Academic literature on the topic 'Antiautomorphismes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Antiautomorphismes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Antiautomorphismes"

1

López-Aguayo, Daniel, and Servando López Aguayo. "Antiautomorphisms and Biantiautomorphisms of Some Finite Abelian Groups." Symmetry 12, no. 2 (2020): 294. http://dx.doi.org/10.3390/sym12020294.

Full text
Abstract:
We extend the concepts of antimorphism and antiautomorphism of the additive group of integers modulo n, given by Gaitanas Konstantinos, to abelian groups. We give a lower bound for the number of antiautomorphisms of cyclic groups of odd order and give an exact formula for the number of linear antiautomorphisms of cyclic groups of odd order. Finally, we give a partial classification of the finite abelian groups which admit antiautomorphisms and state some open questions.
APA, Harvard, Vancouver, ISO, and other styles
2

Chacron, M., and T. K. Lee. "Open questions concerning antiautomorphisms of division rings with quasi-generalized Engel conditions." Journal of Algebra and Its Applications 18, no. 09 (2019): 1950167. http://dx.doi.org/10.1142/s0219498819501676.

Full text
Abstract:
Let [Formula: see text] be a noncommutative division ring with center [Formula: see text], which is algebraic, that is, [Formula: see text] is an algebraic algebra over the field [Formula: see text]. Let [Formula: see text] be an antiautomorphism of [Formula: see text] such that (i) [Formula: see text], all [Formula: see text], where [Formula: see text] and [Formula: see text] are positive integers depending on [Formula: see text]. If, further, [Formula: see text] has finite order, it was shown in [M. Chacron, Antiautomorphisms with quasi-generalised Engel condition, J. Algebra Appl. 17(8) (20
APA, Harvard, Vancouver, ISO, and other styles
3

Stacey, P. J. "Antiautomorphisms of $B(H)$." MATHEMATICA SCANDINAVICA 66 (June 1, 1990): 117. http://dx.doi.org/10.7146/math.scand.a-12296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stacey, P. J. "Involutory *-antiautomorphisms on On." Mathematical Proceedings of the Cambridge Philosophical Society 111, no. 2 (1992): 319–23. http://dx.doi.org/10.1017/s0305004100075411.

Full text
Abstract:
Let n ℕ{1} and let S1, , Sn be isometries on an infinite-dimensional Hilbert space such that for each i and . It was shown in 1 that the C*-algebra On generated by S1, , Sn is an infinite simple C*-algebra which is, up to isomorphism, independent of the choice of isometries satisfying the given relations. If is a unital *-endomorphism of On then, as shown in 2, is a unitary determining by the equations (Si) = w*Si and each unitary arises in this way.
APA, Harvard, Vancouver, ISO, and other styles
5

Chacron, Maurice. "Generalized power commuting antiautomorphisms." Communications in Algebra 49, no. 11 (2021): 5017–26. http://dx.doi.org/10.1080/00927872.2021.1935985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stacey, P. J. "Involutory *-antiautomorphisms in Toeplitz algebras." Mathematical Proceedings of the Cambridge Philosophical Society 103, no. 3 (1988): 473–80. http://dx.doi.org/10.1017/s0305004100065075.

Full text
Abstract:
Let H be a separable complex Hilbert space with orthonormal basis {ei: i ∈ ℕ}, let s be the unilateral shift defined by sei = ei+1 for each i and let K be the algebra of compact operators on H. The present paper classifies the involutory *-anti-automorphisms in the C*-algebra C*(sn, K) generated by K and a positive integral power sn of s. It is shown that, up to conjugacy by *-automorphisms, there are two such involutory *-antiautomorphisms when n is even and one when n is odd.
APA, Harvard, Vancouver, ISO, and other styles
7

Cortella, Anne. "Algèbre de Clifford d'un antiautomorphisme." Journal of Algebra 314, no. 1 (2007): 252–66. http://dx.doi.org/10.1016/j.jalgebra.2007.03.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pierre, Christian. "Endomorphism from Galois antiautomorphism." Bulletin of the Belgian Mathematical Society - Simon Stevin 2, no. 4 (1995): 435–45. http://dx.doi.org/10.36045/bbms/1103408699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Carnes, Neil P., Anne Dye, and James F. Reed. "Cyclic antiautomorphisms of directed triple systems." Journal of Combinatorial Designs 4, no. 2 (1996): 105–15. http://dx.doi.org/10.1002/(sici)1520-6610(1996)4:2<105::aid-jcd3>3.0.co;2-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chacron, M. "Antiautomorphisms with quasi-generalized Engel condition." Journal of Algebra and Its Applications 17, no. 08 (2018): 1850145. http://dx.doi.org/10.1142/s0219498818501451.

Full text
Abstract:
Let [Formula: see text] be a ring with 1. Given elements [Formula: see text], [Formula: see text] of [Formula: see text] and the integer [Formula: see text] define [Formula: see text] and [Formula: see text]. We say that a given antiautomorphism [Formula: see text] of [Formula: see text] is commuting if [Formula: see text], all [Formula: see text]. More generally, assume that [Formula: see text] satisfies the condition [Formula: see text] where [Formula: see text], [Formula: see text] are corresponding positive integers depending on [Formula: see text], and [Formula: see text] ranges over [For
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Antiautomorphismes"

1

Cortella, Anne. "Antiautomorphismes d'algèbres et objets reliés." Habilitation à diriger des recherches, Université de Franche-Comté, 2010. http://tel.archives-ouvertes.fr/tel-00497746.

Full text
Abstract:
Ce mémoire porte sur l'étude des antiautomorphismes d'algèbres et en particulier sur les antiautomorphismes linéaires d'algèbres centrales simples (sur un corps commutatif). Si l'algèbre est une algèbre de matrices, alors un tel antiautomorphisme est l'adjonction pour une forme bilinéaire. Ainsi la classification des antiautomorphismes linéaires (resp. de type II) à isomorphisme près est une généralisation de celle des formes bilinéaires (resp. sesquilinéaires) à similitude près. Dans la première partie, on définit la notion d'asymétrie d'une forme sesquilinéaire, et on étudie les éléments d'u
APA, Harvard, Vancouver, ISO, and other styles
2

Sobkowiak, Jessica. "Some combinatorial structures constructed from modular Leonard triples." [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0002978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!