To see the other types of publications on this topic, follow the link: Antarctic precipitation.

Journal articles on the topic 'Antarctic precipitation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Antarctic precipitation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Fyke, Jeremy, Jan T. M. Lenaerts, and Hailong Wang. "Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability." Cryosphere 11, no. 6 (November 15, 2017): 2595–609. http://dx.doi.org/10.5194/tc-11-2595-2017.

Full text
Abstract:
Abstract. Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and ice core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.
APA, Harvard, Vancouver, ISO, and other styles
2

van den Broeke, Michiel R., and Nicole P. M. van Lipzig. "Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation." Annals of Glaciology 39 (2004): 119–26. http://dx.doi.org/10.3189/172756404781814654.

Full text
Abstract:
AbstractOutput of a 14 year integration with a high-resolution (55 km ×55 km) regional atmospheric climate model is used to study the response of Antarctic near-surface climate to the Antarctic Oscillation (AAO), the periodical strengthening and weakening of the circumpolar vortex in the Southern Hemisphere. In spite of the relatively short record, wind, temperature and precipitation show widespread and significant AAO-related signals. When the vortex is strong (high AAO index), northwesterly flow anomalies cause warming over the Antarctic Peninsula (AP) and adjacent regions in West Antarctica and the Weddell Sea. In contrast, cooling occurs in East Antarctica, the eastern Ross Ice Shelf and parts of Marie Byrd Land. Most of the annual temperature signal stems from the months March–August. The spatial distribution of the precipitation response to changes in the AAO does not mirror temperature changes but is in first order determined by the direction of flow anomalies with respect to the Antarctic topography. When the vortex is strong (high AAO index), the western AP becomes wetter, while the Ross Ice Shelf, parts of West Antarctica and the Lambert Glacier basin, East Antarctica, become drier.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Hailong, Jeremy G. Fyke, Jan T. M. Lenaerts, Jesse M. Nusbaumer, Hansi Singh, David Noone, Philip J. Rasch, and Rudong Zhang. "Influence of sea-ice anomalies on Antarctic precipitation using source attribution in the Community Earth System Model." Cryosphere 14, no. 2 (February 4, 2020): 429–44. http://dx.doi.org/10.5194/tc-14-429-2020.

Full text
Abstract:
Abstract. We conduct sensitivity experiments using a general circulation model that has an explicit water source tagging capability forced by prescribed composites of pre-industrial sea-ice concentrations (SICs) and corresponding sea surface temperatures (SSTs) to understand the impact of sea-ice anomalies on regional evaporation, moisture transport and source–receptor relationships for Antarctic precipitation in the absence of anthropogenic forcing. Surface sensible heat fluxes, evaporation and column-integrated water vapor are larger over Southern Ocean (SO) areas with lower SICs. Changes in Antarctic precipitation and its source attribution with SICs have a strong spatial variability. Among the tagged source regions, the Southern Ocean (south of 50∘ S) contributes the most (40 %) to the Antarctic total precipitation, followed by more northerly ocean basins, most notably the South Pacific Ocean (27%), southern Indian Ocean (16 %) and South Atlantic Ocean (11 %). Comparing two experiments prescribed with high and low pre-industrial SICs, respectively, the annual mean Antarctic precipitation is about 150 Gt yr−1 (or 6 %) more in the lower SIC case than in the higher SIC case. This difference is larger than the model-simulated interannual variability in Antarctic precipitation (99 Gt yr−1). The contrast in contribution from the Southern Ocean, 102 Gt yr−1, is even more significant compared to the interannual variability of 35 Gt yr−1 in Antarctic precipitation that originates from the Southern Ocean. The horizontal transport pathways from individual vapor source regions to Antarctica are largely determined by large-scale atmospheric circulation patterns. Vapor from lower-latitude source regions takes elevated pathways to Antarctica. In contrast, vapor from the Southern Ocean moves southward within the lower troposphere to the Antarctic continent along moist isentropes that are largely shaped by local ambient conditions and coastal topography. This study also highlights the importance of atmospheric dynamics in affecting the thermodynamic impact of sea-ice anomalies associated with natural variability on Antarctic precipitation. Our analyses of the seasonal contrast in changes of basin-scale evaporation, moisture flux and precipitation suggest that the impact of SIC anomalies on regional Antarctic precipitation depends on dynamic changes that arise from SIC–SST perturbations along with internal variability. The latter appears to have a more significant effect on the moisture transport in austral winter than in summer.
APA, Harvard, Vancouver, ISO, and other styles
4

Dethloff, Klaus, Ksenia Glushak, Annette Rinke, and Dörthe Handorf. "Antarctic 20th Century Accumulation Changes Based on Regional Climate Model Simulations." Advances in Meteorology 2010 (2010): 1–14. http://dx.doi.org/10.1155/2010/327172.

Full text
Abstract:
The regional climate model HIRHAM has been applied to Antarctica driven at the lateral and lower boundaries by European Reanalysis data ERA-40 for the period 1958–1998. Simulations over 4 decades, carried out with a horizontal resolution of 50 km, deliver a realistic simulation of the Antarctic atmospheric circulation, synoptic-scale pressure systems, and the spatial distribution of precipitation minus sublimation (P-E) structures. The simulated P-E pattern is in qualitative agreement with glaciological estimates. The estimated (P-E) trends demonstrate surfacemass accumulation increase at the West Antarctic coasts and reductions in parts of East Antarctica. The influence of the Antarctic Oscillation (AAO) on the near-surface climate and the surface mass accumulation over Antarctica have been investigated on the basis of ERA-40 data and HIRHAM simulations. It is shown that the regional accumulation changes are largely driven by changes in the transient activity around the Antarctic coasts due to the varying AAO phases. During positive AAO, more transient pressure systems travelling towards the continent, and Western Antarctica and parts of South-Eastern Antarctica gain more precipitation and mass. Over central Antarctica the prevailing anticyclone causes a strengthening of polar desertification connected with a reduced surface mass balance in the northern part of East Antarctica.
APA, Harvard, Vancouver, ISO, and other styles
5

Bromwich, David H. "Estimates of Antarctic precipitation." Nature 343, no. 6259 (February 1990): 627–29. http://dx.doi.org/10.1038/343627a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Genthon, Christophe, Gerhard Krinner, and Michel Déqué. "Intra-annual variability of Antarctic precipitation from weather forecasts and high-resolution climate models." Annals of Glaciology 27 (1998): 488–94. http://dx.doi.org/10.3189/1998aog27-1-488-494.

Full text
Abstract:
The intra-annual variability of Antarctic precipitation from the European Centre for Medium-range Weather Forecasts short-term meteorological forecasts and from climate simulations by the ARPÈGE and LMD-Zoom general circulation models is presented and discussed. The spatial resolution of forecasts and simulations is high over the Antarctic region, about 100 km, so that the impact of topography and small-scale atmospheric dynamics are better resolved than with more conventional model grids (about 300 km). All the models and forecasts show that the seasonality of precipitation is spatially very variable. Meridional coast-to-interior contrasts are marked, but equally strong variations are unexpectedly found where more homogeneity might be expected because of the homogeneity of the environment, e.g. on the high Antarctic plateau. Neither the forecasts nor the simulations confirm that precipitation is mostly maximum in winter over much of East Antarctica as suggested by scarce and potentially unreliable observations (Bromwich, 1988). Spring and fall maxima are quite frequent too, though summer maxima are rare. Daily precipitation statistics show more spatial pattern, with increasingly infrequent precipitation as distance from the coast toward the interior of the ice sheet increases Several aspects of the intra-annual variability of precipitation can be interpreted in terms of atmospheric dynamics, but at both daily and seasonal time-scales the different forecasts and climate simulations often locally and regionally disagree with each other. Discrimination between models and their ability to reproduce the dynamics of Antarctic hydrology, and progress on simulating such aspects of the Antarctic climate, is limited by the lack of reliable observation of precipitation variability.
APA, Harvard, Vancouver, ISO, and other styles
7

Genthon, Christophe, Alexis Berne, Jacopo Grazioli, Claudio Durán Alarcón, Christophe Praz, and Brice Boudevillain. "Precipitation at Dumont d'Urville, Adélie Land, East Antarctica: the APRES3 field campaigns dataset." Earth System Science Data 10, no. 3 (September 6, 2018): 1605–12. http://dx.doi.org/10.5194/essd-10-1605-2018.

Full text
Abstract:
Abstract. Compared to the other continents and lands, Antarctica suffers from a severe shortage of in situ observations of precipitation. APRES3 (Antarctic Precipitation, Remote Sensing from Surface and Space) is a program dedicated to improving the observation of Antarctic precipitation, both from the surface and from space, to assess climatologies and evaluate and ameliorate meteorological and climate models. A field measurement campaign was deployed at Dumont d'Urville station at the coast of Adélie Land in Antarctica, with an intensive observation period from November 2015 to February 2016 using X-band and K-band radars, a snow gauge, snowflake cameras and a disdrometer, followed by continuous radar monitoring through 2016 and beyond. Among other results, the observations show that a significant fraction of precipitation sublimates in a dry surface katabatic layer before it reaches and accumulates at the surface, a result derived from profiling radar measurements. While the bulk of the data analyses and scientific results are published in specialized journals, this paper provides a compact description of the dataset now archived in the PANGAEA data repository (https://www.pangaea.de, https://doi.org/10.1594/PANGAEA.883562) and made open to the scientific community to further its exploitation for Antarctic meteorology and climate research purposes.
APA, Harvard, Vancouver, ISO, and other styles
8

Guo, Zhichang, David H. Bromwich, and Keith M. Hines. "Modeled Antarctic Precipitation. Part II: ENSO Modulation over West Antarctica*." Journal of Climate 17, no. 3 (February 2004): 448–65. http://dx.doi.org/10.1175/1520-0442(2004)017<0448:mappie>2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Genthon, C., G. Krinner, and H. Castebrunet. "Antarctic precipitation and climate-change predictions: horizontal resolution and margin vs plateau issues." Annals of Glaciology 50, no. 50 (2009): 55–60. http://dx.doi.org/10.3189/172756409787769681.

Full text
Abstract:
AbstractAll climate models participating in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, as made available by the Program for Climate Model Diagnosis and Intercomparison (PCMDI) as the Coupled Model Intercomparison Project 3 (CMIP3) archive, predict a significant surface warming of Antarctica by the end of the 21st century under a moderate (SRESA1B) greenhouse-gas scenario. All models but one predict a concurrent precipitation increase but with a large scatter of results. The models with finer horizontal resolution tend to predict a larger precipitation increase. Because modeled Antarctic surface mass balance is known to be sensitive to horizontal resolution, extrapolating predictions from the different models with respect to model resolution may provide simple yet better multi-model estimates of Antarctic precipitation change than mere averaging or even more complex approaches. Using such extrapolation, a conservative estimate of the predicted precipitation increase at the end of the 21st century is +30 kg m–2 a–1 on the grounded ice sheet, corresponding to a >1m ma–1 sea-level rise. About three-quarters of this rise originates from the marginal regions of the Antarctic ice sheet with surface elevation below 2250 m. This is where field programs are most urgently needed to better understand and monitor accumulation at the surface of Antarctica, and to improve and verify prediction models.
APA, Harvard, Vancouver, ISO, and other styles
10

Rodehacke, Christian B., Madlene Pfeiffer, Tido Semmler, Özgür Gurses, and Thomas Kleiner. "Future sea level contribution from Antarctica inferred from CMIP5 model forcing and its dependence on precipitation ansatz." Earth System Dynamics 11, no. 4 (December 16, 2020): 1153–94. http://dx.doi.org/10.5194/esd-11-1153-2020.

Full text
Abstract:
Abstract. Various observational estimates indicate growing mass loss at Antarctica's margins as well as heavier precipitation across the continent. Simulated future projections reveal that heavier precipitation, falling on Antarctica, may counteract amplified iceberg discharge and increased basal melting of floating ice shelves driven by a warming ocean. Here, we test how the ansatz (implementation in a mathematical framework) of the precipitation boundary condition shapes Antarctica's sea level contribution in an ensemble of ice sheet simulations. We test two precipitation conditions: we either apply the precipitation anomalies from CMIP5 models directly or scale the precipitation by the air temperature anomalies from the CMIP5 models. In the scaling approach, it is common to use a relative precipitation increment per degree warming as an invariant scaling constant. We use future climate projections from nine CMIP5 models, ranging from strong mitigation efforts to business-as-usual scenarios, to perform simulations from 1850 to 5000. We take advantage of individual climate projections by exploiting their full temporal and spatial structure. The CMIP5 projections beyond 2100 are prolonged with reiterated forcing that includes decadal variability; hence, our study may underestimate ice loss after 2100. In contrast to various former studies that apply an evolving temporal forcing that is spatially averaged across the entire Antarctic Ice Sheet, our simulations consider the spatial structure in the forcing stemming from various climate patterns. This fundamental difference reproduces regions of decreasing precipitation despite general warming. Regardless of the boundary and forcing conditions applied, our ensemble study suggests that some areas, such as the glaciers from the West Antarctic Ice Sheet draining into the Amundsen Sea, will lose ice in the future. In general, the simulated ice sheet thickness grows along the coast, where incoming storms deliver topographically controlled precipitation. In this region, the ice thickness differences are largest between the applied precipitation methods. On average, Antarctica shrinks for all future scenarios if the air temperature anomalies scale the precipitation. In contrast, Antarctica gains mass in our simulations if we apply the simulated precipitation anomalies directly. The analysis reveals that the mean scaling inferred from climate models is larger than the commonly used values deduced from ice cores; moreover, it varies spatially: the highest scaling is across the East Antarctic Ice Sheet, and the lowest scaling is around the Siple Coast, east of the Ross Ice Shelf. The discrepancies in response to both precipitation ansatzes illustrate the principal uncertainty in projections of Antarctica's sea level contribution.
APA, Harvard, Vancouver, ISO, and other styles
11

Palerme, C., J. E. Kay, C. Genthon, T. L'Ecuyer, N. B. Wood, and C. Claud. "How much snow falls on the Antarctic ice sheet?" Cryosphere 8, no. 4 (August 22, 2014): 1577–87. http://dx.doi.org/10.5194/tc-8-1577-2014.

Full text
Abstract:
Abstract. Climate models predict Antarctic precipitation to increase during the 21st century, but their present day Antarctic precipitation differs. A model-independent climatology of the Antarctic precipitation characteristics, such as snowfall rates and frequency, is needed to assess the models, but it is not yet available. Satellite observations of precipitation by active sensors has been possible in the polar regions since the launch of CloudSat in 2006. Here, we use two CloudSat products to generate the first multi-year, model-independent climatology of Antarctic precipitation. The first product is used to determine the frequency and the phase of precipitation, while the second product is used to assess the snowfall rate. The mean snowfall rate from August 2006 to April 2011 is 171 mm year−1 over the Antarctic ice sheet, north of 82° S. While uncertainties on individual precipitation retrievals from CloudSat data are potentially large, the mean uncertainty should be much smaller, but cannot be easily estimated. There are no in situ measurements of Antarctic precipitation to directly assess the new climatology. However, distributions of both precipitation occurrences and rates generally agree with the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim data set, the production of which is constrained by various in situ and satellite observations, but does not use any data from CloudSat. The new data set thus offers unprecedented capability to quantitatively assess Antarctic precipitation statistics and rates in climate models.
APA, Harvard, Vancouver, ISO, and other styles
12

Palerme, C., J. E. Kay, C. Genthon, T. L'Ecuyer, N. B. Wood, and C. Claud. "How much snow falls on the Antarctic ice sheet?" Cryosphere Discussions 8, no. 1 (February 24, 2014): 1279–304. http://dx.doi.org/10.5194/tcd-8-1279-2014.

Full text
Abstract:
Abstract. Climate models predict Antarctic precipitation to increase during the 21st century, but their present day Antarctic precipitation differs. A fully model-independent climatology of the Antarctic precipitation characteristics, such as snowfall rates and frequency, is needed to assess the models, but was not available so far. Satellite observation of precipitation by active spaceborne sensors has been possible in the polar regions since the launch of CloudSat in 2006. Here we use CloudSat products to build the first multi-year model-independent climatology of Antarctic precipitation. The mean snowfall rate from August 2006 to April 2011 is 171 mm yr−1 over the Antarctic ice sheet north of 82° S. The ECMWF ERA Interim dataset agrees well with the new satellite climatology.
APA, Harvard, Vancouver, ISO, and other styles
13

Lemonnier, F., A. Chemison, G. Krinner, J. B. Madeleine, C. Claud, and C. Genthon. "Evaluation of coastal Antarctic precipitation in LMDz6 global atmospheric model using ground-based radar observations." Arctic and Antarctic Research 67, no. 2 (July 11, 2021): 147–64. http://dx.doi.org/10.30758/0555-2648-2021-67-2-147-164.

Full text
Abstract:
In the current context of climate change in the poles, one of the objectives of the APRES3 (Antarctic Precipitation Remote Sensing from Surface and Space) project was to characterize the vertical structure of precipitation in order to better simulate it. Precipitation simulated by models in Antarctica is currently very widespread and it overestimates the data. Sensitivity studies have been conducted using a global climate model and compared to the observations obtained at the Dumont d’Urville coast station, obtained by a Micro Rain Radar (MRR). The LMDz/IPSL general circulation model, with zoomed configuration over Dumont d’Urville, has been considered for this study. A sensitivity study was conducted on the physical and numerical parameters of the LMDz model with the aim of estimating their contribution to the precipitation simulation. Sensitivity experiments revealed that changes in the sedimentation and sublimation parameters do not significantly impact precipitation rate. However, dissipation of the LMDz model, which is a numerical process that dissipates spatially excessive energy and keeps the model stable, impacts precipitation indirectly but very strongly. A suitable adjustment of the dissipation reduces significantly precipitation over Antarctic peripheral area, thus providing a simulated profile in better agreement with the MRR observations.
APA, Harvard, Vancouver, ISO, and other styles
14

Wendt, Anke S., Alan P. M. Vaughan, and Adrian J. Boyce. "Precipitation trapped in datable rock-forming minerals: estimating Antarctic palaeoelevations - a discussion." Antarctic Science 18, no. 1 (March 2006): 123–39. http://dx.doi.org/10.1017/s0954102006000125.

Full text
Abstract:
Meteoric water that interacted with minerals during retrogressive metamorphism and hydrothermalism in the late-stage of mountain building processes contains hydrogen and oxygen isotopes that are potential proxies for palaeoelevation reconstruction in Antarctica. The effects of temperature on meteoric isotopic signatures, meteoric crustal infiltration processes, and the mechanisms of capture and preservation of meteoric δD and δ18O values in rock-forming minerals are discussed. Special emphasis is given to Antarctica’s geographical high-latitude position and climatic fluctuations over time and to the highmountain ranges of continental Antarctica, which were tectonically active regions in the past. In this context, a new compilation of recent Antarctic snow and ice δD and δ18O data is presented, by which we demonstrate that net elevations versus isotopic depletions are positively correlated for continental Antarctica - a prime requisite when estimating palaeoelevations.
APA, Harvard, Vancouver, ISO, and other styles
15

Bromwich, David H., Richard I. Cullather, and Michael L. Van Woert. "Antarctic precipitation and its contribution to the global sea-level budget." Annals of Glaciology 27 (1998): 220–26. http://dx.doi.org/10.3189/1998aog27-1-220-226.

Full text
Abstract:
Antarctic precipitation estimations derived from several new sources are examined in comparison to results found previously. The availability of analyzed atmospheric datasets has been a significant and beneficial tool for atmospheric and climate research for a broad range of research interests. This is particularly true for the polar regions, where the observational arrays are sparsely distributed. in high southern latitudes, a comprehensive assimilation of all available observations, including satellite data, is necessary for an accurate depiction of the atmospheric circulation. Recent st udies have found the operational analyses of the European Centre for Medium-range Weather Forecasts to be superior to those of other weather-forecasting centers in depicting the large-scale atmospheric circulation patterns over Antarctica. “Re-analysis” programs at major weather-forecasting centers have produced atmospheric numerical analyses using a “frozen” data-assimilation system. These projects have also derived precipitation and evaporation fields using an ensemble of short-term forecasts. From these new sources, Antarctic Ρ - E (precipitation minus evaporation/sublimation) is compared and evaluated against the long-term glaciological synthesis, as well as results from previous studies. The comparisons indicate significant regional disagreements exist between P — E from the re-analysis forecasts and the glaciological data. For the ensemble forecasting method, the continental-average evaporation is the largest area of uncertainty and differs by an order of magnitude between the rc-analysis datasets. This finding supports the use of the atmospheric moisture budget for determining P — E collectively in atmospheric diagnostic studies for Antarctica.
APA, Harvard, Vancouver, ISO, and other styles
16

Scarchilli, Claudio, Virginia Ciardini, Paolo Grigioni, Antonio Iaccarino, Lorenzo De Silvestri, Marco Proposito, Stefano Dolci, et al. "Characterization of snowfall estimated by in situ and ground-based remote-sensing observations at Terra Nova Bay, Victoria Land, Antarctica." Journal of Glaciology 66, no. 260 (October 1, 2020): 1006–23. http://dx.doi.org/10.1017/jog.2020.70.

Full text
Abstract:
AbstractKnowledge of the precipitation contribution to the Antarctic surface mass balance is essential for defining the ice-sheet contribution to sea-level rise. Observations of precipitation are sparse over Antarctica, due to harsh environmental conditions. Precipitation during the summer months (November–December–January) on four expeditions, 2015–16, 2016–17, 2017–18 and 2018–19, in the Terra Nova Bay area, were monitored using a vertically pointing radar, disdrometer, snow gauge, radiosounding and an automatic weather station installed at the Italian Mario Zucchelli Station. The relationship between radar reflectivity and precipitation rate at the site can be estimated using these instruments jointly. The error in calculated precipitation is up to 40%, mostly dependent on reflectivity variability and disdrometer inability to define the real particle fall velocity. Mean derived summer precipitation is ~55 mm water equivalent but with a large variability. During collocated measurements in 2018–19, corrected snow gauge amounts agree with those derived from the relationship, within the estimated errors. European Centre for the Medium-Range Weather Forecasts (ECMWF) and the Antarctic Mesoscale Prediction System (AMPS) analysis and operational outputs are able to forecast the precipitation timing but do not adequately reproduce quantities during the most intense events, with overestimation for ECMWF and underestimation for AMPS.
APA, Harvard, Vancouver, ISO, and other styles
17

Casado, Mathieu, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, et al. "Archival processes of the water stable isotope signal in East Antarctic ice cores." Cryosphere 12, no. 5 (May 24, 2018): 1745–66. http://dx.doi.org/10.5194/tc-12-1745-2018.

Full text
Abstract:
Abstract. The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation–condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.
APA, Harvard, Vancouver, ISO, and other styles
18

Noone, D., and I. Simmonds. "Implications for the interpretation of ice-core isotope data from analysis of modelled Antarctic precipitation." Annals of Glaciology 27 (1998): 398–402. http://dx.doi.org/10.3189/1998aog27-1-398-402.

Full text
Abstract:
By consideration of model-generated atmospheric data, dominant anomalies in the synoptic circulation patterns are observed under conditions of high Antarctic precipitation. This is associated with strong moisture advection of marine origin. Examining precipitation at individual locations reveals a strong relationship between local surface temperature and precipitation amount. Days with &gt; 5 mm of precipitation (which, on average, corresponds to about 8% of days over Antarctica) have surface temperatures that are around 10°C warmer than the mean. This bias suggest that abnormal conditions are captured in the ice-core record and that interpretation or reconstruction of palaeotemperatures will succeed only under the possibly flawed assumption that similar abnormal conditions existed at the time of deposition. Although isotopic analysis of Antarctic ice cores has been used successfully in palaeoclimate studies, a complete understanding of the underlying processes affecting the deposition of the core remains to be found. It is reasoned that by obtaining such an understanding, it may be possible to reconstruct the synoptic conditions under which accumulation occurred.
APA, Harvard, Vancouver, ISO, and other styles
19

Warren, Stephen, and Susan Frankenstein. "Increased Accumulation On The Antarctic Ice Sheet Due To Climatic Warming." Annals of Glaciology 14 (1990): 361. http://dx.doi.org/10.1017/s0260305500009393.

Full text
Abstract:
Climatic warming due to increased greenhouse gases is expected to cause increased precipitation in the next century because of the increased water content of the air, assuming constant relative humidity. Since temperatures over most of Antarctica are far below freezing even in the warmest month of the year, the increase in melting is probably negligible compared to the increase in precipitation. Oerlemans (1982) showed that this increase of precipitation would cause a growth of the ice sheet, tending to lower sea level. This would partially counteract the rise of sea level due to increased melting on mountain glaciers and Greenland, and to a possible (and more difficult to predict) surge of ice from West Antarctica. Oerlemans may have underestimated the increase in accumulation. He used results of General Circulation Models (GCMs) which indicated an increase of precipitation by only 12% for a temperature change ΔΤ = 3 Κ and 30% for ΔΤ = 8 K. In contrast, the change in accumulation rate at Dome C (Lorius and others, 1979) accompanying the warming from the recent ice age to the present was in accord with the simple assumption that accumulation is proportional to saturation vapor pressure at the temperature of the inversion layer, i.e. a 30% increase for ΔΤ = 3 K. The experimental results are to be preferred to the climate model results because GCMs do not represent ice-sheet accumulation processes well. Most of the accumulation is not snow falling from clouds but instead results from clear-sky ice-crystal formation in near-surface air, or hoarfrost deposition on the surface. GCMs lack sufficient vertical resolution to represent the strong temperature inversion on which these accumulation mechanisms depend. The figure shows that the increase of vapor pressure due to ΔΤ = 5 Κ varies from a factor of 1.9 at Τ = −60°C to a factor of 1.6 at Τ = −20°C. A climatic warming of 5 K. over Antarctica, which is possible during the next century, could thus increase the Antarctic accumulation from its present 17g cm−2 yr−1 to 30 g cm−2 yr−1, leading to a 50 cm drop in sea level in 100 years. This assumes that the simple proportionality of precipitation rate to saturation vapor pressure applies as well to the coastal regions, which is doubtful because the accumulation processes are not the same as on the plateau. The potential importance of Antarctic accumulation changes in contributing to changes of sea level argues for further study of the mechanisms of Antarctic precipitation and for their improved representation in climate models.
APA, Harvard, Vancouver, ISO, and other styles
20

Dahe, Qin, Paul A. Mayewski, Ren Jiawen, Xiao Cunde, and Sun Junying. "The Weddell Sea region: an important precipitation channel to the interior of the Antarctic ice sheet as revealed by glaciochemical investigation of surface snow along the longest trans-Antarctic route." Annals of Glaciology 29 (1999): 55–60. http://dx.doi.org/10.3189/172756499781821012.

Full text
Abstract:
AbstractGlaciochemical analysis of surface snow samples, collected along a profile crossing the Antarctic ice sheet from the Larsen Ice Shelf, Antarctic Peninsula, via the Antarctic Plateau through South Pole, Vostok and Komsomolskaya to Mirny station (at the east margin of East Antarctica), shows that the Weddell Sea region is an important channel for air masses to the high plateau of the Antarctic ice sheet (>2000 m a.s.l.). This opinion is supported by the following. (1) The fluxes of sea-salt ions such as Na+, Mg2 + and CF display a decreasing trend from the west to the east of interior Antarctica. In |eneral, as sea-salt aerosols are injected into the atmosphere over the Antarctic ice sheet from the Weddell Sea, large aerosols tend to decrease. For the inland plateau, few large particles of sea-salt aerosol reach the area, and the sea-salt concentration levels are low (2) The high altitude of the East Antarctic plateau, as well as the polar cold high-pressure system, obstruct the intrusive air masses mainly from the South Indian Ocean sector. (3) For the coastal regions of the East Antarctic ice sheet, the elevation rises to 2000 m over a distance from several to several tens of km. High concentrations of sea salt exist in snow in East Antarctica but are limited to a narrow coastal zone. (4) Fluxes of calcium and non-sea-salt sulfate in snow from the interior plateau do not display an eastward-decreasing trend. Since calcium is mainly derived from crustal sources, and nssSO42- is a secondary aerosol, this again confirms that the eastward-declining tendency of sea-salt ions indicates the transfer direction of precipitation vapor.
APA, Harvard, Vancouver, ISO, and other styles
21

Greenfield, L. G. "Retention of precipitation nitrogen by Antarctic mosses, lichens and fellfield soils." Antarctic Science 4, no. 2 (June 1992): 205–6. http://dx.doi.org/10.1017/s0954102092000312.

Full text
Abstract:
Retention of mineral elements in precipitation by mosses and lichens involving ion exchange and chelation mechanisms is a source of nutrients for these biota growing on rocks and nutrient poor soils (Brown 1987, Crittenden 1989). In qualitative work not involving nitrogen (N) Allen et al. (1967) demonstrated that fresh Antarctic mosses treated with hydrochloric acid could retain Na, P, Ca and K after leaching with concentrated solution of these elements. Ahumic fellfield soils are widespread in Antarctica and support sparse plant growth. This short note reports the results of work designed to show that fellfield soils and plants may obtain most of their N from atmospheric precipitation.
APA, Harvard, Vancouver, ISO, and other styles
22

Bromwich, David H., Julien P. Nicolas, and Andrew J. Monaghan. "An Assessment of Precipitation Changes over Antarctica and the Southern Ocean since 1989 in Contemporary Global Reanalyses*." Journal of Climate 24, no. 16 (August 15, 2011): 4189–209. http://dx.doi.org/10.1175/2011jcli4074.1.

Full text
Abstract:
Abstract This study evaluates the temporal variability of the Antarctic surface mass balance, approximated as precipitation minus evaporation (P − E), and Southern Ocean precipitation in five global reanalyses during 1989–2009. The datasets consist of the NCEP/U.S. Department of Energy (DOE) Atmospheric Model Intercomparison Project 2 reanalysis (NCEP-2), the Japan Meteorological Agency (JMA) 25-year Reanalysis (JRA-25), ECMWF Interim Re-Analysis (ERA-Interim), NASA Modern Era Retrospective-Analysis for Research and Application (MERRA), and the Climate Forecast System Reanalysis (CFSR). Reanalyses are known to be prone to spurious trends and inhomogeneities caused by changes in the observing system, especially in the data-sparse high southern latitudes. The period of study has seen a dramatic increase in the amount of satellite observations used for data assimilation. The large positive and statistically significant trends in mean Antarctic P − E and mean Southern Ocean precipitation in NCEP-2, JRA-25, and MERRA are found to be largely spurious. The origin of these artifacts varies between reanalyses. Notably, a precipitation jump in MERRA in the late 1990s coincides with the start of the assimilation of radiances from the Advanced Microwave Sounding Unit (AMSU). ERA-Interim and CFSR do not exhibit any significant trends. However, the potential impact of the assimilation of rain-affected radiances in ERA-Interim and inhomogeneities in CFSR pressure fields over Antarctica cast some doubt on the reliability of these two datasets. The authors conclude that ERA-Interim likely offers the most realistic depiction of precipitation changes in high southern latitudes during 1989–2009. The range of the trends in Antarctic P − E among the reanalyses is equivalent to 1 mm of sea level over 21 years, which highlights the improvements still needed in reanalysis simulations to better assess the contribution of Antarctica to sea level rise. Finally, this work argues for continuing cautious use of reanalysis datasets for climate change assessment.
APA, Harvard, Vancouver, ISO, and other styles
23

Beaumet, Julien, Michel Déqué, Gerhard Krinner, Cécile Agosta, Antoinette Alias, and Vincent Favier. "Significant additional Antarctic warming in atmospheric bias-corrected ARPEGE projections with respect to control run." Cryosphere 15, no. 8 (August 6, 2021): 3615–35. http://dx.doi.org/10.5194/tc-15-3615-2021.

Full text
Abstract:
Abstract. In this study, we use run-time bias correction to correct for the Action de Recherche Petite Echelle Grande Echelle (ARPEGE) atmospheric model systematic errors on large-scale atmospheric circulation. The bias-correction terms are built using the climatological mean of the adjustment terms on tendency errors in an ARPEGE simulation relaxed towards ERA-Interim reanalyses. The bias reduction with respect to the Atmospheric Model Intercomparison Project (AMIP)-style uncorrected control run for the general atmospheric circulation in the Southern Hemisphere is significant for mean state and daily variability. Comparisons for the Antarctic Ice Sheet with the polar-oriented regional atmospheric models MAR and RACMO2 and in situ observations also suggest substantial bias reduction for near-surface temperature and precipitation in coastal areas. Applying the method to climate projections for the late 21st century (2071–2100) leads to large differences in the projected changes of the atmospheric circulation in the southern high latitudes and of the Antarctic surface climate. The projected poleward shift and strengthening of the southern westerly winds are greatly reduced. These changes result in a significant 0.7 to 0.9 K additional warming and a 6 % to 9 % additional increase in precipitation over the grounded ice sheet. The sensitivity of precipitation increase to temperature increase (+7.7 % K−1 and +9 % K−1) found is also higher than previous estimates. The highest additional warming rates are found over East Antarctica in summer. In winter, there is a dipole of weaker warming and weaker precipitation increase over West Antarctica, contrasted by a stronger warming and a concomitant stronger precipitation increase from Victoria to Adélie Land, associated with a weaker intensification of the Amundsen Sea Low.
APA, Harvard, Vancouver, ISO, and other styles
24

Gorodetskaya, I. V., S. Kneifel, M. Maahn, K. Van Tricht, J. H. Schween, S. Crewell, and N. P. M. Van Lipzig. "Cloud and precipitation properties from ground-based remote sensing instruments in East Antarctica." Cryosphere Discussions 8, no. 4 (July 28, 2014): 4195–241. http://dx.doi.org/10.5194/tcd-8-4195-2014.

Full text
Abstract:
Abstract. A new comprehensive cloud-precipitation-meteorological observatory has been established at Princess Elisabeth base, located in the escarpment zone of Dronning Maud Land, East Antarctica. The observatory consists of a set of ground-based remote sensing instruments (ceilometer, infrared pyrometer and vertically profiling precipitation radar) combined with automatic weather station measurements of near-surface meteorology, radiative fluxes, and snow accumulation. In this paper, the observatory is presented and the potential for studying the evolution of clouds and precipitating systems is illustrated by case studies. It is shown that the synergetic use of the set of instruments allows for distinguishing ice, mixed-phase and precipitating clouds, including some information on their vertical extent. In addition, wind-driven blowing snow events can be distinguished from deeper precipitating systems. Cloud properties largely affect the surface radiative fluxes, with liquid-containing clouds dominating the radiative impact. A statistical analysis of all measurements (in total 14 months mainly occurring in summer/autumn) indicates that these liquid-containing clouds occur during as much as 20% of the cloudy periods. The cloud occurrence shows a strong bimodal distribution with clear sky conditions 51% of the time and complete overcast conditions 35% of the time. Snowfall occurred 17% of the cloudy periods with a predominance of light precipitation and only rare events with snowfall > 1 mm h−1 water equivalent (w.e.). Three of such intensive snowfall events occurred during 2011 contributing to anomalously large annual snow accumulation. This is the first deployment of a precipitation radar in Antarctica allowing to assess the contribution of the snowfall to the local surface mass balance. It is shown that on the one hand large accumulation events (>10 mm w.e. day−1) during the measurement period of 26 months were always associated with snowfall, but that on the other hand snowfall did not always lead to accumulation. In general, this promising set of robust instrumentation allows for improved insight in cloud and precipitation processes in Antarctica and can be easily deployed at other Antarctic stations.
APA, Harvard, Vancouver, ISO, and other styles
25

Genthon, C., G. Krinner, and M. Sacchettini. "Interannual Antarctic tropospheric circulation and precipitation variability." Climate Dynamics 21, no. 3-4 (September 1, 2003): 289–307. http://dx.doi.org/10.1007/s00382-003-0329-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Feniet-Saigne, C. "Car☐ylic acids in antarctic precipitation." Chemical Geology 70, no. 1-2 (August 1988): 97. http://dx.doi.org/10.1016/0009-2541(88)90472-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Van De Berg, W. J., M. R. Van Den Broeke, C. H. Reijmer, and E. Van Meijgaard. "Characteristics of the Antarctic surface mass balance, 1958–2002, using a regional atmospheric climate model." Annals of Glaciology 41 (2005): 97–104. http://dx.doi.org/10.3189/172756405781813302.

Full text
Abstract:
AbstractTemporal and spatial characteristics of the Antarctic specific surface mass balance (SSMB) are presented, including its components solid precipitation, sublimation/deposition and melt. For this purpose, we use the output of a regional atmospheric climate model (RACMO2/ANT, horizontal resolution of ~55 km) for the period 1958–2002. RACMO2/ANT uses European Centre for Medium-Range Weather Forecasts (ECMWF) 40 year re-analysis (ERA-40) fields as forcing at the lateral boundaries. RACMO2/ANT underestimates SSMB in the high interior of East and West Antarctica and overestimates SSMB on the steep coastal slopes. Otherwise, the modeled spatial pattern of SSMB is in good qualitative agreement with recent compilations of in situ observations. Large-scale patterns, like the precipitation shadow effect of the Antarctic Peninsula, are well reproduced, and mesoscale SSMB patterns, such as the strong precipitation gradients on Law Dome, are well represented in the model. The integrated SSMB over the grounded ice sheet is 153mmw.e. a–1 for the period 1958–2002, which agrees within 5% with the latest measurement compilations. Sublimation and melt remove 7% and <1% respectively of the solid precipitation. We found significant seasonality of solid precipitation, with a maximum in autumn and a minimum in summer. No meaningful trend was identified for the SSMB, because the time series of solid precipitation and SSMB are affected by an inhomogeneity in 1980 within the ERA-40 fields that drive RACMO2/ANT. Sublimation, melt and liquid precipitation increase in time, which is related to a modeled increase in 2m temperature.
APA, Harvard, Vancouver, ISO, and other styles
28

Van Wessem, J. M., C. H. Reijmer, M. Morlighem, J. Mouginot, E. Rignot, B. Medley, I. Joughin, et al. "Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model." Journal of Glaciology 60, no. 222 (2014): 761–70. http://dx.doi.org/10.3189/2014jog14j051.

Full text
Abstract:
AbstractThis study evaluates the impact of a recent upgrade in the physics package of the regional atmospheric climate model RACMO2 on the simulated surface mass balance (SMB) of the Antarctic ice sheet. The modelled SMB increases, in particular over the grounded ice sheet of East Antarctica (+44 Gt a–1), with a small change in West Antarctica. This mainly results from an increase in precipitation, which is explained by changes in the cloud microphysics, including a new parameterization for ice cloud supersaturation, and changes in large-scale circulation patterns, which alter topographically forced precipitation. The spatial changes in SMB are evaluated using 3234 in situ SMB observations and ice-balance velocities, and the temporal variability using GRACE satellite retrievals. The in situ observations and balance velocities show a clear improvement of the spatial representation of the SMB in the interior of East Antarctica, which has become considerably wetter. No improvements are seen for West Antarctica and the coastal regions. A comparison of model SMB temporal variability with GRACE satellite retrievals shows no significant change in performance.
APA, Harvard, Vancouver, ISO, and other styles
29

Fischer, M., D. N. Thomas, A. Krell, G. Nehrke, J. Göttlicher, L. Norman, C. Riaux-Gobin, and G. S. Dieckmann. "Quantification of ikaite in Antarctic sea ice." Cryosphere Discussions 6, no. 1 (February 3, 2012): 505–30. http://dx.doi.org/10.5194/tcd-6-505-2012.

Full text
Abstract:
Abstract. Calcium carbonate precipitation in sea ice can increase pCO2 during precipitation in winter and decrease pCO2 during dissolution in spring. CaCO3 precipitation in sea ice is thought to potentially drive significant CO2 uptake by the ocean. However, little is known about the quantitative spatial and temporal distribution of CaCO3 within sea ice. This is the first quantitative study of hydrous calcium carbonate, as ikaite, in sea ice and discusses its potential significance for the carbon cycle in polar oceans. Ice cores and brine samples were collected from pack and land fast sea ice between September and December 2007 during an expedition in the East Antarctic and another off Terre Adélie, Antarctica. Samples were analysed for CaCO3, Salinity, DOC, DON, Phosphate, and total alkalinity. A relationship between the measured parameters and CaCO3 precipitation could not be observed. We found calcium carbonate, as ikaite, mostly in the top layer of sea ice with values up to 126 mg ikaite per liter melted sea ice. This potentially represents a contribution between 0.12 and 9 Tg C to the annual carbon flux in polar oceans. The horizontal distribution of ikaite in sea ice was heterogenous. We also found the precipitate in the snow on top of the sea ice.
APA, Harvard, Vancouver, ISO, and other styles
30

Bockheim, James G., and Fiorenzo C. Ugolini. "A Review of Pedogenic Zonation in Well-Drained Soils of the Southern Circumpolar Region." Quaternary Research 34, no. 1 (July 1990): 47–66. http://dx.doi.org/10.1016/0033-5894(90)90072-s.

Full text
Abstract:
AbstractThe concept of zonality is used to link well-drained mineral soils and processes along a bioclimatic gradient extending from ca. 48° to 87° S, including southernmost Chile, the subantarctic islands, and maritime and continental Antarctica. The following environmental factors decline along this gradient: mean annual temperature and precipitation and the type and number of plant species. Six pedological zones (along with representative soils) are identified along the gradient: (1) Subantarctic Forest Zone (Podzol?), (2) Subantarctic Low Tundra zone, (3) Subantarctic High Tundra Zone (Subantarctic Brown soil, without permafrost), (4) Antarctic Sub-Polar Desert Zone (Subantarctic Brown soil, with permafrost), (5) Antarctic Polar Desert Zone (Red Ahumisol), and (6) Cold Desert Zone (Ahumisol). Zonal mineral soils in the Subantarctic Forest and Low Tundra Zones are rare, because large amounts of precipitation (≥2500 mm) and cool summers have led to thick accumulation of peat. Whereas the processes of rubification, melanization, and peat accumulation decline in relative magnitude southward, the processes of salinization and desert pavement formation increase in relative importance along this bioclimatic gradient. Carbonation and pervection (silt and clay migration) are maximized in the Subantarctic Tundra and Antarctic Polar Desert Zones. Because of the limited amount of land between 40° and 65° S and the presence of the Antarctic Convergence, comparable pedogenic zones occur at lower latitudes in the Southern than in the Northern Circumpolar Region.
APA, Harvard, Vancouver, ISO, and other styles
31

Turner, J., T. A. Lachlan-Cope, J. P. Thomas, and S. R. Colwell. "The synoptic origins of precipitation over the Antarctic Peninsula." Antarctic Science 7, no. 3 (September 1995): 327–37. http://dx.doi.org/10.1017/s0954102095000447.

Full text
Abstract:
The synoptic origins of precipitation on the western side of the Antarctic Peninsula over the one year period March 1992 to February 1993 are investigated using meteorological observations, satellite imagery and analyses produced by the UK Meteorological Office. Precipitation at Rothera Station was found to occur at 30% of the synoptic reporting time with 80% of precipitation reports being associated with cyclonic disturbances. Although three quarters of all precipitation reports were for snow, the proximity of Rothera to the zone of maximum cyclonic activity meant that incursions of mild air produced rain in all seasons. During the year 95% of all precipitation was classed as slight. Variability of precipitation on the intraseasonal timescale was highly dependent on the synoptic-scale circulation. The most common synoptic situation for precipitation was a frontal cyclone over the Bellingshausen Sea which accounted for 38% of all precipitation events and 62% of the moderate and heavy precipitation reports. Of the extra-tropical cyclones that gave precipitation 49% were found to have developed south of 60°S. None of the precipitation at Rothera was attributable to mesocyclones. Snow stake measurements from Rothera were a poor indicator of precipitation as a result of blowing snow.
APA, Harvard, Vancouver, ISO, and other styles
32

Silber, Israel, Ann M. Fridlind, Johannes Verlinde, Andrew S. Ackerman, Grégory V. Cesana, and Daniel A. Knopf. "The prevalence of precipitation from polar supercooled clouds." Atmospheric Chemistry and Physics 21, no. 5 (March 17, 2021): 3949–71. http://dx.doi.org/10.5194/acp-21-3949-2021.

Full text
Abstract:
Abstract. Supercooled clouds substantially impact polar surface energy budgets, but large-scale models often underestimate their occurrence, which motivates accurately establishing metrics of basic processes. An analysis of long-term measurements at Utqiaġvik, Alaska, and McMurdo Station, Antarctica, combines lidar-validated use of soundings to identify supercooled cloud layers and colocated ground-based profiling radar measurements to quantify cloud base precipitation. We find that more than 85 % (75 %) of sampled supercooled layers are precipitating over the Arctic (Antarctic) site, with more than 75 % (50 %) precipitating continuously to the surface. Such high frequencies can be reconciled with substantially lesser spaceborne estimates by considering differences in radar hydrometeor detection sensitivity. While ice precipitation into supercooled clouds from aloft is common, we also find that the great majority of supercooled cloud layers without ice falling into them are themselves continuously generating precipitation. Such sustained primary ice formation is consistent with continuous activation of immersion-mode ice-nucleating particles (INPs), suggesting that supercooled cloud formation is a principal gateway to ice formation at temperatures greater than ∼-38 ∘C over polar regions. The prevalence of weak precipitation fluxes is also consistent with supercooled cloud longevity and with well-observed and widely simulated case studies. An analysis of colocated microwave radiometer retrievals suggests that weak precipitation fluxes can be nonetheless consequential to moisture budgets for supercooled clouds owing to small liquid water paths. The results here also demonstrate that the observed abundance of mixed-phase clouds can vary substantially with instrument sensitivity and methodology. Finally, we suggest that these ground-based precipitation rate statistics offer valuable guidance for improving the representation of polar cloud processes in large-scale models.
APA, Harvard, Vancouver, ISO, and other styles
33

Warren, Stephen, and Susan Frankenstein. "Increased Accumulation On The Antarctic Ice Sheet Due To Climatic Warming." Annals of Glaciology 14 (1990): 361. http://dx.doi.org/10.3189/s0260305500009393.

Full text
Abstract:
Climatic warming due to increased greenhouse gases is expected to cause increased precipitation in the next century because of the increased water content of the air, assuming constant relative humidity. Since temperatures over most of Antarctica are far below freezing even in the warmest month of the year, the increase in melting is probably negligible compared to the increase in precipitation.Oerlemans (1982) showed that this increase of precipitation would cause a growth of the ice sheet, tending to lower sea level. This would partially counteract the rise of sea level due to increased melting on mountain glaciers and Greenland, and to a possible (and more difficult to predict) surge of ice from West Antarctica.Oerlemans may have underestimated the increase in accumulation. He used results of General Circulation Models (GCMs) which indicated an increase of precipitation by only 12% for a temperature change ΔΤ = 3 Κ and 30% for ΔΤ = 8 K. In contrast, the change in accumulation rate at Dome C (Lorius and others, 1979) accompanying the warming from the recent ice age to the present was in accord with the simple assumption that accumulation is proportional to saturation vapor pressure at the temperature of the inversion layer, i.e. a 30% increase for ΔΤ = 3 K.The experimental results are to be preferred to the climate model results because GCMs do not represent ice-sheet accumulation processes well. Most of the accumulation is not snow falling from clouds but instead results from clear-sky ice-crystal formation in near-surface air, or hoarfrost deposition on the surface. GCMs lack sufficient vertical resolution to represent the strong temperature inversion on which these accumulation mechanisms depend.The figure shows that the increase of vapor pressure due to ΔΤ = 5 Κ varies from a factor of 1.9 at Τ = −60°C to a factor of 1.6 at Τ = −20°C. A climatic warming of 5 K. over Antarctica, which is possible during the next century, could thus increase the Antarctic accumulation from its present 17g cm−2 yr−1 to 30 g cm−2 yr−1, leading to a 50 cm drop in sea level in 100 years. This assumes that the simple proportionality of precipitation rate to saturation vapor pressure applies as well to the coastal regions, which is doubtful because the accumulation processes are not the same as on the plateau.The potential importance of Antarctic accumulation changes in contributing to changes of sea level argues for further study of the mechanisms of Antarctic precipitation and for their improved representation in climate models.
APA, Harvard, Vancouver, ISO, and other styles
34

Turner, John, Tom Lachlan-Cope, Steve Colwell, and Gareth J. Marshall. "A positive trend in western Antarctic Peninsula precipitation over the last 50 years reflecting regional and Antarctic-wide atmospheric circulation changes." Annals of Glaciology 41 (2005): 85–91. http://dx.doi.org/10.3189/172756405781813177.

Full text
Abstract:
AbstractIn situ observations of precipitation days (days when snow or rain was reported in routine synoptic observations) from Faraday/Vernadsky station on the western side of the Antarctic Peninsula, and fields from the 40 year European Centre for Medium-Range Weather Forecasts re-analysis (ERA-40) project are used to investigate precipitation and atmospheric circulation changes around the Antarctic Peninsula. It is shown that the number of precipitation days is a good proxy for mean sea-level pressure (MSLP) over the Amundsen–Bellingshausen Sea. The annual total of precipitation days at the station has been increasing at a statistically significant rate of +12.4 days decade–1 since the early 1950s, with the greatest increase taking place during the summer and autumn. This is the time of year when the Southern Annular Mode (SAM) has experienced its greatest shift to a positive phase, with MSLP values decreasing in the Antarctic coastal zone. The lower pressures in the circumpolar trough have resulted in greater ascent and increased precipitation at Faraday/Vernadsky.
APA, Harvard, Vancouver, ISO, and other styles
35

Carrasco, Jorge F., and Raúl R. Cordero. "Analyzing Precipitation Changes in the Northern Tip of the Antarctic Peninsula during the 1970–2019 Period." Atmosphere 11, no. 12 (November 24, 2020): 1270. http://dx.doi.org/10.3390/atmos11121270.

Full text
Abstract:
Five decades of precipitation data are available from the Chilean Antarctic weather stations located in the northern tip of the Antarctic Peninsula. Data include daily accumulation and type of precipitation registered at the time of the observation at the Meteorological Antarctic Center located at Base Eduardo Frei Montalva, King George Island. This information allowed us to analyze not only the precipitation accumulation changes (always questionable in cold and windy regions) but also changes in precipitation days and precipitation phases (rain versus snow). The expo nential filter was applied to the monthly data to obtain decadal-like changes. The analysis revealed an overall increase in precipitation from 1970 to the early-1990s 60 ± 7 mm (10 year)−1 (p < 0.05) and 31 ± 4 mm (10 year)−1 (p < 0.05) and a negative trend between 1991 and 1999 with decreasing precipitation of −95 ± 9 mm (10 year)−1 (p < 0.05). On the other hand, while an increase in precipitation events also took place from 1970 to the early-1990s, there was a decreasing trend in precipitation events during the 2010s. This implies that the positive trend in precipitation accumulation registered during this period is due to the increasing extreme precipitation events. The precipitation type analysis shows an increase (decrease) in snow (rain) events from around the mid-1990s to mid-2010s during the summer season. These opposite trends were related to the summer cooling affecting the AP region.
APA, Harvard, Vancouver, ISO, and other styles
36

Krinner, Gerhard, and Christophe Genthon. "The Antarctic surface mass balance in a stretched grid general circulation model." Annals of Glaciology 25 (1997): 73–78. http://dx.doi.org/10.1017/s0260305500013823.

Full text
Abstract:
The Laboratoire de Météorologie Dynamique (LMD) variable-grid atmospheric general circulation model (AGCM) was used in this study for a five-year high-resolution simulation of the Antarctic climate. The horizontal resolution is about 100 km over a large part of the ice sheet. This study focuses on the simulated surface mass balance (precipitation-evaporation sublimation-melt) and on the spatial and temporal variability of snowfall in Antarctica. The simulated annual mean surface mass balance for the whole continent is close to the observed value, and the model simulates well the spatial distribution of the surface mass balance. The annual cycle of snowfall exhibits a clear minimum in summer over the high interior plateau as well as for Antarctica as a whole, in agreement with the observations. In the interior of the continent, the model produces a permanent light background snowfall that accounts for about 5% of the total annual precipitation. The bulk of the snowfall is produced irregularly during periods that generally last only two or three days that are caused by cyclones off the coast.
APA, Harvard, Vancouver, ISO, and other styles
37

Krinner, Gerhard, and Christophe Genthon. "The Antarctic surface mass balance in a stretched grid general circulation model." Annals of Glaciology 25 (1997): 73–78. http://dx.doi.org/10.3189/s0260305500013823.

Full text
Abstract:
The Laboratoire de Météorologie Dynamique (LMD) variable-grid atmospheric general circulation model (AGCM) was used in this study for a five-year high-resolution simulation of the Antarctic climate. The horizontal resolution is about 100 km over a large part of the ice sheet. This study focuses on the simulated surface mass balance (precipitation-evaporation sublimation-melt) and on the spatial and temporal variability of snowfall in Antarctica. The simulated annual mean surface mass balance for the whole continent is close to the observed value, and the model simulates well the spatial distribution of the surface mass balance. The annual cycle of snowfall exhibits a clear minimum in summer over the high interior plateau as well as for Antarctica as a whole, in agreement with the observations. In the interior of the continent, the model produces a permanent light background snowfall that accounts for about 5% of the total annual precipitation. The bulk of the snowfall is produced irregularly during periods that generally last only two or three days that are caused by cyclones off the coast.
APA, Harvard, Vancouver, ISO, and other styles
38

Delaygue, Gilles, Valérie Masson, Jean Jouzel, Randal D. Koster, and Richard J. Healy. "The origin of Antarctic precipitation: a modelling approach." Tellus B: Chemical and Physical Meteorology 52, no. 1 (January 2000): 19–36. http://dx.doi.org/10.3402/tellusb.v52i1.16079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

DELAYGUE, GILLES, VALERIE MASSON, JEAN JOUZEL, RANDAL D. KOSTER, and RICHARD J. HEALY. "The origin of Antarctic precipitation: a modelling approach." Tellus B 52, no. 1 (February 2000): 19–36. http://dx.doi.org/10.1034/j.1600-0889.2000.00951.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Purich, Ariaan, and Seok-Woo Son. "Impact of Antarctic Ozone Depletion and Recovery on Southern Hemisphere Precipitation, Evaporation, and Extreme Changes." Journal of Climate 25, no. 9 (May 2012): 3145–54. http://dx.doi.org/10.1175/jcli-d-11-00383.1.

Full text
Abstract:
The possible impact of Antarctic ozone depletion and recovery on Southern Hemisphere (SH) mean and extreme precipitation and evaporation is examined using multimodel output from the Climate Model Intercomparison Project 3 (CMIP3). By grouping models into four sets, those with and without ozone depletion in twentieth-century climate simulations and those with and without ozone recovery in twenty-first-century climate simulations, and comparing their multimodel-mean trends, it is shown that Antarctic ozone forcings significantly modulate extratropical precipitation changes in austral summer. The impact on evaporation trends is however minimal, especially in twentieth-century climate simulations. In general, ozone depletion has increased (decreased) precipitation in high latitudes (midlatitudes), in agreement with the poleward displacement of the westerly jet and associated storm tracks by Antarctic ozone depletion. Although weaker, the opposite is also true for ozone recovery. These precipitation changes are primarily associated with changes in light precipitation (1–10 mm day−1). Contributions by very light precipitation (0.1–1 mm day−1) and moderate-to-heavy precipitation (>10 mm day−1) are minor. Likewise, no systematic changes are found in extreme precipitation events, although extreme surface wind events are highly sensitive to ozone forcings. This result indicates that, while extratropical mean precipitation trends are significantly modulated by ozone-induced large-scale circulation changes, extreme precipitation changes are likely more sensitive to thermodynamic processes near the surface than to dynamical processes in the free atmosphere.
APA, Harvard, Vancouver, ISO, and other styles
41

Turner, John, Steven Leonard, Tom Lachlan-Cope, and Gareth J. Marshall. "Understanding Antarctic Peninsula precipitation distribution and variability using a numerical weather prediction model." Annals of Glaciology 27 (1998): 591–96. http://dx.doi.org/10.3189/1998aog27-1-591-596.

Full text
Abstract:
Daily precipitation fields and annual means from the European Centre for Medium-range Weather Forecasts re-analysis exercise are used to examine the distribution and variability of precipitation across the Antarctic Peninsula. The annual mean precipitation field from the model agrees well with the available ice-core data and suggests that the maximum accumulation for the area is on the western side of the barrier at about the 200 m level where the annual total is close to 1.3 m w.e. The Peninsula is shown to be a very effective barrier to the zonal movement of precipitating weather systems, which results in quite different atmospheric flow regimes being responsible for significant precipitation events on other side of the divide. Frontal depressions are the primary source of large daily snowfall totals on both sides of the Peninsula. On the southern coast of the Bellingshausen Sea, major snowfall events are often linked to strong northerly flow when the atmospheric circulation is blocked. Predominantly northerly flow is also responsible for significant snowfall on the Ronne Ice Shelf, which often occurs in association with lee cyclogenesis events to the east of the- Peninsula.
APA, Harvard, Vancouver, ISO, and other styles
42

Goursaud, Sentia, Valérie Masson-Delmotte, Vincent Favier, Anaïs Orsi, and Martin Werner. "Water stable isotope spatio-temporal variability in Antarctica in 1960–2013: observations and simulations from the ECHAM5-wiso atmospheric general circulation model." Climate of the Past 14, no. 6 (June 28, 2018): 923–46. http://dx.doi.org/10.5194/cp-14-923-2018.

Full text
Abstract:
Abstract. Polar ice core water isotope records are commonly used to infer past changes in Antarctic temperature, motivating an improved understanding and quantification of the temporal relationship between δ18O and temperature. This can be achieved using simulations performed by atmospheric general circulation models equipped with water stable isotopes. Here, we evaluate the skills of the high-resolution water-isotope-enabled atmospheric general circulation model ECHAM5-wiso (the European Centre Hamburg Model) nudged to European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis using simulations covering the period 1960–2013 over the Antarctic continent. We compare model outputs with field data, first with a focus on regional climate variables and second on water stable isotopes, using our updated dataset of water stable isotope measurements from precipitation, snow, and firn–ice core samples. ECHAM5-wiso simulates a large increase in temperature from 1978 to 1979, possibly caused by a discontinuity in the European Reanalyses (ERA) linked to the assimilation of remote sensing data starting in 1979. Although some model–data mismatches are observed, the (precipitation minus evaporation) outputs are found to be realistic products for surface mass balance. A warm model bias over central East Antarctica and a cold model bias over coastal regions explain first-order δ18O model biases by too-strong isotopic depletion on coastal areas and underestimated depletion inland. At the second order, despite these biases, ECHAM5-wiso correctly captures the observed spatial patterns of deuterium excess. The results of model–data comparisons for the inter-annual δ18O standard deviation differ when using precipitation or ice core data. Further studies should explore the importance of deposition and post-deposition processes affecting ice core signals and not resolved in the model. These results build trust in the use of ECHAM5-wiso outputs to investigate the spatial, seasonal, and inter-annual δ18O–temperature relationships. We thus make the first Antarctica-wide synthesis of prior results. First, we show that local spatial or seasonal slopes are not a correct surrogate for inter-annual temporal slopes, leading to the conclusion that the same isotope–temperature slope cannot be applied for the climatic interpretation of Antarctic ice core for all timescales. Finally, we explore the phasing between the seasonal cycles of deuterium excess and δ18O as a source of information on changes in moisture sources affecting the δ18O–temperature relationship. The few available records and ECHAM5-wiso show different phase relationships in coastal, intermediate, and central regions. This work evaluates the use of the ECHAM5-wiso model as a tool for the investigation of water stable isotopes in Antarctic precipitation and calls for extended studies to improve our understanding of such proxies.
APA, Harvard, Vancouver, ISO, and other styles
43

Pishniak, D., and B. Beznoshchenko. "Improving the detailing of atmospheric processes modelling using the Polar WRF model: a case study of a heavy rainfall event at the Akademik Vernadsky station." Ukrainian Antarctic Journal, no. 2 (December 2020): 26–41. http://dx.doi.org/10.33275/1727-7485.2.2020.650.

Full text
Abstract:
The Antarctic Peninsula region is of growing interest due to the regional climate change features and related atmospheric circulation patterns. The regional mesoscale atmospheric model Polar Weather Research and Forecasting (WRF) v4.1.1 was used in this research to study a heavy precipitation event over the Ukrainian Antarctic Akademik Vernadsky station region (Antarctic Peninsula). The passage of the cyclone over the Antarctic Peninsula as a typical synoptic process as well as a case of the daily precipitation maximum amount of 2018 were chosen for investigation in this research. The estimation of the modelling quality and downscaling was done by comparing the obtained results with in-situ observation at the Akademik Vernadsky station and cross-domain tracking of average meteorological values and their deviation. The concept of the nested domains allowed to increase the horizontal resolution of the simulated atmosphere up to 1 km and to reproduce the wind regime of this region with high quality. Comparison with measured data showed a significant improvement in wind simulation with increasing of resolution, but worse representation of surface temperature and humidity. The Polar WRF made a general cooling of near surface temperature of 2 °C during the period of simulation and increased precipitation amount by 4.6–8.4 mm (12–21%) on average over the territory relative to the initial data from Global Data Assimilation System. This can be explained by the contribution of noise and imperfection of the model (including static input data of the terrain description). Based on the modelled results, the interaction of wind flow with the mountainous terrain of the Antarctic Peninsula creates a range of complex dynamic effects in the atmosphere. These effects cause local precipitation maxima both over the Peninsula and over the adjacent ocean. These are, respectively, bay-valley areas of increased precipitation and increased precipitation on the crests of shock waves from orographic obstacles. Under certain background wind conditions, the influence of the latter effect can reach the Akademik Vernadsky station and cause the formation of heavy precipitation here.
APA, Harvard, Vancouver, ISO, and other styles
44

Monaghan, Andrew J., David H. Bromwich, and Sheng-Hung Wang. "Recent trends in Antarctic snow accumulation from Polar MM5 simulations." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1844 (May 25, 2006): 1683–708. http://dx.doi.org/10.1098/rsta.2006.1795.

Full text
Abstract:
Polar MM5, a mesoscale atmospheric model optimized for use over polar ice sheets, is employed to simulate Antarctic accumulation in recent decades. Two sets of simulations, each with different initial and boundary conditions, are evaluated for the 17 yr period spanning 1985–2001. The initial and boundary conditions for the two sets of runs are provided by the (i) European Centre for Medium-Range Weather Forecasts 40 year Reanalysis, and (ii) National Centres for Environmental Prediction—Department of Energy Atmospheric Model Intercomparison Project Reanalysis II. This approach is used so that uncertainty can be assessed by comparing the two resulting datasets. There is broad agreement between the two datasets for the annual precipitation trends for 1985–2001. These generally agree with ice core and snow stake accumulation records at various locations around the continent, indicating broad areas of both upward and downward trends. Averaged over the continent the annual trends are small and not statistically different from zero, suggesting that recent Antarctic snowfall changes do not mitigate current sea-level rise. However, this result does not suggest that Antarctica is isolated from the recent climate changes occurring elsewhere on Earth. Rather, these are expressed by strong seasonal and regional precipitation changes.
APA, Harvard, Vancouver, ISO, and other styles
45

Wang, Yetang, Minghu Ding, J. M. van Wessem, E. Schlosser, S. Altnau, Michiel R. van den Broeke, Jan T. M. Lenaerts, et al. "A Comparison of Antarctic Ice Sheet Surface Mass Balance from Atmospheric Climate Models and In Situ Observations." Journal of Climate 29, no. 14 (July 5, 2016): 5317–37. http://dx.doi.org/10.1175/jcli-d-15-0642.1.

Full text
Abstract:
Abstract In this study, 3265 multiyear averaged in situ observations and 29 observational records at annual time scale are used to examine the performance of recent reanalysis and regional atmospheric climate model products [ERA-Interim, JRA-55, MERRA, the Polar version of MM5 (PMM5), RACMO2.1, and RACMO2.3] for their spatial and interannual variability of Antarctic surface mass balance (SMB), respectively. Simulated precipitation seasonality is also evaluated using three in situ observations and model intercomparison. All products qualitatively capture the macroscale spatial variability of observed SMB, but it is not possible to rank their relative performance because of the sparse observations at coastal regions with an elevation range from 200 to 1000 m. In terms of the absolute amount of observed snow accumulation in interior Antarctica, RACMO2.3 fits best, while the other models either underestimate (JRA-55, MERRA, ERA-Interim, and RACMO2.1) or overestimate (PMM5) the accumulation. Despite underestimated precipitation by the three reanalyses and RACMO2.1, this feature is clearly improved in JRA-55. However, because of changes in the observing system, especially the dramatically increased satellite observations for data assimilation, JRA-55 presents a marked jump in snow accumulation around 1979 and a large increase after the late 1990s. Although precipitation seasonality over the whole ice sheet is common for all products, ERA-Interim provides an unrealistic estimate of precipitation seasonality on the East Antarctic plateau, with high precipitation strongly peaking in summer. ERA-Interim shows a significant correlation with interannual variability of observed snow accumulation measurements at 28 of 29 locations, whereas fewer than 20 site observations significantly correlate with simulations by the other models. This suggests that ERA-Interim exhibits the highest performance of interannual variability in the observed precipitation.
APA, Harvard, Vancouver, ISO, and other styles
46

Stenni, Barbara, Claudio Scarchilli, Valerie Masson-Delmotte, Elisabeth Schlosser, Virginia Ciardini, Giuliano Dreossi, Paolo Grigioni, et al. "Three-year monitoring of stable isotopes of precipitation at Concordia Station, East Antarctica." Cryosphere 10, no. 5 (October 17, 2016): 2415–28. http://dx.doi.org/10.5194/tc-10-2415-2016.

Full text
Abstract:
Abstract. Past temperature reconstructions from Antarctic ice cores require a good quantification and understanding of the relationship between snow isotopic composition and 2 m air or inversion (condensation) temperature. Here, we focus on the French–Italian Concordia Station, central East Antarctic plateau, where the European Project for Ice Coring in Antarctica (EPICA) Dome C ice cores were drilled. We provide a multi-year record of daily precipitation types identified from crystal morphologies, daily precipitation amounts and isotopic composition. Our sampling period (2008–2010) encompasses a warmer year (2009, +1.2 °C with respect to 2 m air temperature long-term average 1996–2010), with larger total precipitation and snowfall amounts (14 and 76 % above sampling period average, respectively), and a colder and drier year (2010, −1.8 °C, 4 % below long-term and sampling period averages, respectively) with larger diamond dust amounts (49 % above sampling period average). Relationships between local meteorological data and precipitation isotopic composition are investigated at daily, monthly and inter-annual scale, and for the different types of precipitation. Water stable isotopes are more closely related to 2 m air temperature than to inversion temperature at all timescales (e.g. R2 = 0.63 and 0.44, respectively for daily values). The slope of the temporal relationship between daily δ18O and 2 m air temperature is approximately 2 times smaller (0.49 ‰ °C−1) than the average Antarctic spatial (0.8 ‰ °C−1) relationship initially used for the interpretation of EPICA Dome C records. In accordance with results from precipitation monitoring at Vostok and Dome F, deuterium excess is anti-correlated with δ18O at daily and monthly scales, reaching maximum values in winter. Hoar frost precipitation samples have a specific fingerprint with more depleted δ18O (about 5 ‰ below average) and higher deuterium excess (about 8 ‰ above average) values than other precipitation types. These datasets provide a basis for comparison with shallow ice core records, to investigate post-deposition effects. A preliminary comparison between observations and precipitation from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis and the simulated water stable isotopes from the Laboratoire de Météorologie Dynamique Zoom atmospheric general circulation model (LMDZiso) shows that models do correctly capture the amount of precipitation as well as more than 50 % of the variance of the observed δ18O, driven by large-scale weather patterns. Despite a warm bias and an underestimation of the variance in water stable isotopes, LMDZiso correctly captures these relationships between δ18O, 2 m air temperature and deuterium excess. Our dataset is therefore available for further in-depth model evaluation at the synoptic scale.
APA, Harvard, Vancouver, ISO, and other styles
47

Chyhareva, A., I. Gorodetskaya, S. Krakovska, D. Pishniak, and P. Rowe. "Precipitation phase transition in austral summer over the Antarctic Peninsula." Ukrainian Antarctic Journal, no. 1 (2021): 32–46. http://dx.doi.org/10.33275/1727-7485.1.2021.664.

Full text
Abstract:
Investigating precipitation phase transitions is crucial for improving our understanding of precipitation formation processes and impacts, particularly in Polar Regions. This study uses observational data and numerical modelling to investigate precipitation phase transitions in the western and northern Antarctic Peninsula (AP) during austral summer. The analysis is based on the ERA5 reanalysis product, dynamically downscaled using the Polar-WRF (Polar Weather Research and Forecasting) model, evaluated using regular meteorological observations and additional measurements made during the Year of Polar Prediction special observing period. We analyse three cases of extra-tropical cyclones bringing precipitation with phase transitions, observed at the Chilean station Professor Julio Escudero (King George Island, north of the AP) and the Ukrainian Antarctic Akademik Vernadsky station (western side of the AP) during the first week of December 2018. We use observed and modelled near-surface air temperature and pressure, precipitation amount and type, and vertical temperature profiles. Our results show that precipitation type (snow or rain) is well-represented by ERA5 and Polar-WRF, but both overestimate the total amount of precipitation. The ERA5 daily variability and vertical air temperature profile are close to the observed, while Polar-WRF underestimates temperature in the lower troposphere. However, ERA5 underestimates the temperature inversion, which is present during the atmospheric river event, while Polar-WRF represents that inversion well. The average weekly temperature, simulated with Polar-WRF, is lower compared to ERA5. The Polar-WRF fraction of snow in the total precipitation amount is higher than for ERA5; nevertheless, Polar-WRF represents the precipitation phase transition better than ERA5 during the event, associated with an atmospheric river. These case studies demonstrated a relationship between specific synoptic conditions and precipitation phase transitions at the AP, evaluated the ability of the state-of-the-art reanalysis and regional climate model to represent these events, and demonstrated the added value of combined analysis of observations from the western and northern AP, particularly for characterizing precipitation during synoptic events affecting the entire AP.
APA, Harvard, Vancouver, ISO, and other styles
48

Gorodetskaya, I. V., S. Kneifel, M. Maahn, K. Van Tricht, W. Thiery, J. H. Schween, A. Mangold, S. Crewell, and N. P. M. Van Lipzig. "Cloud and precipitation properties from ground-based remote-sensing instruments in East Antarctica." Cryosphere 9, no. 1 (February 11, 2015): 285–304. http://dx.doi.org/10.5194/tc-9-285-2015.

Full text
Abstract:
Abstract. A new comprehensive cloud–precipitation–meteorological observatory has been established at Princess Elisabeth base, located in the escarpment zone of Dronning Maud Land (DML), East Antarctica. The observatory consists of a set of ground-based remote-sensing instruments (ceilometer, infrared pyrometer and vertically profiling precipitation radar) combined with automatic weather station measurements of near-surface meteorology, radiative fluxes, and snow height. In this paper, the observatory is presented and the potential for studying the evolution of clouds and precipitating systems is illustrated by case studies. It is shown that the synergetic use of the set of instruments allows for distinguishing ice, liquid-containing clouds and precipitating clouds, including some information on their vertical extent. In addition, wind-driven blowing snow events can be distinguished from deeper precipitating systems. Cloud properties largely affect the surface radiative fluxes, with liquid-containing clouds dominating the radiative impact. A statistical analysis of all measurements (in total 14 months mainly during summer–beginning of winter) indicates that these liquid-containing clouds occur during as much as 20% of the cloudy periods. The cloud occurrence shows a strong bimodal distribution with clear-sky conditions 51% of the time and complete overcast conditions 35% of the time. Snowfall occurred during 17% of the cloudy periods with a predominance of light precipitation and only rare events with snowfall >1 mm h−1 water equivalent (w.e.). Three of such intense snowfall events occurred during 2011 contributing to anomalously large annual surface mass balance (SMB). Large accumulation events (>10 mm w.e. day−1) during the radar-measurement period of 26 months were always associated with snowfall, but at the same time other snowfall events did not always lead to accumulation. The multiyear deployment of a precipitation radar in Antarctica allows for assessing the contribution of the snowfall to the local SMB and comparing it to the other SMB components. During 2012, snowfall rate was 110 ± 20 mm w.e. yr−1, from which surface and drifting snow sublimation removed together 23%. Given the measured yearly SMB of 52 ± 3 mm w.e., the residual term of 33 ± 21 mm w.e. yr−1 was attributed to the wind-driven snow erosion. In general, this promising set of robust instrumentation allows for improved insight into cloud and precipitation processes in Antarctica and can be easily deployed at other Antarctic stations.
APA, Harvard, Vancouver, ISO, and other styles
49

Delaygue, Gilles, Valérie Masson, and Jean Jouzel. "Climatic stability of the geographic origin of Antarctic precipitation simulated by an atmospheric general circulation model." Annals of Glaciology 29 (1999): 45–48. http://dx.doi.org/10.3189/172756499781821544.

Full text
Abstract:
AbstractThe geographic origin of Antarctic precipitation is important for ice-core isotopic interpretation as well as ice-sheet mass-balance calculations. Here we estimate these moisture origins with the NASA/Goddard Institute of Space Studies atmospheric general circulation model, under different climatic conditions. This model reasonably simulates the broad features of the present-day observed hydrological cycle, and indicates a subtropical to subglacial (30-60° S) latitudinal origin for the Antarctic precipitation. We use different climatic reconstructions, all based on CLIMAP, for the Last Glacial Maximum (about 21000 years ago), which differ by the latitudinal sea-surface temperature gradient and seasonality. CLIMAP conditions increase the latitudinal gradient and the sea-ice extent, with the consequence of slightly enhancing the low-latitude origins. Shifting the seasonal cycle of oceanic prescribed conditions has an important effect on the hydrological cycle but less on the precipitation origin. Prescribing cooler tropical sea-surface temperatures, which decreases the latitudinal gradient, makes the latitudinal contributions closer to modern ones and increases the dominant oceanic sources. Globally the origins of Antarctic precipitation do not change significantly, either annually or seasonally.
APA, Harvard, Vancouver, ISO, and other styles
50

Thomas, Elizabeth R., J. Melchior van Wessem, Jason Roberts, Elisabeth Isaksson, Elisabeth Schlosser, Tyler J. Fudge, Paul Vallelonga, et al. "Regional Antarctic snow accumulation over the past 1000 years." Climate of the Past 13, no. 11 (November 10, 2017): 1491–513. http://dx.doi.org/10.5194/cp-13-1491-2017.

Full text
Abstract:
Abstract. Here we present Antarctic snow accumulation variability at the regional scale over the past 1000 years. A total of 79 ice core snow accumulation records were gathered and assigned to seven geographical regions, separating the high-accumulation coastal zones below 2000 m of elevation from the dry central Antarctic Plateau. The regional composites of annual snow accumulation were evaluated against modelled surface mass balance (SMB) from RACMO2.3p2 and precipitation from ERA-Interim reanalysis. With the exception of the Weddell Sea coast, the low-elevation composites capture the regional precipitation and SMB variability as defined by the models. The central Antarctic sites lack coherency and either do not represent regional precipitation or indicate the model inability to capture relevant precipitation processes in the cold, dry central plateau. Our results show that SMB for the total Antarctic Ice Sheet (including ice shelves) has increased at a rate of 7 ± 0.13 Gt decade−1 since 1800 AD, representing a net reduction in sea level of ∼ 0.02 mm decade−1 since 1800 and ∼ 0.04 mm decade−1 since 1900 AD. The largest contribution is from the Antarctic Peninsula (∼ 75 %) where the annual average SMB during the most recent decade (2001–2010) is 123 ± 44 Gt yr−1 higher than the annual average during the first decade of the 19th century. Only four ice core records cover the full 1000 years, and they suggest a decrease in snow accumulation during this period. However, our study emphasizes the importance of low-elevation coastal zones, which have been under-represented in previous investigations of temporal snow accumulation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography