Academic literature on the topic 'Antibiotics in food preservation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Antibiotics in food preservation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Antibiotics in food preservation"
El-Bedawey, A. El-F., M. S. Zaki, A. M. El-Sherbiney, and A. H. Khalil. "The effect of certain antibiotics on bolti fish (Tilapia nilotica) preservation." Food / Nahrung 29, no. 3 (1985): 303–8. http://dx.doi.org/10.1002/food.19850290318.
Full textUymaz, Başar, and Pınar Şanlıbaba. "Gıdalardaki Biyokoruyucu: Nisin (E234)." Turkish Journal of Agriculture - Food Science and Technology 3, no. 12 (November 20, 2015): 908. http://dx.doi.org/10.24925/turjaf.v3i12.908-915.459.
Full textWang, Wei, and HaiKuan Wang. "The Effect of Lactic Acid Bacteria in Food and Feed and Their Impact on Food Safety." International Journal of Food Engineering 10, no. 2 (June 1, 2014): 203–10. http://dx.doi.org/10.1515/ijfe-2013-0042.
Full textRamos-Vivas, José, María Elexpuru-Zabaleta, María Luisa Samano, Alina Pascual Barrera, Tamara Y. Forbes-Hernández, Francesca Giampieri, and Maurizio Battino. "Phages and Enzybiotics in Food Biopreservation." Molecules 26, no. 17 (August 25, 2021): 5138. http://dx.doi.org/10.3390/molecules26175138.
Full textNg, Zhang Jin, Mazni Abu Zarin, Chee Keong Lee, and Joo Shun Tan. "Application of bacteriocins in food preservation and infectious disease treatment for humans and livestock: a review." RSC Advances 10, no. 64 (2020): 38937–64. http://dx.doi.org/10.1039/d0ra06161a.
Full textQuinto, Emiliano J., Irma Caro, Luz H. Villalobos-Delgado, Javier Mateo, Beatriz De-Mateo-Silleras, and María P. Redondo-Del-Río. "Food Safety through Natural Antimicrobials." Antibiotics 8, no. 4 (October 31, 2019): 208. http://dx.doi.org/10.3390/antibiotics8040208.
Full textTumbarski, Yulian, Anna Lante, and Albert Krastanov. "Immobilization of Bacteriocins from Lactic Acid Bacteria and Possibilities for Application in Food Biopreservation." Open Biotechnology Journal 12, no. 1 (March 21, 2018): 25–32. http://dx.doi.org/10.2174/1874070701812010025.
Full textAdesokan, H. K., K. Funso-Adu, and O. A. Okunlade. "Foodborne Pathogens on Meat Stored in Major Central Cold Rooms in Ibadan and their Susceptibility to Antimicrobial Agents." Folia Veterinaria 64, no. 2 (June 1, 2020): 1–10. http://dx.doi.org/10.2478/fv-2020-0011.
Full textPomares, Mar�a Fernanda, Ra�l A. Salom�n, Olga Pavlova, Konstantin Severinov, Ricardo Far�as, and Paula A. Vincent. "Potential Applicability of Chymotrypsin-Susceptible Microcin J25 Derivatives to Food Preservation." Applied and Environmental Microbiology 75, no. 17 (July 10, 2009): 5734–38. http://dx.doi.org/10.1128/aem.01070-09.
Full textMcMahon, M. Ann S., Jiru Xu, John E. Moore, Ian S. Blair, and David A. McDowell. "Environmental Stress and Antibiotic Resistance in Food-Related Pathogens." Applied and Environmental Microbiology 73, no. 1 (December 1, 2006): 211–17. http://dx.doi.org/10.1128/aem.00578-06.
Full textDissertations / Theses on the topic "Antibiotics in food preservation"
Kohrs, Gertruida Ansia. "Preservation of red meat with natural antimicrobial peptides produced by lactic acid bacteria." Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16371.
Full textENGLISH ABSTRACT: Red meat has a limited shelf-life at refrigerated temperatures, where spoilage is mainly due to the proliferation of bacteria, yeast and moulds, acquired during the dressing process. In addition, almost a fifth of food-borne disease outbreaks, caused by microorganisms such as Escherichia coli 0157:H7, Listeria monocytogenes and Staphylococcus aureus are associated with red meat. To improve the microbiological quality of red meat, systems such as HACCP, GHP and GMP are currently practiced; however, these practices are not able to extend the shelf-life of these products. At present suitable food-grade preservatives are recommended, but the use of some of these preservatives is increasingly being questioned with regard to their impact on human health. Additionally, food service customers demand high quality products that have a relatively long shelf-life, but still prefer the appearance of minimally processed food. All these factors challenge the food manufacturing industry to consider more natural means of preservation. Antimicrobial metabolites of food grade bacteria, especially lactic acid bacteria, are attracting increasing attention as food preservatives. Bacteriocins are antimicrobial peptides (3 to 10 kDa) with variable activity spectra, mode of action, molecular weight, genetic origin and biochemical properties that are bacteriostatic or bactericidal to bacteria closely related and bacteria confined within the same ecological niche. Micro-organisms were isolated from beef, lamb and pork, obtained from four commercial retailers. The number of viable cells three days after the sell-by date at 4ºC ranged from 80 cfu.g-1 to 1.4 × 108 cfu.g-1. Fifty-three percent were Gram-negative bacteria, 35% Gram-positive and 12% yeast. The microbial population of the meat was greatly influenced by the origin, i.e. the retailer. Bacteriocins produced by Enterococcus faecalis BFE 1071, Lactobacillus curvatus DF 38, Lb. plantarum 423, Lb. casei LHS, Lb. salivarius 241 and Pediococcus pentosaceus ATCC 43201 were screened for activity against bacteria isolated from the different meat samples. Sixteen to 21% of the isolates, identified as members of Klebsiella, Shigella, Staphylococcus, Lactobacillus, Lactococcus, Leuconostoc, Enterococcus, Pediococcus, Streptococcus and Bacillus were sensitive to the bacteriocins. Curvacin DF 38, plantaricin 423 and caseicin LHS (2.35 to 3.4 kDa) had the broadest activity range and inhibited species of Lactobacillus, Pediococcus, Enterococcus, Listeria, Bacillus, Clostridium and Propionibacterium. The bacteriocins remained stable at 121ºC for 20 min, in buffers with a pH ranging from 2 to 10 and in NaCl concentrations of between 0.1 and 10% (m/v). Like most peptides, they were sensitive to proteolytic enzymes. Curvacin DF 38 is sensitive to amylase, suggesting that the bacteriocin might be glycosylated. To assess the efficiency of curvacin DF 38, plantaricin 423 and caseicin LHS as meat preservatives, they were partially purified by ammonium sulphate precipitation and separation in a Sep Pak C18 cartridge. The shelf-life of pork may be extended by up to two days. Meat samples treated with bacteriocins were darker than the control (untreated) sample. Descriptive sensory evaluation by a seven-member panel indicated that there were significant differences (P ≤ 0.05) regarding the aroma, sustained juiciness, first bite and metallic taste attributes of the control and the 4 day-treated samples. The control and 2 day-treated samples and the 2 day- and 4 day treated samples did not differ significantly regarding these attributes. There were no significant differences regarding the initial juiciness, residue and pork flavour attributes. Concluded from the results obtained in this study, bacteriocins produced by Lb. curvatus DF 38, Lb. plantarum 423 and Lb. casei LHS effectively extended the shelf-life of pork loins by up to 2 d at refrigerated temperatures with no drastic changes on sensory characteristics. In edition, the stability of these bacteriocins broadens their application as preservatives in many foods.
AFRIKAANSE OPSOMMING: Die rakleeftyd van rooivleis by yskastemperature is beperk, waar bederf hoofsaaklik deur die vermenigvuldiging van bakterieë, giste en swamme veroorsaak word. Die meeste van hierdie kontaminante is afkomstig van die slagtingsproses. Byna ’n vyfde van alle uitbrake van voedselvergiftigings wat deur organismes soos Escherichia coli 0157:H7, Listeria monocytogenes en Staphylococcus aureus veroorsaak word, word met rooivleis geassosieër. Die praktyke HACCP, GMP en GHP word tans toegepas om die mikrobiologies kwaliteit van vleis te handhaaf, maar is egter nie voldoende om die rakleeftyd van rooivleis the verleng nie. Die preserveermiddels wat huidiglik aanbeveel word vir dié doel, word toenemend bevraagteken aangaande die invloed daarvan op die menslike gesondheid. Hierby is daar ’n aanvraag na hoë kwaliteit, ongeprosesseerde produkte met ’n verlengde rakleeftyd. Gevolglik word die voedsel vervaardigings industries aangemoedig om meer natuurlike vorms van preservering the oorweeg. Die aandag word tans op die anti-mikrobiese metaboliete van voedselgraad microbes, veral melksuurbakterieë, gevestig. Bakteriosiene is anti-mikrobiese peptiede (3 tot 10 kDa) met verskeie aktiwiteitsspektra, werkswyse, molekulêre massa, genetiese oorsprong en biochemiese eienskappe. Bakteriosiene is meestal bakterie-dodend of - staties teen taksonomies naby geleë organismes en organismes vanuit dieselfde ekologiese nis. Mikroörganismes is geïsoleer vanuit bees-, skaap- en varkvleis, verkry vanaf vier supermarkte. Die aantal lewensvatbare selle per gram (cfu.g-1) het drie dae na die “verkoop”-datum by 4ºC vanaf 80 cfu.g-1 tot 1.4 × 108 cfu.g-1 gevarieër. Drie en vyftig persent van die isolate is as Gram-negatief, 35% as Gram-positief en 12% as giste geïdentifiseer. Die sensitiwiteit van hierdie isolate teen bakteriosiene wat deur Enterococcus faecalis BFE 1071, Lactobacillus curvatus DF 38, Lb. plantarum 423, Lb. casei LHS, Lb. salivarius 241 en Pediococcus pentosaceus ATCC 43201 geproduseer is, is vervolgens getoets. Tussen 16% en 21% van die isolate was sensitief teen die bacteriosiene en is onder andere as Klebsiella, Shigella, Staphylococcus, Lactobacillus, Lactococcus, Leuconostoc, Enterococcus, Pediococcus, Streptococcus en Bacillus geïdentifiseer. Die bakteriosiene met die wydste aktiwiteitsspektrum, naamlik, curvacin DF 38, plantaricin 423 en caseicin LHS is verder ondersoek. Hierdie antimikrobiese peptiede (2.35 tot 3.4 kDa) toon aktiwiteit teen spesies van Lactobacillus, Pediococcus, Enterococcus, Listeria, Bacillus, Clostridium and Propionibacterium. Die bakteriosiene is stabiel by 121ºC vir 20 min, in buffers met ‘n pH-reeks van tussen 2 en 10 en soutkonsentrasies vanaf 0.1% tot 10%. Soos die geval by meeste peptiede is hierdie bakteriosiene sensitief vir proteolitiese ensieme. Curvacin DF 38 is ook sensitief vir amylase, wat daarop dui dat hierdie bakteriosien moontlik geglikosileer is. Die effektiwiteit van curvacin DF 38, plantaricin 423 en caseicin LHS as preserveermiddel in voedselsisteme is getoets deur dit te suiwer (ammonium sulfaat presipitasie en Sep Pak C18 kolom) en op vark lendestukke aan te wend. Mikrobiese analise het bewys dat die rakleeftyd van vark met sowat 2 dae verleng kan word. Volgens die vleiskleurevaluering was die bakteriosien behandelde vark donkerder as die kontrole. Die aroma-, sappigheid-, tekstuur- en metaalgeur-eienskappe van die kontrole en die 4-dag behandelde monster het volgens ‘n opgeleide sensoriese paneel betekenisvol verskil (P ≤ 0.05). Die kontrole en die 2-dag behandelde en die 2-dag behandelde en die 4-dag behandelde monsters het nie betekenisvol verskil nie. Daar was geen betekenisvolle verskil aangaande die aanvanklike sappigheid-, residu- en varkgeur-eienskappe nie. Hierdie sensoriese eienskappe is belangrik ten opsigte van die verbruiker se aanvaarding van die produk. Vervolgens kan uit hierdie resultate afgelei word dat die bakteriosiene wat deur Lb. curvatus DF 38, Lb. plantarum 423 en Lb. casei LHS geproduseer word voldoende is om die rakleeftyd van vark lendestuk by 4ºC met 2 dae te verleng met min of geen effek op die sensoriese persepsie van die vleis. Hierdie bakteriosiene is ook stabiel onder verskeie kondisies wat die toepassing as preserveermiddel aansienlik verbreed.
Ng, Kwok Wah 1957. "Food preservation by ionizing radiation." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276680.
Full textButz, Peter, and Bernhard Tauscher. "Emerging Technologies Towards Food Preservation." Revista de Química, 2017. http://repositorio.pucp.edu.pe/index/handle/123456789/100669.
Full textSpencer, Maximilian. "Fuel Cell for Food Preservation." Thesis, KTH, Skolan för kemivetenskap (CHE), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-207105.
Full textConley, Lisa. "TALKING FOOD: MOTIVATIONS OF HOME FOOD PRESERVATION PRACTITIONERS IN KENTUCKY." UKnowledge, 2014. http://uknowledge.uky.edu/sociology_etds/19.
Full textMoreno, Marro Olga. "Starch-protein active films for food preservation." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/80616.
Full textEl objetivo general de la presente tesis doctoral se basa en el desarrollo de films activos biodegradables a base de almidón (S) para su aplicación en sistemas de envasado de alimentos, por medio de dos métodos diferentes de obtención, método en húmedo por extensión y secado (casting) y método en seco (termoprocesado). Se estudiaron mezclas de S con diferentes materiales proteicos, con fin de disminuir la alta higroscopicidad de los films de S y su retrogradación a lo largo del tiempo de almacenamiento y mejorar sus propiedades funcionales, así como conferirles actividad antimicrobiana/antioxidante. Los materiales proteicos utilizados fueron los siguientes: suero de mantequilla en polvo (BM); lactoferrina (LF) y/o lisozima (LZ), y gelatina bovina (BG). El etil lauroil arginato (LAE, E243) fue también incorporado como compuesto antimicrobiano. Asimismo, se estudiaron los films mezcla de S con BG, con y sin LAE incorporado, habiendo oxidado previamente el S, para así potenciar el entrecruzado de las cadenas poliméricas y mejorar las propiedades de los films. Estos fueron caracterizados en sus propiedades funcionales como material de envase, sus propiedades antioxidantes y/o antimicrobianas, así como por su capacidad de conservación de diferentes sistemas alimentarios, en términos de su oxidación lipídica y deterioro microbiológico. Las mezclas de S con BM dieron lugar a películas con una estructura heterogénea, en las que se observó la formación de un gel proteico como resultado del calentamiento de la dispersión BM con S a 90 ºC durante 30 min. El tratamiento térmico promovió un aumento de la resistencia a la rotura y extensibilidad de los films, junto con una disminución en la permeabilidad al vapor de agua. Sólo las películas sometidas a tratamiento térmico y homogeneización con cizalla mostraron actividad antioxidante, probablemente debido a la liberación de péptidos activos en consecuencia de la alta temperatura y fuerza de cizalla aplicada Sin embargo, no se observó actividad antilisteria para ninguno de los films con BM. La incorporación de LF y/o LZ en films de S condujo a una compatibilidad parcial entre polímeros, afectando así a la microestructura de los films de S, y produciendo un aumento de la temperatura de transición vítrea y disminución de la capacidad de alargamiento de los films, especialmente cuando se incorporó LF. Todos los films resultaron eficaces en el control del progreso de la oxidación lipídica de la manteca de cerdo, mientras que sólo las películas con mezcla LF/LZ redujeron el crecimiento de coliformes en carne picada de cerdo, como resultado de su acción sinérgica. Los films basados en la mezcla S y BG (1: 1) fueron obtenidos por casting y termo-moldeado y compresión, llevando a la separación de fases entre ambos polímeros (estructura esratificada o separación de dominios de ambos polímeros, respectivamente). La incorporación de LZ, y principalmente de LAE, en los films, aumentó la compatibilidad entre ambos polímeros. Los films termoprensados fueron más permeables al vapor de agua y al oxígeno, menos rígidos y resistentes y más extensibles, en comparación con aquellos obtenidos por casting. La incorporación de LAE mejoró la capacidad de barrera contra el vapor de agua, mientras que incurrió en un empeoramiento de la barrera frente al oxígeno, contrariamente al efecto producido por la LZ. Los films con LAE, moldeados o termoprensados, mostraron una alta eficacia antilisteria. Los films basados en S oxidado y BG (1: 1), fueron obtenidos por casting y mostraron una alta compatibilidad polimérica, lo cual condujo al entrecruzado de las cadenas como resultado de la reacción de condensación carbonilo-amino producida entre ambos polímeros. En consecuencia, la capacidad de absorción de agua de los films disminuyó y se mejoraron las propiedades mecánicas y de barrera, aunque también se indujo a un pardeamiento de los films, indicando
L'objectiu general de la tesi doctoral és el desenvolupament de films actius biodegradables a base de midó (S) per a la seua aplicació en sistemes d'envasat d'aliments, amb l'utitització del mètode d'extensió i assecat (casting) i termoprocessat (barrejat en fos i termo-compressió). Es van estudiar barreges de S amb diferents materials proteics, per millorar les propietats funcionals dels films o conferir activitat antimicrobiana. Els materials protèics utilitzats van ser: sèrum de mantega en pols (BM); lactoferrina (LF) i/o lisozima (LZ), i gelatina bovina (BG). L'ètil lauroil arginat (LAE, E243) va ser també incorporat com a compost antimicrobià. Així mateix, es van estudiar els films barreja de S amb BG, amb i sense LAE, havent oxidat prèviament el S, per potenciar l'entrecreuat de les cadenes polimèriques i millorar les propietats dels films. Aquests van ser caracteritzats en les seues propietats funcionals com a material d'envàs, les seues propietats antioxidants i/o antimicrobianes, així com en la seua capacitat de conservació en diferents sistemes alimentaris, en termes de la seua oxidació lipídica i deteriorament microbià. Les barreges de S amb BM van donar lloc a films amb una estructura heterogènia, en què es va observar la formació d'un gel protèic com a resultat del calfament de la dispersió BM amb S a 90 ºC durant 30 min. El tractament tèrmic va promoure un augment de la resistència al trencament i extensibilitat dels films, juntament amb una disminució en la permeabilitat al vapor d'aigua. Només el films sotmesos a tractament tèrmic van mostrar activitat antioxidant, probablement a causa de l'alliberament de pèptids actius com a conseqüència de l'alta temperatura. No obstant això, no es va observar activitat antilisteria per cap dels films amb BM. La incorporació de LF i/o LZ en films de S obtinguts per casting va donar lloc a una compatibilitat parcial entre polímers, afectant a la microestructura dels films de S, i produint un augment de la temperatura de transició vítria. Els films amb les proteïnes van ser menys extensibles, especialment quan es va incorporar LF. Tots els films van resultar eficaços en el control de l'oxidació lipídica de la mantega de porc, mentre que només el films amb barreja LF/LZ van reduir el creixement de coliforms en carn picada de porc, com a resultat de la seua acció sinèrgica. Els films amb barreges S i BG (1: 1) van ser obtinguts per casting i termo-processat. En tots dos casos es va observar separació de fases entre els dos polímers (estructura estratificada o separació de dominis d'ambdós polímers, respectivament). La incorporació de LZ, i principalment de LAE, en els films, va augmentar la compatibilitat entre tots dos polímers. Els films termo-processats van ser més permeables al vapor d'aigua i l'oxigen, menys rígids i resistents i més extensibles, en comparació amb els obtinguts per càsting. La incorporació de LAE va millorar la capacitat de barrera al vapor d'aigua, a l'hora que va disminuir la capacitat de barrera davant l'oxigen, contràriament a l'efecte produït per la LZ. Tots els films amb LAE, van mostrar una alta capacitat antilisteria. Els films amb S oxidat i BG (1: 1), van ser obtinguts per casting i van mostrar una alta compatibilitat dels polímers, tot produint entrecreuat de les cadenes com a resultat de la reacció de condensació carbonil-amino. En conseqüència, va disminuir la capacitat d'absorció d'aigua dels films i es van millorar les propietats mecàniques i de barrera, encara que es va promoure l'enfosquiment dels films, cosa que indica la formació de compostos de Maillard. La incorporació de LAE va implicar la seua participació en les reaccions de condensació, a causa del seu caràcter bi-funcional (carbonil-amino), el que va afectar a l'entrecreuat i les propietats dels films. Aquests processos reactius van progressar al llarg del temps d'emmagatzematge, donant lloc a un augment de l
Moreno Marro, O. (2017). Starch-protein active films for food preservation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/80616
TESIS
Hector, D. A. "Studies on the acid preservation of poultry byproducts." Thesis, University of Nottingham, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334883.
Full textDelclos, Paul-R. Mrocek. "Vegetable preservation by a mixed organic acid fermentation." Thesis, University of Surrey, 1991. http://epubs.surrey.ac.uk/842740/.
Full textKirchhelle, Claas. "Pyrrhic progress : antibiotics and western food production (1949-2013)." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:08832606-eeb5-45a7-a0a4-33eb28f74d3e.
Full textAltunakar, Bilge. "Food preservation by pulsed electric fields and selected antimicrobials." Online access for everyone, 2007. http://www.dissertations.wsu.edu/Dissertations/Fall2007/b_altunakar_120507.pdf.
Full textBooks on the topic "Antibiotics in food preservation"
H.R. 1549: Preservation of Antibiotics for Medical Treatment Act (PAMTA) : hearing before the Committee on Rules, U.S. House of Representatives, One Hundred Eleventh Congress, first session, Monday, July 13, 2009. Washington: U.S. G.P.O., 2010.
Find full textAwan, J. A. Food processing and preservation. Faisalabad: Unitech Communications, 2011.
Find full text(Firm), Knovel, ed. Food preservation process design. Burlington, MA: Academic Press, 2011.
Find full textDel Nobile, Matteo Alessandro, and Amalia Conte. Packaging for Food Preservation. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7684-9.
Full textMathlouthi, M., ed. Food Packaging and Preservation. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2173-0.
Full textTucker, Gary S., ed. Food Biodeterioration and Preservation. Oxford, UK: Blackwell Publishing Ltd, 2008. http://dx.doi.org/10.1002/9780470697849.
Full textBook chapters on the topic "Antibiotics in food preservation"
Voundi, Stève Olugu, Maximilienne Nyegue, Blaise Pascal Bougnom, and François-Xavier Etoa. "The Problem of Spore-Forming Bacteria in Food Preservation and Tentative Solutions." In Foodborne Pathogens and Antibiotic Resistance, 139–51. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119139188.ch6.
Full textVaclavik, Vickie A., and Elizabeth W. Christian. "Food Preservation." In Food Science Text Series, 323–42. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9138-5_16.
Full textClydesdale, Fergus M., and Frederick J. Francis. "Food Preservation." In Food Nutrition and Health, 119–31. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-011-6752-9_4.
Full textVaclavik, Vickie A., Elizabeth W. Christian, and Tad Campbell. "Food Preservation." In Food Science Text Series, 327–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46814-9_16.
Full textMerry, Greg. "Food preservation." In Food Poisoning Prevention, 17–19. London: Macmillan Education UK, 1997. http://dx.doi.org/10.1007/978-1-349-15190-5_4.
Full textXu, Chuanlai, Hua Kuang, and Liguang Xu. "Antibiotics Immunoassay in Food." In Food Immunoassay, 177–231. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9034-0_6.
Full textCatsberg, C. M. E., and G. J. M. Kempen-Van Dommelen. "Methods of preservation." In Food Handbook, 42–57. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0445-3_3.
Full textRussell, N. J., and G. W. Gould. "Major preservation technologies." In Food Preservatives, 14–24. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-0-387-30042-9_2.
Full textRanken, M. D., R. C. Kill, and C. Baker. "Food Preservation Processes." In Food Industries Manual, 499–543. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4613-1129-4_15.
Full textHoldsworth, S. D. "Food Preservation Processes." In Food Industries Manual, 432–81. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2099-3_14.
Full textConference papers on the topic "Antibiotics in food preservation"
Shulga, N. N., I. S. Shulga, and L. P. Plavshak. "Danger of antibiotics in food." In ТЕНДЕНЦИИ РАЗВИТИЯ НАУКИ И ОБРАЗОВАНИЯ. НИЦ «Л-Журнал», 2019. http://dx.doi.org/10.18411/lj-01-2019-98.
Full textGrama, Alin, Ovidiu Pop, Adrian Taut, and Lacrimioara Grama. "Application of microwave in food preservation." In 2017 40th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2017. http://dx.doi.org/10.1109/isse.2017.8000960.
Full textLaniewska-Trokenheim, L., M. Sobota, and I. Warminska-Radyko. "Resistants to antibiotics of bacteria isolated from smoked fish." In 13th World Congress of Food Science & Technology. Les Ulis, France: EDP Sciences, 2006. http://dx.doi.org/10.1051/iufost:20060721.
Full textRauh, C., J. Krauss, Ö Ertunc, a. Delgado, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Numerical Simulation of Non-Thermal Food Preservation." In ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498170.
Full textSingh, G. Lohit, Gourav Dudheria, H. J. Anjan Kumar, S. Kruthika, Madhu Palati, and Soumitra Banerjee. "Application of pulsed electric field for food preservation." In 2016 International Conference on Circuits, Controls, Communications and Computing (I4C). IEEE, 2016. http://dx.doi.org/10.1109/cimca.2016.8053256.
Full textAnand, Chandani, Sukesha ., and Sharmelee Thangjam. "FPGA based Remote Monitoring System for Food Preservation." In Proceedings of the International Conference on Advances in Computer Science and Electronics Engineering. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1403-1_541.
Full textBelyakova, Z. Yu. "ANTIBIOTICS CONTROL IN UNPROCESSED FOOD PRODUCTS AND RAW MATERIALS OF ANIMAL ORIGIN." In Aktualnye voprosy industrii napitkov. Izdatelstvo i tipografiya "Kniga-memuar", 2018. http://dx.doi.org/10.21323/978-5-6041190-3-7-2018-2-19-21.
Full textNaufalin, Rifda. "Natural preservation opportunities and challenges in improving food safety." In 1ST INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE AND ENGINEERING FOR SUSTAINABLE RURAL DEVELOPMENT. Author(s), 2019. http://dx.doi.org/10.1063/1.5097501.
Full textHoang, Hoang A., and Nguyen T. T. Nhung. "Selection of antibiotics in detection procedure of Escherichia coli O157:H7 in vegetables." In INTERNATIONAL CONFERENCE ON CHEMICAL ENGINEERING, FOOD AND BIOTECHNOLOGY (ICCFB2017): Proceedings of the 3rd International Conference on Chemical Engineering, Food and Biotechnology. Author(s), 2017. http://dx.doi.org/10.1063/1.5000215.
Full textBalasubramaniam, V. M. (Bala). "Non-Thermal Preservation of Fruit Juices." In ASME 2008 Citrus Engineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/cec2008-5404.
Full textReports on the topic "Antibiotics in food preservation"
Zilinski, Lisa. Food Technology and Processing / Food Preservation - University of South Florida. Purdue University Libraries, January 2012. http://dx.doi.org/10.5703/1288284315003.
Full text