.1813493115.
Full textKelsey, Rick G., Gladwin Joseph, and Michael G. McWilliams. "Ethanol synthesis by anoxic root segments from five cedar species relates to their habitat attributes but not their known differences in vulnerability to Phytophthora lateralis root disease." Canadian Journal of Forest Research 41, no. 6 (2011): 1202–11. http://dx.doi.org/10.1139/x11-043.
Full textMeyer, Rikke Louise, Lars Hauer Larsen, and Niels Peter Revsbech. "Microscale Biosensor for Measurement of Volatile Fatty Acids in Anoxic Environments." Applied and Environmental Microbiology 68, no. 3 (2002): 1204–10. http://dx.doi.org/10.1128/aem.68.3.1204-1210.2002.
Full textKlüpfel, Laura, Annette Piepenbrock, Andreas Kappler, and Michael Sander. "Humic substances as fully regenerable electron acceptors in recurrently anoxic environments." Nature Geoscience 7, no. 3 (2014): 195–200. http://dx.doi.org/10.1038/ngeo2084.
Full textGu, B., Y. Bian, C. L. Miller, W. Dong, X. Jiang, and L. Liang. "Mercury reduction and complexation by natural organic matter in anoxic environments." Proceedings of the National Academy of Sciences 108, no. 4 (2011): 1479–83. http://dx.doi.org/10.1073/pnas.1008747108.
Full textBains, William, Janusz Jurand Petkowski, Clara Sousa-Silva, and Sara Seager. "Trivalent Phosphorus and Phosphines as Components of Biochemistry in Anoxic Environments." Astrobiology 19, no. 7 (2019): 885–902. http://dx.doi.org/10.1089/ast.2018.1958.
Full textDolfing, Jan, Bo Jiang, Anne M. Henstra, Alfons J. M. Stams, and Caroline M. Plugge. "Syntrophic Growth on Formate: a New Microbial Niche in Anoxic Environments." Applied and Environmental Microbiology 74, no. 19 (2008): 6126–31. http://dx.doi.org/10.1128/aem.01428-08.
Full textBehnke, Anke, John Bunge, Kathryn Barger, Hans-Werner Breiner, Victoria Alla, and Thorsten Stoeck. "Microeukaryote Community Patterns along an O2/H2S Gradient in a Supersulfidic Anoxic Fjord (Framvaren, Norway)." Applied and Environmental Microbiology 72, no. 5 (2006): 3626–36. http://dx.doi.org/10.1128/aem.72.5.3626-3636.2006.
Full textCui, Tao, Yang Quan Jiao, and Xiao Mei Wang. "Analysis on Sedimentary Environment of Bauxite in Wuchuan-Zheng’an-Daozhen Area, Northern Guizhou." Advanced Materials Research 616-618 (December 2012): 1409–15. http://dx.doi.org/10.4028/www.scientific.net/amr.616-618.1409.
Full textBlocho, Reilly M., Richard W. Smith, and Mark R. Noll. "Analyses of depositional environments of the Marcellus formation in New York using biomarker and trace metal proxies." Journal of Petroleum Exploration and Production Technology 11, no. 8 (2021): 3163–75. http://dx.doi.org/10.1007/s13202-021-01237-8.
Full textEnning, Dennis, and Julia Garrelfs. "Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem." Applied and Environmental Microbiology 80, no. 4 (2013): 1226–36. http://dx.doi.org/10.1128/aem.02848-13.
Full textPorter, Abigail W., Sarah J. Wolfson, Max Häggblom, and Lily Y. Young. "Microbial transformation of widely used pharmaceutical and personal care product compounds." F1000Research 9 (February 21, 2020): 130. http://dx.doi.org/10.12688/f1000research.21827.1.
Full textCook, Colin A., Kathryn C. Hahn, Justin B. F. Morrissette-McAlmon, and Warren L. Grayson. "Oxygen delivery from hyperbarically loaded microtanks extends cell viability in anoxic environments." Biomaterials 52 (June 2015): 376–84. http://dx.doi.org/10.1016/j.biomaterials.2015.02.036.
Full textDing, Chang, and Jianzhong He. "Molecular techniques in the biotechnological fight against halogenated compounds in anoxic environments." Microbial Biotechnology 5, no. 3 (2011): 347–67. http://dx.doi.org/10.1111/j.1751-7915.2011.00313.x.
Full textZheng, Wang, Liyuan Liang, and Baohua Gu. "Mercury Reduction and Oxidation by Reduced Natural Organic Matter in Anoxic Environments." Environmental Science & Technology 46, no. 1 (2011): 292–99. http://dx.doi.org/10.1021/es203402p.
Full textKříbek, B. "Metallogeny, structural, lithological and time controls of ore deposition in anoxic environments." Mineralium Deposita 26, no. 2 (1991): 122–31. http://dx.doi.org/10.1007/bf00195259.
Full textPicard, Aude, Amy Gartman, Julie Cosmidis, et al. "Authigenic metastable iron sulfide minerals preserve microbial organic carbon in anoxic environments." Chemical Geology 530 (December 2019): 119343. http://dx.doi.org/10.1016/j.chemgeo.2019.119343.
Full textSchink, B. "Microbially Driven Redox Reactions in Anoxic Environments: Pathways, Energetics, and Biochemical Consequences." Engineering in Life Sciences 6, no. 3 (2006): 228–33. http://dx.doi.org/10.1002/elsc.200620130.
Full text