Academic literature on the topic 'Anterograde transport'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Anterograde transport.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Anterograde transport"
Kondo, S., R. Sato-Yoshitake, Y. Noda, H. Aizawa, T. Nakata, Y. Matsuura, and N. Hirokawa. "KIF3A is a new microtubule-based anterograde motor in the nerve axon." Journal of Cell Biology 125, no. 5 (June 1, 1994): 1095–107. http://dx.doi.org/10.1083/jcb.125.5.1095.
Full textHirata, Tetsuya, Morihisa Fujita, Shota Nakamura, Kazuyoshi Gotoh, Daisuke Motooka, Yoshiko Murakami, Yusuke Maeda, and Taroh Kinoshita. "Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport." Molecular Biology of the Cell 26, no. 17 (September 2015): 3071–84. http://dx.doi.org/10.1091/mbc.e14-11-1568.
Full textLim, Angeline, Andreas Rechtsteiner, and William M. Saxton. "Two kinesins drive anterograde neuropeptide transport." Molecular Biology of the Cell 28, no. 24 (November 15, 2017): 3542–53. http://dx.doi.org/10.1091/mbc.e16-12-0820.
Full textYezid, Hocine, Christian T. Lay, Katrin Pannhorst, and Shafiqul I. Chowdhury. "Two Separate Tyrosine-Based YXXL/Φ Motifs within the Glycoprotein E Cytoplasmic Tail of Bovine Herpesvirus 1 Contribute in Virus Anterograde Neuronal Transport." Viruses 12, no. 9 (September 14, 2020): 1025. http://dx.doi.org/10.3390/v12091025.
Full textAltar, C. Anthony, and Peter S. DiStefano. "Neurotrophin trafficking by anterograde transport." Trends in Neurosciences 21, no. 10 (October 1998): 433–37. http://dx.doi.org/10.1016/s0166-2236(98)01273-9.
Full textBarkus, Rosemarie V., Olga Klyachko, Dai Horiuchi, Barry J. Dickson, and William M. Saxton. "Identification of an Axonal Kinesin-3 Motor for Fast Anterograde Vesicle Transport that Facilitates Retrograde Transport of Neuropeptides." Molecular Biology of the Cell 19, no. 1 (January 2008): 274–83. http://dx.doi.org/10.1091/mbc.e07-03-0261.
Full textUchida, Atsuko, Nael H. Alami, and Anthony Brown. "Tight Functional Coupling of Kinesin-1A and Dynein Motors in the Bidirectional Transport of Neurofilaments." Molecular Biology of the Cell 20, no. 23 (December 2009): 4997–5006. http://dx.doi.org/10.1091/mbc.e09-04-0304.
Full textCarmichael, Stephen W., and Jeffery L. Salisbury. "Watching Rafts Move Within Cells: A Fluorescence Microscope-Based Transport Assay." Microscopy Today 8, no. 1 (January 2000): 3–7. http://dx.doi.org/10.1017/s1551929500057059.
Full textSnyder, R. E., and R. S. Smith. "Rapid axonal transport in Xenopus nerve in divalent cation free media." Canadian Journal of Physiology and Pharmacology 63, no. 10 (October 1, 1985): 1279–90. http://dx.doi.org/10.1139/y85-212.
Full textCavolo, Samantha L., Chaoming Zhou, Stephanie A. Ketcham, Matthew M. Suzuki, Kresimir Ukalovic, Michael A. Silverman, Trina A. Schroer, and Edwin S. Levitan. "Mycalolide B dissociates dynactin and abolishes retrograde axonal transport of dense-core vesicles." Molecular Biology of the Cell 26, no. 14 (July 5, 2015): 2664–72. http://dx.doi.org/10.1091/mbc.e14-11-1564.
Full textDissertations / Theses on the topic "Anterograde transport"
Russo, Gary John. "Miro's GTPase Domains Execute Anterograde and Retrograde Axonal Mitochondrial Transport and Control Morphology." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/228167.
Full textKesse, W. K. "The innervation of the adult and neonatal rat adrenal medulla- an anterograde and retrograde tracer study." Thesis, University of Nottingham, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381444.
Full textRobinson, Christopher L. "MyosinVa and dynamic actin oppose minus-end directed microtubule motors to drive anterograde melanosome transport." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/33616/.
Full textSHIFF, GAD. "Caracterisation du complexe snare dans l'electroneurone de torpille : la syntaxine 1, la snap 25, et la vamp forment un complexe stable au cours du transport anterograde rapide." Paris 6, 1997. http://www.theses.fr/1997PA066742.
Full textWolf, Jana. "Role of EBAG9 in COPI-dependent glycoprotein maturation and secretion processes in tumor cells." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16227.
Full textThe estrogen receptor-binding fragment-associated gene 9 (EBAG9) has received increased attention as an independent prognostic marker for disease-specific survival since in some human tumor entities high expression levels correlate with tumor progression and poor clinical prognosis. Interestingly, EBAG9 was identified as an ubiquitously expressed Golgi protein. Recent data demonstrate an involvement in regulated exocytosis in secretory cells and the cytotoxic functions of lymphocytes. However, EBAG9 is expressed in essentially all mammalian tissues, and in epithelial cells it has been identified as a modulator of tumorassociated O-linked glycan expression, a hallmark of many carcinomas. This thesis addresses the pathogenetic link between EBAG9 expression and the alteration of the cellular glycome. To gain further insights into the cellular functions of EBAG9 in epithelial cells, tumor-associated EBAG9 overexpression was mimicked in living cells. It was demonstrated that EBAG9 associates with anterograde COPI-coated carriers and shuttles between the ER-Golgi intermediate compartment and cis-Golgi stacks. EBAG9 overexpression imposes a delay in anterograde ER-to-Golgi transport and mislocalizes components of the ER quality-control and glycosylation machinery. Conversely, EBAG9 downregulation accelerates glycoprotein transport through the Golgi and enhances mannosidase activity. Functionally, EBAG9 impairs ArfGAP1 recruitment to membranes and consequently, interferes with the disassembly of the coat lattice at the cis-Golgi prior to fusion. Thus, EBAG9 acts as a negative regulator of a COPI-dependent ER-to-Golgi transport pathway in epithelial cells and represents a novel pathogenetic principle in which interference with intracellular membrane trafficking results in the emergence of a tumor-associated glycome.
Negatsch, Alexandra. "Vergleichende Analysen zur Replikation und zum intraaxonalen Transport des Pseudorabiesvirus und des Herpes Simplex Virus Typ 1 in primären Rattenneuronen." Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-144375.
Full textEriksson, Therese. "Organelle movement in melanophores: Effects of Panax ginseng, ginsenosides and quercetin." Licentiate thesis, Linköpings universitet, Farmakologi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19973.
Full textPanax ginseng är ett av de vanligaste naturläkemedlen i världen och används traditionellt för att öka kroppens uthållighet, motståndskraft och styrka. Ginseng är ett komplext ämne bestående av ett antal olika substanser, inklusive ginsenosider, flavonoider, vitaminer och enzymer, av vilka de steroidlika ginsenosiderna anses vara de mest aktiva beståndsdelarna. Flavonoider (som finns i till exempel frukt och grönsaker) och ginseng har genom forskning visat sig motverka bland annat hjärt-och kärlsjukdomar, diabetes, cancer och demens. Trots den omfattande användningen är dock mekanismen för hur ginseng verkar fortfarande oklar. I den här studien har vi använt pigmentinnehållande celler, melanoforer, från afrikansk klogroda för att undersöka effekterna av Panax ginseng på pigment-transport och dess maskineri. Melanoforer har förmågan att snabbt ändra färg genom samordnad förflyttning av pigmentkorn fram och tillbaka i cellen, och utgör en utmärkt modell för studier av intracellulär transport. Förflyttningen regleras av förändringar i halten av cykliskt adenosin-monofosfat (cAMP) i cellen, där en hög eller låg koncentration medför spridning av pigment över hela cellen (dispergering) eller en ansamling i mitten (aggregering), vilket resulterar i mörka respektive ljusa celler. Här visar vi att Panax ginseng, ginsenosiderna Rc och Rd samt flavonoiden quercetin stimulerar en dispergering av pigmentkornen. När melanoforerna inkuberades med en kombination av ginsenosid Rc eller Rd och quercetin, kunde en synergistisk ökning av dispergeringen ses, vilket tyder på en samverkan mellan ginsenosid- och flavonoid-delarna av ginseng. Ett protein som tidigare visats vara viktigt för pigmenttransporten är mitogen-aktiverat protein kinas (MAPK), och här visar vi att också melanoforer stimulerade med ginseng, men dock inte med ginsenosider eller quercetin, innehåller aktiverat MAPK. Genom att blockera enzymet protein kinas C (PKC) (känd aktivator av dispergering), minskade den ginseng- och ginsenosid-inducerade dispergeringen, medan aktiveringen av MAPK inte påverkades alls. Detta pekar på en roll för PKC i pigment-transporten men inte som en aktivator av MAPK.
Arano, Rodriguez Ivan. "Rab Proteins and Alzheimer's: A Current Review of Their Involvement in Amyloid Beta Generation with Focus on Rab10 Expression in N2A-695 Cells." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5648.
Full textBoeske, Alexandra [Verfasser]. "GABARAPs vermitteln den anterograden Transport und die Sekretion von HIV-1 Nef durch Autophagie-basierte unkonventionelle Sekretionsmechanismen / Alexandra Boeske." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2015. http://d-nb.info/107997122X/34.
Full textDillman, James Franklin. "Characterization of cytoplasmic dynein in anterograde axonal transport /." 1996. http://wwwlib.umi.com/dissertations/fullcit/9701279.
Full textBook chapters on the topic "Anterograde transport"
D’Ambrosio, Juan Martín, Véronique Albanèse, and Alenka Čopič. "Following Anterograde Transport of Phosphatidylserine in Yeast in Real Time." In Methods in Molecular Biology, 35–46. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9136-5_4.
Full textCrish, Samuel D., and Brett R. Schofield. "Anterograde Tract Tracing for Assaying Axonopathy and Transport Deficits in Glaucoma." In Glaucoma, 171–85. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7407-8_15.
Full textSleigh, James N., Andrew P. Tosolini, and Giampietro Schiavo. "In Vivo Imaging of Anterograde and Retrograde Axonal Transport in Rodent Peripheral Nerves." In Methods in Molecular Biology, 271–92. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0585-1_20.
Full textDanastas, Kevin, Anthony L. Cunningham, and Monica Miranda-Saksena. "The Use of Microfluidic Neuronal Devices to Study the Anterograde Axonal Transport of Herpes Simplex Virus-1." In Methods in Molecular Biology, 409–18. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9814-2_25.
Full text"Anterograde Transport." In Encyclopedia of Pain, 164. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28753-4_200130.
Full textBenarroch, Eduardo E. "Axonal Transport." In Neuroscience for Clinicians, edited by Eduardo E. Benarroch, 144–55. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780190948894.003.0009.
Full textSawchenko, P. E., E. T. Cunningham, M. T. Mortrud, S. W. Pfeiffer, and C. R. Gerfen. "Phaseolus vulgaris Leucoagglutinin Anterograde Axonal Transport Technique." In Quantitative and Qualitative Microscopy, 247–60. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-12-185255-9.50018-3.
Full textDonevan, Anne Y. H., Monica Neuber-Hess, and P. Kenneth Rose. "Examination of the Descending Projections of the Vestibular Nuclei Using Anterograde Transport of Phaseolus vulgaris Leukoagglutinin." In The Head-Neck Sensory Motor System, 251–54. Oxford University Press, 1992. http://dx.doi.org/10.1093/acprof:oso/9780195068207.003.0039.
Full textConference papers on the topic "Anterograde transport"
Kuznetsov, Ivan A., and Andrey V. Kuznetsov. "Modeling of Tau Protein Transport in Axons." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62430.
Full textLi, Jianzhuo, Guanyi Zhang, Hee-Won Park, and Haitao Zhang. "Abstract 1823: Mechanism of the anterograde transport of the androgen receptor." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-1823.
Full textKuznetsov, I. A., and A. V. Kuznetsov. "A Model of Neuropeptide Transport in Various Types of Nerve Terminals Containing En Passant Boutons: The Effect of the Rate of Neuropeptide Production in the Neuron Soma." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50439.
Full text