Academic literature on the topic 'Anterograde transport'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Anterograde transport.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Anterograde transport"

1

Kondo, S., R. Sato-Yoshitake, Y. Noda, H. Aizawa, T. Nakata, Y. Matsuura, and N. Hirokawa. "KIF3A is a new microtubule-based anterograde motor in the nerve axon." Journal of Cell Biology 125, no. 5 (June 1, 1994): 1095–107. http://dx.doi.org/10.1083/jcb.125.5.1095.

Full text
Abstract:
Neurons are highly polarized cells composed of dendrites, cell bodies, and long axons. Because of the lack of protein synthesis machinery in axons, materials required in axons and synapses have to be transported down the axons after synthesis in the cell body. Fast anterograde transport conveys different kinds of membranous organelles such as mitochondria and precursors of synaptic vesicles and axonal membranes, while organelles such as endosomes and autophagic prelysosomal organelles are conveyed retrogradely. Although kinesin and dynein have been identified as good candidates for microtubule-based anterograde and retrograde transporters, respectively, the existence of other motors for performing these complex axonal transports seems quite likely. Here we characterized a new member of the kinesin super-family, KIF3A (50-nm rod with globular head and tail), and found that it is localized in neurons, associated with membrane organelle fractions, and accumulates with anterogradely moving membrane organelles after ligation of peripheral nerves. Furthermore, native KIF3A (a complex of 80/85 KIF3A heavy chain and a 95-kD polypeptide) revealed microtubule gliding activity and baculovirus-expressed KIF3A heavy chain demonstrated microtubule plus end-directed (anterograde) motility in vitro. These findings strongly suggest that KIF3A is a new motor protein for the anterograde fast axonal transport.
APA, Harvard, Vancouver, ISO, and other styles
2

Hirata, Tetsuya, Morihisa Fujita, Shota Nakamura, Kazuyoshi Gotoh, Daisuke Motooka, Yoshiko Murakami, Yusuke Maeda, and Taroh Kinoshita. "Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport." Molecular Biology of the Cell 26, no. 17 (September 2015): 3071–84. http://dx.doi.org/10.1091/mbc.e14-11-1568.

Full text
Abstract:
The importance of endosome-to– trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51–VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport.
APA, Harvard, Vancouver, ISO, and other styles
3

Lim, Angeline, Andreas Rechtsteiner, and William M. Saxton. "Two kinesins drive anterograde neuropeptide transport." Molecular Biology of the Cell 28, no. 24 (November 15, 2017): 3542–53. http://dx.doi.org/10.1091/mbc.e16-12-0820.

Full text
Abstract:
Motor-dependent anterograde transport, a process that moves cytoplasmic components from sites of biosynthesis to sites of use within cells, is crucial in neurons with long axons. Evidence has emerged that multiple anterograde kinesins can contribute to some transport processes. To test the multi-kinesin possibility for a single vesicle type, we studied the functional relationships of axonal kinesins to dense core vesicles (DCVs) that were filled with a GFP-tagged neuropeptide in the Drosophila nervous system. Past work showed that Unc-104 (a kinesin-3) is a key anterograde DCV motor. Here we show that anterograde DCV transport requires the well-known mitochondrial motor Khc (kinesin-1). Our results indicate that this influence is direct. Khc mutations had specific effects on anterograde run parameters, neuron-specific inhibition of mitochondrial transport by Milton RNA interference had no influence on anterograde DCV runs, and detailed colocalization analysis by superresolution microscopy revealed that Unc-104 and Khc coassociate with individual DCVs. DCV distribution analysis in peptidergic neurons suggest the two kinesins have compartment specific influences. We suggest a mechanism in which Unc-104 is particularly important for moving DCVs from cell bodies into axons, and then Unc-104 and kinesin-1 function together to support fast, highly processive runs toward axon terminals.
APA, Harvard, Vancouver, ISO, and other styles
4

Yezid, Hocine, Christian T. Lay, Katrin Pannhorst, and Shafiqul I. Chowdhury. "Two Separate Tyrosine-Based YXXL/Φ Motifs within the Glycoprotein E Cytoplasmic Tail of Bovine Herpesvirus 1 Contribute in Virus Anterograde Neuronal Transport." Viruses 12, no. 9 (September 14, 2020): 1025. http://dx.doi.org/10.3390/v12091025.

Full text
Abstract:
Bovine herpesvirus 1 (BHV-1) causes respiratory infection and abortion in cattle. Following a primary infection, BHV-1 establishes lifelong latency in the trigeminal ganglia (TG). Periodic reactivation of the latent virus in TG neurons results in anterograde virus transport to nerve endings in the nasal mucosa and nasal virus shedding. The BHV-1 glycoprotein E cytoplasmic tail (gE-CT) is necessary for virus cell-to-cell spread in epithelial cells and neuronal anterograde transport. Recently, we identified two tyrosine residues, Y467 and Y563, within the tyrosine-based motifs 467YTSL470 and 563YTVV566, which, together, account for the gE CT-mediated efficient cell-to-cell spread of BHV-1 in epithelial cells. Here, we determined that in primary neuron cultures in vitro, the individual alanine exchange Y467A or Y563A mutants had significantly diminished anterograde axonal spread. Remarkably, the double-alanine-exchanged Y467A/Y563A mutant virus was not transported anterogradely. Following intranasal infection of rabbits, both wild-type (wt) and the Y467A/Y563A mutant viruses established latency in the TG. Upon dexamethasone-induced reactivation, both wt and the mutant viruses reactivated and replicated equally efficiently in the TG. However, upon reactivation, only the wt, not the mutant, was isolated from nasal swabs. Therefore, the gE-CT tyrosine residues Y467 and Y563 together are required for gE CT-mediated anterograde neuronal transport.
APA, Harvard, Vancouver, ISO, and other styles
5

Altar, C. Anthony, and Peter S. DiStefano. "Neurotrophin trafficking by anterograde transport." Trends in Neurosciences 21, no. 10 (October 1998): 433–37. http://dx.doi.org/10.1016/s0166-2236(98)01273-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Barkus, Rosemarie V., Olga Klyachko, Dai Horiuchi, Barry J. Dickson, and William M. Saxton. "Identification of an Axonal Kinesin-3 Motor for Fast Anterograde Vesicle Transport that Facilitates Retrograde Transport of Neuropeptides." Molecular Biology of the Cell 19, no. 1 (January 2008): 274–83. http://dx.doi.org/10.1091/mbc.e07-03-0261.

Full text
Abstract:
A screen for genes required in Drosophila eye development identified an UNC-104/Kif1 related kinesin-3 microtubule motor. Analysis of mutants suggested that Drosophila Unc-104 has neuronal functions that are distinct from those of the classic anterograde axonal motor, kinesin-1. In particular, unc-104 mutations did not cause the distal paralysis and focal axonal swellings characteristic of kinesin-1 (Khc) mutations. However, like Khc mutations, unc-104 mutations caused motoneuron terminal atrophy. The distributions and transport behaviors of green fluorescent protein-tagged organelles in motor axons indicate that Unc-104 is a major contributor to the anterograde fast transport of neuropeptide-filled vesicles, that it also contributes to anterograde transport of synaptotagmin-bearing vesicles, and that it contributes little or nothing to anterograde transport of mitochondria, which are transported primarily by Khc. Remarkably, unc-104 mutations inhibited retrograde runs by neurosecretory vesicles but not by the other two organelles. This suggests that Unc-104, a member of an anterograde kinesin subfamily, contributes to an organelle-specific dynein-driven retrograde transport mechanism.
APA, Harvard, Vancouver, ISO, and other styles
7

Uchida, Atsuko, Nael H. Alami, and Anthony Brown. "Tight Functional Coupling of Kinesin-1A and Dynein Motors in the Bidirectional Transport of Neurofilaments." Molecular Biology of the Cell 20, no. 23 (December 2009): 4997–5006. http://dx.doi.org/10.1091/mbc.e09-04-0304.

Full text
Abstract:
We have tested the hypothesis that kinesin-1A (formerly KIF5A) is an anterograde motor for axonal neurofilaments. In cultured sympathetic neurons from kinesin-1A knockout mice, we observed a 75% reduction in the frequency of both anterograde and retrograde neurofilament movement. This transport defect could be rescued by kinesin-1A, and with successively decreasing efficacy by kinesin-1B and kinesin-1C. In wild-type neurons, headless mutants of kinesin-1A and kinesin-1C inhibited both anterograde and retrograde movement in a dominant-negative manner. Because dynein is thought to be the retrograde motor for axonal neurofilaments, we investigated the effect of dynein inhibition on anterograde and retrograde neurofilament transport. Disruption of dynein function by using RNA interference, dominant-negative approaches, or a function-blocking antibody also inhibited both anterograde and retrograde neurofilament movement. These data suggest that kinesin-1A is the principal but not exclusive anterograde motor for neurofilaments in these neurons, that there may be some functional redundancy among the kinesin-1 isoforms with respect to neurofilament transport, and that the activities of the anterograde and retrograde neurofilament motors are tightly coordinated.
APA, Harvard, Vancouver, ISO, and other styles
8

Carmichael, Stephen W., and Jeffery L. Salisbury. "Watching Rafts Move Within Cells: A Fluorescence Microscope-Based Transport Assay." Microscopy Today 8, no. 1 (January 2000): 3–7. http://dx.doi.org/10.1017/s1551929500057059.

Full text
Abstract:
Imagine a raft in a canal between point A and point B. On that raft is a visible (fluorescent) cargo. Also, attached to that raft is a motor that will propel the raft only from A to B (anterograde transport). When the raft gets to point B, another motor is attached that can propel the raft, and its cargo, and the anterograde motor, back to point A (retrograde transport). Within a cell, the canals are microtubLiles, and a lot is known about anterograde and retrograde transport in some systems, but these phenomena have not been directly observed in a living, intact animal. Until now, that is. In a pair of very interesting papers, the laboratory of Jonathan Scholey has shown us convincing micrographs of anterograde and retrograde transport in an important animal model.
APA, Harvard, Vancouver, ISO, and other styles
9

Snyder, R. E., and R. S. Smith. "Rapid axonal transport in Xenopus nerve in divalent cation free media." Canadian Journal of Physiology and Pharmacology 63, no. 10 (October 1, 1985): 1279–90. http://dx.doi.org/10.1139/y85-212.

Full text
Abstract:
An investigation was made of the effects of bathing media low in divalent cations on rapid axonal transport in the sciatic nerve of the amphibian Xenopus laevis. The anterograde transport of a pulse of [35S]methionine proteins was observed using a multiple proportional counter as the detector. Organelles undergoing anterograde and retrograde transport were detected by light microscopy. The structure of nerve fibres was examined by light and electron microscopy. There was no significant difference in the anterograde transport of proteins in nerves bathed in normal medium (NM) containing millimolar Ca2+ and Mg2+ and in those bathed in calcium-free medium (CaFM) containing Mg2+. The anterograde transport of labelled proteins continued at a normal velocity in nerves bathed in divalent cation free medium (DCFM) for at least 14 h. DCFM did cause some alterations in protein transport: the ratio of the plateau (following pulse passage) to the peak radioactivity was increased, the pulse amplitude decreased more rapidly, and the label continued to arrive at the distal end of the nerve for >16 h. Anterograde and retrograde organelle transport continued normally for periods of [Formula: see text] in fibres bathed in DCFM. All myelinated fibres became distorted within 4 h in DCFM. Similar distortion was rare in fibres bathed in CaFM. The results indicate that axonal transport in Xenopus is largely independent of lowered concentrations of divalent cations in the bathing medium. Those alterations in axonal transport that were produced by DCFM may have been secondary to morphological changes in the nerve fibres.
APA, Harvard, Vancouver, ISO, and other styles
10

Cavolo, Samantha L., Chaoming Zhou, Stephanie A. Ketcham, Matthew M. Suzuki, Kresimir Ukalovic, Michael A. Silverman, Trina A. Schroer, and Edwin S. Levitan. "Mycalolide B dissociates dynactin and abolishes retrograde axonal transport of dense-core vesicles." Molecular Biology of the Cell 26, no. 14 (July 5, 2015): 2664–72. http://dx.doi.org/10.1091/mbc.e14-11-1564.

Full text
Abstract:
Axonal transport is critical for maintaining synaptic transmission. Of interest, anterograde and retrograde axonal transport appear to be interdependent, as perturbing one directional motor often impairs movement in the opposite direction. Here live imaging of Drosophila and hippocampal neuron dense-core vesicles (DCVs) containing a neuropeptide or brain-derived neurotrophic factor shows that the F-actin depolymerizing macrolide toxin mycalolide B (MB) rapidly and selectively abolishes retrograde, but not anterograde, transport in the axon and the nerve terminal. Latrunculin A does not mimic MB, demonstrating that F-actin depolymerization is not responsible for unidirectional transport inhibition. Given that dynactin initiates retrograde transport and that amino acid sequences implicated in macrolide toxin binding are found in the dynactin component actin-related protein 1, we examined dynactin integrity. Remarkably, cell extract and purified protein experiments show that MB induces disassembly of the dynactin complex. Thus imaging selective retrograde transport inhibition led to the discovery of a small-molecule dynactin disruptor. The rapid unidirectional inhibition by MB suggests that dynactin is absolutely required for retrograde DCV transport but does not directly facilitate ongoing anterograde DCV transport in the axon or nerve terminal. More generally, MB's effects bolster the conclusion that anterograde and retrograde axonal transport are not necessarily interdependent.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Anterograde transport"

1

Russo, Gary John. "Miro's GTPase Domains Execute Anterograde and Retrograde Axonal Mitochondrial Transport and Control Morphology." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/228167.

Full text
Abstract:
Microtubule-based mitochondrial transport into dendrites and axons is vital for sustaining neuronal function. Transport along microtubules proceeds in a series of plus- and minus-end directed movements facilitated by kinesin and dynein motors. How the opposing movements are controlled to achieve effective long distance transport remains unclear. Previous studies showed that the conserved mitochondrial GTPase Miro is required for mitochondrial transport into axons and dendrites. To directly examine Miro's significance for kinesin- and/or dynein-mediated mitochondrial motility, we live imaged movements of GFP-tagged mitochondria in larval Drosophila motor axons upon genetic manipulations of Miro. Loss of Drosophila Miro (dMiro) reduced the effectiveness of either antero- or retrograde mitochondrial transport by selectively impairing kinesin- or dynein-mediated movements, depending on the direction of net transport. In both cases, the duration of short stationary phases increased proportionally. Overexpression (OE) of dMiro also impaired the effectiveness of mitochondrial transport. Finally, loss and OE of dMiro altered the length of mitochondria in axons through a mechanistically separate pathway. We concluded that dMiro promotes effective antero- and retrograde mitochondrial transport by extending the processivity of kinesin and dynein motors according to a mitochondrion's programmed direction of transport. To determine how Miro achieves this control mechanistically, we introduced point mutations that render each GTPase either constitutively active or inactive. Expression of either first GTPase mutant impaired antero- (inactive) or retrograde motor movements (active) in a direction dependent manner. The active state of the second GTPase domain up-regulated the number of consecutive kinesin motions during anterograde transport but impaired kinesin transport biases while the inactive second GTPase state impaired transport in either direction. Together, these data suggest that Miro's first GTPase domain is major factor that controls the execution of either the antero- or retrograde directional program while Miro's second GTPase may provide a signal that supports or disfavors transport. In addition, the active state of the first and the second GTPase domain increased the length of stationary mitochondria but only the first GTPase domain modified motile mitochondrial lengths. Overexpression of these mutations generated opposing effects. We conclude that both domains control antero- and retrograde transport in a switch-like manner.
APA, Harvard, Vancouver, ISO, and other styles
2

Kesse, W. K. "The innervation of the adult and neonatal rat adrenal medulla- an anterograde and retrograde tracer study." Thesis, University of Nottingham, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Robinson, Christopher L. "MyosinVa and dynamic actin oppose minus-end directed microtubule motors to drive anterograde melanosome transport." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/33616/.

Full text
Abstract:
The intracellular transport of organelles and vesicles is thought to utilise both microtubules and actin filaments, which mediate long and short-range transport, respectively. Melanosomes, synthesised in melanocytes, are a convenient model organelle to study intracellular transport, since they are visible using brightfield microscopy. They are believed to be transported from the perinuclear area to the actin cortex along microtubules, and then captured by the myosin-Va/melanophilin/Rab27a complex which traffics them along actin filaments to the plasma membrane. In contrast, data presented here demonstrate that anterograde melanosome transport relies only upon the actin cytoskeleton. Myosin-Va null melanocytes were used to test the importance of microtubules and actin on long-range organelle transport. In these cells, melanosomes cluster around the perinuclear area, but disperse into peripheral dendrites upon reintroduction of the myosin-Va gene. When this assay was repeated in the absence of microtubules, melanosomes still dispersed indicating that microtubule-based motors are not necessary for long-range anterograde trafficking. However, depolymerising F-actin, or freezing actin dynamics with latrunculin A or jasplakinolide inhibited the dispersion of pigment granules in myosin-Va null cells melanocytes and induced a clustered phenotype in WT melanocytes. This effect was abolished if microtubules were absent, suggesting that microtubules are only required for retrograde transport whilst dynamic actin is essential for anterograde melanosome transport. Moreover, when Kif5B was forcibly recruited to the melanosome membrane via an inducible dimerisation system, the melanosomes dispersed abnormally. An siRNA knockdown screen of over 120 actin binding proteins identified several proteins including formin-1, Arpc1b, cofilin-1, gamma-actin and spire1/2, which appear to be necessary for maintaining peripherally dispersed melanosomes. This evidence further underlines the importance of the actin cytoskeleton, rather than the microtubule network as previously thought, for the anterograde trafficking of melanosomes.
APA, Harvard, Vancouver, ISO, and other styles
4

SHIFF, GAD. "Caracterisation du complexe snare dans l'electroneurone de torpille : la syntaxine 1, la snap 25, et la vamp forment un complexe stable au cours du transport anterograde rapide." Paris 6, 1997. http://www.theses.fr/1997PA066742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wolf, Jana. "Role of EBAG9 in COPI-dependent glycoprotein maturation and secretion processes in tumor cells." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16227.

Full text
Abstract:
EBAG9 (estrogen receptor-binding fragment-associated gene 9) hat als unabhängiger prognostischer Marker viel Aufmerksamkeit erregt, da in einigen Tumoren hohe Expressionsraten und Tumorentwicklung korrelieren. In diesen Fällen ist eine hohe EBAG9 Expression häufig mit einer schlechten klinischen Prognose verbunden. EBAG9 ist ein ubiquitär exprimiertes Golgi Protein. Aktuelle Daten demonstrieren, dass es in sekretorischen Zellen an der regulierten Exozytose und an der zytotoxischen Funktion von Lymphozyten beteiligt ist. In epithelialen Zellen führt es zur Generierung von Tumor-assoziierten O-Glykanen, welche ein Erkennungsmerkmal vieler Krebsarten sind. In dieser Arbeit wurde der pathogenetische Zusammenhang zwischen EBAG9 Expression und der Veränderung des zellulären Glykoms untersucht. Um einen tieferen Einblick in die zelluläre Funktion von EBAG9 in epithelialen Zellen zu gewinnen, wurden Zellen mit tumorähnlicher EBAG9 Expression verwendet. Innerhalb dieser Arbeit wurde demonstriert, dass EBAG9 mit anterograden COPI Vesikeln assoziiert und zwischen dem ER-Golgi intermediären Kompartiment und cis-Golgi pendelt. EBAG9 verursacht eine Verzögerung des anterograden Transportes vom ER zum Golgi und verändert die Lokalisation von Komponenten der ER Qualitätskontrolle und des Glycosylierungsapparates. Auf der anderen Seite beschleunigt die verminderte Expression von EBAG9 den Proteintransport durch den Golgi und verstärkt die Aktivität von Mannosidase II. Mechanistisch betrachtet verhindert EBAG9 die Rekrutierung von ArfGAP1 an die Membran. Dies beeinträchtigt das Auflösen der COPI Vesikelhülle und somit die Fusion von Vesikeln am cis-Golgi. Damit agiert EBAG9 in epithelialen Zellen als negativer Regulator des COPI-abhängigen ERGolgi Transportes und stellt damit ein neues phatogenetisches Prinzip dar, bei dem die Beeinflussung des intrazellulären Transportes zu der Entstehung von Tumor-assoziierten Glykanen führt.
The estrogen receptor-binding fragment-associated gene 9 (EBAG9) has received increased attention as an independent prognostic marker for disease-specific survival since in some human tumor entities high expression levels correlate with tumor progression and poor clinical prognosis. Interestingly, EBAG9 was identified as an ubiquitously expressed Golgi protein. Recent data demonstrate an involvement in regulated exocytosis in secretory cells and the cytotoxic functions of lymphocytes. However, EBAG9 is expressed in essentially all mammalian tissues, and in epithelial cells it has been identified as a modulator of tumorassociated O-linked glycan expression, a hallmark of many carcinomas. This thesis addresses the pathogenetic link between EBAG9 expression and the alteration of the cellular glycome. To gain further insights into the cellular functions of EBAG9 in epithelial cells, tumor-associated EBAG9 overexpression was mimicked in living cells. It was demonstrated that EBAG9 associates with anterograde COPI-coated carriers and shuttles between the ER-Golgi intermediate compartment and cis-Golgi stacks. EBAG9 overexpression imposes a delay in anterograde ER-to-Golgi transport and mislocalizes components of the ER quality-control and glycosylation machinery. Conversely, EBAG9 downregulation accelerates glycoprotein transport through the Golgi and enhances mannosidase activity. Functionally, EBAG9 impairs ArfGAP1 recruitment to membranes and consequently, interferes with the disassembly of the coat lattice at the cis-Golgi prior to fusion. Thus, EBAG9 acts as a negative regulator of a COPI-dependent ER-to-Golgi transport pathway in epithelial cells and represents a novel pathogenetic principle in which interference with intracellular membrane trafficking results in the emergence of a tumor-associated glycome.
APA, Harvard, Vancouver, ISO, and other styles
6

Negatsch, Alexandra. "Vergleichende Analysen zur Replikation und zum intraaxonalen Transport des Pseudorabiesvirus und des Herpes Simplex Virus Typ 1 in primären Rattenneuronen." Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-144375.

Full text
Abstract:
Nach dem Eintritt in den Wirtsorganismus und initialer Replikation infizieren Alphaherpesviren Neuronen zur weiteren Ausbreitung im Nervensystem und zur Etablierung einer Latenz. Dazu werden die Viruspartikel innerhalb der Axone retrograd von der Peripherie zum neuronalen Zellkörper transportiert. Die umgekehrte Richtung beschreibt den Weg des anterograden Transports vom Zellkörper zur Synapse für weitere Infektionen von Neuronen höherer Ordnung oder zurück zur Peripherie. Der retrograde intraaxonale Transport ist gut untersucht. Dagegen wird über den anterograden Transport kontrovers diskutiert. Zwei verschiedene Transportmodelle werden vermutet. Das „Married Model“ postuliert, dass umhüllte Virionen innerhalb von Vesikeln entlang des Axons transportiert werden. Die Freisetzung der Partikel erfolgt an der jeweiligen Synapse durch Endocytose. Das „Subassembly Model“ geht dagegen davon aus, dass einzelne Virusstrukurkomponenten (Nukleokapsid, Hülle) entlang des Axons transportiert werden. Der Zusammenbau und die Freisetzung erfolgt am Axonterminus bzw. an der Synapse (in vivo) oder am Wachstumskegel (in vitro) oder an speziellen Auftreibungen des Axons, den sogenannten Varicosities. Nach Infektion eines neuronalen Explantatsystems mit dem Pseudorabiesvirus (PrV) konnten ultrastrukturell umhüllte Virionen in Vesikeln detektiert werden und so der Nachweis der Gültigkeit des „Married Model“ als vorherrschendes Transportmodell geführt werden. Dagegen ist die Situation beim prototypischen Alphaherpesvirus, dem Herpes Simplex Virus Typ 1 (HSV-1), weiterhin ungeklärt. Aufgrund der zahlreichen unterschiedlichen Analysemethoden und -systeme war ein direkter Vergleich der beiden Viren bislang nicht möglich. Daher sollte in dieser Arbeit ein standardisiertes neuronales Kultursystem genutzt werden, um vier verschiedene HSV-1 Stämme im Vergleich zu PrV zu untersuchen. Für die Infektionen wurden sowohl Neuronen aus dem oberen Cervikalganglion als auch aus Spinalganglien genutzt. So konnte gezeigt werden, dass in Neuronen, welche mit den HSV-1 Stämmen HFEM, 17+ und SC16 infiziert waren ca. 75% als umhüllte Virionen in Vesikeln und ca. 25% als nackte Kapside vorlagen. Ingesamt war die Anzahl der Viruspartikel in HSV-1 infizierten Neuronen signifikant geringer als in PrV infizierten Kulturen. Überraschenderweise zeigten mit HSV-1 KOS infizierte Neuronen ein reverses Bild. Hier lagen nur 25% der Viruspartikel als umhüllte Virionen in Vesikeln vor, während 75% als nackte Kapside detektiert wurden. Dieser unerwartete Phänotyp sollte auf molekularbiologischer Ebene genauer untersucht werden. Dabei wurde auf die Genregion von US9 fokussiert. Das von US9 codierte Membranprotein spielt eine wichtige Rolle während des Zusammenbaus der Virionen und bei anschließenden axonalen anterograden Transportvorgängen. In dieser Arbeit konnte gezeigt werden, dass das HSV-1 KOS Genom durch verschiedene Basenaustausche an der vorhergesagten TATA-Box von US9 eine Mutation aufweist. Zusätzlich trägt das offene Leseraster durch eine weitere Mutation ein vorzeitiges Stopcodon auf und wird dadurch auf 58 Kodons reduziert, im Gegensatz zu anderen HSV-1 Stämmen, wo es 91 Kodons umfasst. Die Mutation an der TATA-Box verändert auch das ursprüngliche Stopcodon vom US8a Gen, was zur einer Verlängerung von ursprünglich 161 zu 191 Kodons führt. In Northern Blot Analysen konnte eine reduzierte Transkription von US9 in HSV-1 KOS infizierten Zellen detektiert werden. In HSV-1 KOS infizierten Zellen konnten mittels eines spezifischen Antiserums gegen US9 im Western Blot kein Genprodukt nachgewiesen werden. Auch Immunfluoreszenzanalysen zeigten, dass das abgeleitete verkürzte Protein offenbar nicht stabil exprimiert wird. Dagegen konnten Western Blot Analysen die Vergrößerung des pUS8a bestätigen. Der beobachtete auffällige intraaxonale Phänotyp könnte somit durch die Mutation des US9 Protein erklärt werden. Zusammenfassend wurde in dieser Arbeit gezeigt, dass auch bei HSV-1 vorwiegend das „Married Model“ für den anterograden intraaxonalen Transportweg bevorzugt wird und somit beide Alphaherpesviren, HSV-1 und PrV, denselben Transportweg nutzen.
APA, Harvard, Vancouver, ISO, and other styles
7

Eriksson, Therese. "Organelle movement in melanophores: Effects of Panax ginseng, ginsenosides and quercetin." Licentiate thesis, Linköpings universitet, Farmakologi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19973.

Full text
Abstract:
Panax ginseng is a traditional herb that has been used for over 2000 years to promote health and longevity. Active components of ginseng include ginsenosides, polysaccharides, flavonoids, polyacetylenes, peptides, vitamins, phenols and enzymes, of which the ginsenosides are considered to be the major bioactive constituents. Although widely used, the exact mechanisms of ginseng and its compounds remain unclear. In this thesis we use melanophores from Xenopus laevis to investigate the effects of Panax ginseng extract G115 and its constituents on organelle transport and signalling. Due to coordinated bidirectional movement of their pigmented granules (melanosomes), in response to defined chemical signals, melanophores are capable of fast colour changes and provide a great model for the study of intracellular transport. The movement is regulated by alterations in cyclic adenosine 3’:5’-monophosphate (cAMP) concentration, where a high or low level induce anterograde (dispersion) or retrograde (aggregation) transport respectively, resulting in a dark or light cell. Here we demonstrate that Panax ginseng and its constituents ginsenoside Rc and Rd and flavonoid quercetin induce a concentration-dependent anterograde transport of melanosomes. The effect of ginseng is shown to be independent of cAMP changes and protein kinase A activation. Upon incubation of melanophores with a combination of Rc or Rd and quercetin, a synergistic increase in anterograde movement was seen, indicating cooperation between the ginsenoside and flavonoid parts of ginseng. Protein kinase C (PKC) inhibitor Myristoylated EGF-R Fragment 651-658 decreased the anterograde movement stimulated by ginseng and ginsenoside Rc and Rd. Moreover, ginseng, but not ginsenosides or quercetin, stimulated an activation of 44/42-mitogen activated protein kinase (MAPK), previously shown to be involved in both aggregation and dispersion of melanosomes. PKC-inhibition did not affect the MAPK-activation, suggesting a role for PKC in the ginseng- and ginsenoside-induced dispersion but not as an upstream activator of MAPK.
Panax ginseng är ett av de vanligaste naturläkemedlen i världen och används traditionellt för att öka kroppens uthållighet, motståndskraft och styrka. Ginseng är ett komplext ämne bestående av ett antal olika substanser, inklusive ginsenosider, flavonoider, vitaminer och enzymer, av vilka de steroidlika ginsenosiderna anses vara de mest aktiva beståndsdelarna. Flavonoider (som finns i till exempel frukt och grönsaker) och ginseng har genom forskning visat sig motverka bland annat hjärt-och kärlsjukdomar, diabetes, cancer och demens. Trots den omfattande användningen är dock mekanismen för hur ginseng verkar fortfarande oklar. I den här studien har vi använt pigmentinnehållande celler, melanoforer, från afrikansk klogroda för att undersöka effekterna av Panax ginseng på pigment-transport och dess maskineri. Melanoforer har förmågan att snabbt ändra färg genom samordnad förflyttning av pigmentkorn fram och tillbaka i cellen, och utgör en utmärkt modell för studier av intracellulär transport. Förflyttningen regleras av förändringar i halten av cykliskt adenosin-monofosfat (cAMP) i cellen, där en hög eller låg koncentration medför spridning av pigment över hela cellen (dispergering) eller en ansamling i mitten (aggregering), vilket resulterar i mörka respektive ljusa celler. Här visar vi att Panax ginseng, ginsenosiderna Rc och Rd samt flavonoiden quercetin stimulerar en dispergering av pigmentkornen. När melanoforerna inkuberades med en kombination av ginsenosid Rc eller Rd och quercetin, kunde en synergistisk ökning av dispergeringen ses, vilket tyder på en samverkan mellan ginsenosid- och flavonoid-delarna av ginseng. Ett protein som tidigare visats vara viktigt för pigmenttransporten är mitogen-aktiverat protein kinas (MAPK), och här visar vi att också melanoforer stimulerade med ginseng, men dock inte med ginsenosider eller quercetin, innehåller aktiverat MAPK. Genom att blockera enzymet protein kinas C (PKC) (känd aktivator av dispergering), minskade den ginseng- och ginsenosid-inducerade dispergeringen, medan aktiveringen av MAPK inte påverkades alls. Detta pekar på en roll för PKC i pigment-transporten men inte som en aktivator av MAPK.
APA, Harvard, Vancouver, ISO, and other styles
8

Arano, Rodriguez Ivan. "Rab Proteins and Alzheimer's: A Current Review of Their Involvement in Amyloid Beta Generation with Focus on Rab10 Expression in N2A-695 Cells." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5648.

Full text
Abstract:
This thesis work describes the role of Rab proteins in amyloid processing and clearance in different cell pathways. It also describes an experimental approach used to analyze the expression effects of Rab10 in amyloid beta production. Since the main theory behind neurodegeneration in Alzheimer's disease claims that high levels of amyloid beta 42 (Aβ42) molecules trigger widespread neuronal death, control of Aβ42 has been a main target in Alzheimer's disease research. In addition, several studies show increased levels of particular Rab proteins in Alzheimer's pathogenesis. However, no review consolidates current findings in neurodegeneration of Alzheimer's with Rab protein dysfunction. The first chapter of this thesis aims to address this need by providing a current review of Rab proteins associated with APP and neurodegeneration. The second chapter constitutes an experimental approach used to characterize the effects of Rab10 and Sar1A GTPases in APP and amyloid processing. We found that Rab10 expression does not affect APP production but significantly changes Aβ generation, particularly the toxic Aβ42 and Aβ42:40 ratio. On the other hand, we found no significant effect of Sar1A expression on either APP or amyloid beta generation. These findings partially confirm the work done by Kauwe et al (2015) and provide preliminary evidence for two potential targets for protective effects in neurodegeneration.
APA, Harvard, Vancouver, ISO, and other styles
9

Boeske, Alexandra [Verfasser]. "GABARAPs vermitteln den anterograden Transport und die Sekretion von HIV-1 Nef durch Autophagie-basierte unkonventionelle Sekretionsmechanismen / Alexandra Boeske." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2015. http://d-nb.info/107997122X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dillman, James Franklin. "Characterization of cytoplasmic dynein in anterograde axonal transport /." 1996. http://wwwlib.umi.com/dissertations/fullcit/9701279.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Anterograde transport"

1

D’Ambrosio, Juan Martín, Véronique Albanèse, and Alenka Čopič. "Following Anterograde Transport of Phosphatidylserine in Yeast in Real Time." In Methods in Molecular Biology, 35–46. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9136-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Crish, Samuel D., and Brett R. Schofield. "Anterograde Tract Tracing for Assaying Axonopathy and Transport Deficits in Glaucoma." In Glaucoma, 171–85. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7407-8_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sleigh, James N., Andrew P. Tosolini, and Giampietro Schiavo. "In Vivo Imaging of Anterograde and Retrograde Axonal Transport in Rodent Peripheral Nerves." In Methods in Molecular Biology, 271–92. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0585-1_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Danastas, Kevin, Anthony L. Cunningham, and Monica Miranda-Saksena. "The Use of Microfluidic Neuronal Devices to Study the Anterograde Axonal Transport of Herpes Simplex Virus-1." In Methods in Molecular Biology, 409–18. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9814-2_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Anterograde Transport." In Encyclopedia of Pain, 164. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28753-4_200130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Benarroch, Eduardo E. "Axonal Transport." In Neuroscience for Clinicians, edited by Eduardo E. Benarroch, 144–55. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780190948894.003.0009.

Full text
Abstract:
Axonal transport is fundamental for neuronal survival and maintenance of neuronal connectivity and synaptic function. Anterograde transport delivers membrane-bound organelles synthesized and packaged in the cell body to the axon and synaptic compartments, and also allows traffic and turnover of cytoskeletal and metabolic components to dendrites and axons. Retrograde transport is necessary for removal and degradation of materials via the endosome-lysosome and autophagy-lysosome systems and for delivery of target-derived neurotrophic signals or injury signals back to the cell body. Bidirectional transport of mitochondria is important for energy delivery and mitochondria quality control. Axonal transport requires intact microtubules, motor proteins such as kinesin for anterograde and the dynein-dynactin complex for retrograde transport, correct attachment of cargo to motors, and sufficient ATP supplied by mitochondria. Impaired axonal transport is a prominent feature of many neurodevelopmental or adult-onset neurodegenerative disorders.
APA, Harvard, Vancouver, ISO, and other styles
7

Sawchenko, P. E., E. T. Cunningham, M. T. Mortrud, S. W. Pfeiffer, and C. R. Gerfen. "Phaseolus vulgaris Leucoagglutinin Anterograde Axonal Transport Technique." In Quantitative and Qualitative Microscopy, 247–60. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-12-185255-9.50018-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Donevan, Anne Y. H., Monica Neuber-Hess, and P. Kenneth Rose. "Examination of the Descending Projections of the Vestibular Nuclei Using Anterograde Transport of Phaseolus vulgaris Leukoagglutinin." In The Head-Neck Sensory Motor System, 251–54. Oxford University Press, 1992. http://dx.doi.org/10.1093/acprof:oso/9780195068207.003.0039.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Anterograde transport"

1

Kuznetsov, Ivan A., and Andrey V. Kuznetsov. "Modeling of Tau Protein Transport in Axons." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62430.

Full text
Abstract:
This paper develops a simplified analytical solution for the slow axonal transport of tau proteins. A six kinetic state model developed in Jung and Brown [1] was used to simulate transport of tau. The model was extended by accounting for tau degradation and diffusion in the off-track kinetic states. The analytical solution was obtained by assuming that transitions between anterograde and retrograde states are infrequent. This assumption was validated through an analysis of the sensitivity of the solution to changes in the values of the two kinetic constants that describe the transition rates between the anterograde and retrograde states, and by a comparison with the experimentally measured tau distributions reported in Konzack et al. [2]. The predicted average transport velocity of tau was also in the experimentally reported range.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Jianzhuo, Guanyi Zhang, Hee-Won Park, and Haitao Zhang. "Abstract 1823: Mechanism of the anterograde transport of the androgen receptor." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-1823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kuznetsov, I. A., and A. V. Kuznetsov. "A Model of Neuropeptide Transport in Various Types of Nerve Terminals Containing En Passant Boutons: The Effect of the Rate of Neuropeptide Production in the Neuron Soma." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50439.

Full text
Abstract:
After being synthesized in the soma, neuropeptides are packaged in dense core vesicles (DCVs) and transported toward nerve terminals. It is known, from published experimental results, that in terminals with type Ib boutons DCVs circulate in the terminal, undergoing repeated anterograde and retrograde transport, while in type III terminals DCVs do not circulate in the terminal. Our goal here is to investigate whether the increased DCV production in the soma can lead to the appearance of DCV circulation in type III boutons. For this purpose we developed a mathematical model that simulates DCV transport in various terminals. Our model reproduces some important experimental results, such as those concerning DCV circulation in type Ib and type III terminals. We used the developed model to make testable predictions. The model predicts that an increased DCV production rate in the soma leads to increased DCV circulation in type Ib boutons and to the appearance of DCV circulation in type III boutons. The model also predicts that there are different stages in the development of DCV circulation in the terminals after they were depleted of DCVs due to neuropeptide release.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography