Journal articles on the topic 'Anticancer peptides'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Anticancer peptides.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ng, Chu Xin, and Sau Har Lee. "The Potential Use of Anticancer Peptides (ACPs) in the Treatment of Hepatocellular Carcinoma." Current Cancer Drug Targets 20, no. 3 (2020): 187–96. http://dx.doi.org/10.2174/1568009619666191111141032.
Full textGabernet, G., A. T. Müller, J. A. Hiss, and G. Schneider. "Membranolytic anticancer peptides." MedChemComm 7, no. 12 (2016): 2232–45. http://dx.doi.org/10.1039/c6md00376a.
Full textArias, Mauricio, Ashley L. Hilchie, Evan F. Haney, et al. "Anticancer activities of bovine and human lactoferricin-derived peptides." Biochemistry and Cell Biology 95, no. 1 (2017): 91–98. http://dx.doi.org/10.1139/bcb-2016-0175.
Full textJuretić, Davor, Anja Golemac, Denise E. Strand, et al. "The Spectrum of Design Solutions for Improving the Activity-Selectivity Product of Peptide Antibiotics against Multidrug-Resistant Bacteria and Prostate Cancer PC-3 Cells." Molecules 25, no. 15 (2020): 3526. http://dx.doi.org/10.3390/molecules25153526.
Full textLiscano, Yamil, Jose Oñate-Garzón, and Jean Paul Delgado. "Peptides with Dual Antimicrobial–Anticancer Activity: Strategies to Overcome Peptide Limitations and Rational Design of Anticancer Peptides." Molecules 25, no. 18 (2020): 4245. http://dx.doi.org/10.3390/molecules25184245.
Full textAaghaz, Shams, Vivek Gohel, and Ahmed Kamal. "Peptides as Potential Anticancer Agents." Current Topics in Medicinal Chemistry 19, no. 17 (2019): 1491–511. http://dx.doi.org/10.2174/1568026619666190125161517.
Full textSun, Zhi-Gang, Zhi-Na Li, Bao-Chan Yang, and Liang-Hui Zhao. "Design and Synthesis of Novel Anticancer Peptide Nanoparticles." Journal of Drug Delivery and Therapeutics 10, no. 4 (2020): 102–7. http://dx.doi.org/10.22270/jddt.v10i4.4156.
Full textTorres, Marcelo D. T., Gislaine P. Andrade, Roseli H. Sato, et al. "Natural and redesigned wasp venom peptides with selective antitumoral activity." Beilstein Journal of Organic Chemistry 14 (July 6, 2018): 1693–703. http://dx.doi.org/10.3762/bjoc.14.144.
Full textHilchie, Ashley L., Erin E. Gill, Melanie R. Power Coombs, Reza Falsafi, Robert E. W. Hancock, and David W. Hoskin. "MDA-MB-231 Breast Cancer Cells Resistant to Pleurocidin-Family Lytic Peptides Are Chemosensitive and Exhibit Reduced Tumor-Forming Capacity." Biomolecules 10, no. 9 (2020): 1220. http://dx.doi.org/10.3390/biom10091220.
Full textSoon, Tsuey Ning, Adeline Yoke Yin Chia, Wei Hsum Yap, and Yin-Quan Tang. "Anticancer Mechanisms of Bioactive Peptides." Protein & Peptide Letters 27, no. 9 (2020): 823–30. http://dx.doi.org/10.2174/0929866527666200409102747.
Full textLin, Yen-Chu, Yi Fan Lim, Erica Russo, et al. "Multidimensional Design of Anticancer Peptides." Angewandte Chemie International Edition 54, no. 35 (2015): 10370–74. http://dx.doi.org/10.1002/anie.201504018.
Full textGross, Stephanie, and Jörg Andrä. "Anticancer peptide NK-2 targets cell surface sulphated glycans rather than sialic acids." Biological Chemistry 393, no. 8 (2012): 817–27. http://dx.doi.org/10.1515/hsz-2012-0136.
Full textGarizo, Ana Rita, Lígia F. Coelho, Sandra Pinto, et al. "The Azurin-Derived Peptide CT-p19LC Exhibits Membrane-Active Properties and Induces Cancer Cell Death." Biomedicines 9, no. 9 (2021): 1194. http://dx.doi.org/10.3390/biomedicines9091194.
Full textFeng, Pengmian, and Zhenyi Wang. "Recent Advances in Computational Methods for Identifying Anticancer Peptides." Current Drug Targets 20, no. 5 (2019): 481–87. http://dx.doi.org/10.2174/1389450119666180801121548.
Full textQin, Yuan, Zuo D. Qin, Jing Chen, et al. "From Antimicrobial to Anticancer Peptides: The Transformation of Peptides." Recent Patents on Anti-Cancer Drug Discovery 14, no. 1 (2019): 70–84. http://dx.doi.org/10.2174/1574892814666190119165157.
Full textShahidi, Fereidoon, and Ying Zhong. "Bioactive Peptides." Journal of AOAC INTERNATIONAL 91, no. 4 (2008): 914–31. http://dx.doi.org/10.1093/jaoac/91.4.914.
Full textVernen, Felicitas, Peta J. Harvey, Susana A. Dias, et al. "Characterization of Tachyplesin Peptides and Their Cyclized Analogues to Improve Antimicrobial and Anticancer Properties." International Journal of Molecular Sciences 20, no. 17 (2019): 4184. http://dx.doi.org/10.3390/ijms20174184.
Full textFeng, Jue-Ping, Ru Zhu, Fagang Jiang, et al. "Melittin-encapsulating peptide hydrogels for enhanced delivery of impermeable anticancer peptides." Biomaterials Science 8, no. 16 (2020): 4559–69. http://dx.doi.org/10.1039/c9bm02080b.
Full textRubin, Samuel J. S., and Nir Qvit. "Engineering “Antimicrobial Peptides” and Other Peptides to Modulate Protein-Protein Interactions in Cancer." Current Topics in Medicinal Chemistry 20, no. 32 (2020): 2970–83. http://dx.doi.org/10.2174/1568026620666201021141401.
Full textDąbrowska, Krystyna, Zuzanna Kaźmierczak, Joanna Majewska, et al. "Bacteriophages displaying anticancer peptides in combined antibacterial and anticancer treatment." Future Microbiology 9, no. 7 (2014): 861–69. http://dx.doi.org/10.2217/fmb.14.50.
Full textFeng, Jue-Ping, Ru Zhu, Fagang Jiang, et al. "Correction: Melittin-encapsulating peptide hydrogels for enhanced delivery of impermeable anticancer peptides." Biomaterials Science 8, no. 21 (2020): 6100. http://dx.doi.org/10.1039/d0bm90081h.
Full textChantawannakul, Jarinyagon, Paninnuch Chatpattanasiri, Vichugorn Wattayagorn, Mesayamas Kongsema, Tipanart Noikaew, and Pramote Chumnanpuen. "Virtual Screening for Biomimetic Anti-Cancer Peptides from Cordyceps militaris Putative Pepsinized Peptidome and Validation on Colon Cancer Cell Line." Molecules 26, no. 19 (2021): 5767. http://dx.doi.org/10.3390/molecules26195767.
Full textJanin, Y. L. "Peptides with anticancer use or potential." Amino Acids 25, no. 1 (2003): 1–40. http://dx.doi.org/10.1007/s00726-002-0349-x.
Full textKarbalaeemohammad, Shahrbanoo, and Hossein Naderi-Manesh. "Two Novel Anticancer Peptides from Aurein1.2." International Journal of Peptide Research and Therapeutics 17, no. 3 (2011): 159–64. http://dx.doi.org/10.1007/s10989-011-9253-0.
Full textSharma, Ravi D., Jainendra Jain, and Ratan L. Khosa. "Design, Synthesis and Anticancer Activity of Site Specific Short Chain Cationic Peptide." Current Drug Discovery Technologies 17, no. 5 (2020): 631–46. http://dx.doi.org/10.2174/1570163816666190402121033.
Full textZhang, Qi-Ting, Ze-Dong Liu, Ze Wang, et al. "Recent Advances in Small Peptides of Marine Origin in Cancer Therapy." Marine Drugs 19, no. 2 (2021): 115. http://dx.doi.org/10.3390/md19020115.
Full textWootton, Christopher A., Carlos Sanchez-Cano, Andrea F. Lopez-Clavijo, et al. "Sequence-dependent attack on peptides by photoactivated platinum anticancer complexes." Chemical Science 9, no. 10 (2018): 2733–39. http://dx.doi.org/10.1039/c7sc05135b.
Full textWu, Qihui, Hanzhong Ke, Dongli Li, Qi Wang, Jiansong Fang, and Jingwei Zhou. "Recent Progress in Machine Learning-based Prediction of Peptide Activity for Drug Discovery." Current Topics in Medicinal Chemistry 19, no. 1 (2019): 4–16. http://dx.doi.org/10.2174/1568026619666190122151634.
Full textZhao, Yuhong, Shijing Wang, Wenyi Fei, et al. "Prediction of Anticancer Peptides with High Efficacy and Low Toxicity by Hybrid Model Based on 3D Structure of Peptides." International Journal of Molecular Sciences 22, no. 11 (2021): 5630. http://dx.doi.org/10.3390/ijms22115630.
Full textGuzmán-Rodríguez, Jaquelina Julia, Alejandra Ochoa-Zarzosa, Rodolfo López-Gómez, and Joel E. López-Meza. "Plant Antimicrobial Peptides as Potential Anticancer Agents." BioMed Research International 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/735087.
Full textMehrotra, Neha, Surender Kharbanda, and Harpal Singh. "Peptide-based combination nanoformulations for cancer therapy." Nanomedicine 15, no. 22 (2020): 2201–17. http://dx.doi.org/10.2217/nnm-2020-0220.
Full textWang, Yicun, Shuohui Gao, Jiayin Lv, Yang Lin, Li Zhou, and Liying Han. "Phage Display Technology and its Applications in Cancer Immunotherapy." Anti-Cancer Agents in Medicinal Chemistry 19, no. 2 (2019): 229–35. http://dx.doi.org/10.2174/1871520618666181029140814.
Full textJabeen, Farukh, Siva S. Panda, Tamara P. Kondratyuk, et al. "Synthesis, molecular docking and anticancer studies of peptides and iso-peptides." Bioorganic & Medicinal Chemistry Letters 25, no. 15 (2015): 2980–84. http://dx.doi.org/10.1016/j.bmcl.2015.05.020.
Full textS. Liberio, M., G. A. Joanitti, W. Fontes, and M. S. Castro. "Anticancer Peptides and Proteins: A Panoramic View." Protein & Peptide Letters 20, no. 4 (2013): 380–91. http://dx.doi.org/10.2174/092986613805290435.
Full textS. Liberio, M., G. A. Joanitti, W. Fontes, and M. S. Castro. "Anticancer Peptides and Proteins: A Panoramic View." Protein & Peptide Letters 20, no. 4 (2013): 380–91. http://dx.doi.org/10.2174/0929866511320040002.
Full textRaucher, Drazen, and Jung Su Ryu. "Cell-penetrating peptides: strategies for anticancer treatment." Trends in Molecular Medicine 21, no. 9 (2015): 560–70. http://dx.doi.org/10.1016/j.molmed.2015.06.005.
Full textKarpiński, Tomasz, and Artur Adamczak. "Anticancer Activity of Bacterial Proteins and Peptides." Pharmaceutics 10, no. 2 (2018): 54. http://dx.doi.org/10.3390/pharmaceutics10020054.
Full textPrabhu, Saurabh, Sarah R. Dennison, Bob Lea, et al. "Anionic Antimicrobial and Anticancer Peptides from Plants." Critical Reviews in Plant Sciences 32, no. 5 (2013): 303–20. http://dx.doi.org/10.1080/07352689.2013.773238.
Full textLi, Xuan Liu and Yi. "Mechanism of Anticancer Effects of Antimicrobial Peptides." Journal of Fiber Bioengineering and Informatics 8, no. 1 (2015): 25–36. http://dx.doi.org/10.3993/jfbi03201503.
Full textGrisoni, Francesca, Claudia S. Neuhaus, Gisela Gabernet, Alex T. Müller, Jan A. Hiss, and Gisbert Schneider. "Designing Anticancer Peptides by Constructive Machine Learning." ChemMedChem 13, no. 13 (2018): 1300–1302. http://dx.doi.org/10.1002/cmdc.201800204.
Full textAluri, Suhaas, Siti M. Janib, and J. Andrew Mackay. "Environmentally responsive peptides as anticancer drug carriers☆." Advanced Drug Delivery Reviews 61, no. 11 (2009): 940–52. http://dx.doi.org/10.1016/j.addr.2009.07.002.
Full textGanesan, Sai Janani, Joel P. Schneider, Robert Blumenthal, and Silvina Matysiak. "Characterization of Anticancer Peptides in Membrane Disruption." Biophysical Journal 104, no. 2 (2013): 597a. http://dx.doi.org/10.1016/j.bpj.2012.11.3314.
Full textHoskin, David W., and Ayyalusamy Ramamoorthy. "Studies on anticancer activities of antimicrobial peptides." Biochimica et Biophysica Acta (BBA) - Biomembranes 1778, no. 2 (2008): 357–75. http://dx.doi.org/10.1016/j.bbamem.2007.11.008.
Full textTeng, Qiu-Xu, Xiaofang Luo, Zi-Ning Lei, et al. "The Multidrug Resistance-Reversing Activity of a Novel Antimicrobial Peptide." Cancers 12, no. 7 (2020): 1963. http://dx.doi.org/10.3390/cancers12071963.
Full textHuang, Yibing, Qi Feng, Qiuyan Yan, Xueyu Hao, and Yuxin Chen. "Alpha-Helical Cationic Anticancer Peptides: A Promising Candidate for Novel Anticancer Drugs." Mini-Reviews in Medicinal Chemistry 15, no. 1 (2015): 73–81. http://dx.doi.org/10.2174/1389557514666141107120954.
Full textWong, Daniel Yuan Qiang, Jun Han Lim, and Wee Han Ang. "Induction of targeted necrosis with HER2-targeted platinum(iv) anticancer prodrugs." Chemical Science 6, no. 5 (2015): 3051–56. http://dx.doi.org/10.1039/c5sc00015g.
Full textKardani, Kimia, and Azam Bolhassani. "Antimicrobial/anticancer peptides: bioactive molecules and therapeutic agents." Immunotherapy 13, no. 8 (2021): 669–84. http://dx.doi.org/10.2217/imt-2020-0312.
Full textWang, Hua, Ya-Qiong Yan, Yu Yi, et al. "Supramolecular Peptide Therapeutics: Host–Guest Interaction-Assisted Systemic Delivery of Anticancer Peptides." CCS Chemistry 2, no. 6 (2020): 739–48. http://dx.doi.org/10.31635/ccschem.020.202000283.
Full textKotamraju, Venkata Ramana, Shweta Sharma, Poornima Kolhar, Lilach Agemy, James Pavlovich, and Erkki Ruoslahti. "Increasing Tumor Accessibility with Conjugatable Disulfide-Bridged Tumor-Penetrating Peptides for Cancer Diagnosis and Treatment." Breast Cancer: Basic and Clinical Research 9s2 (January 2015): BCBCR.S29426. http://dx.doi.org/10.4137/bcbcr.s29426.
Full textJeyamogan, Shareni, Naveed A. Khan, Kuppusamy Sagathevan, and Ruqaiyyah Siddiqui. "Anticancer Properties of Asian Water Monitor Lizard (Varanus salvator), Python (Malayopython reticulatus) and Tortoise (Cuora kamaroma amboinensis)." Anti-Cancer Agents in Medicinal Chemistry 20, no. 13 (2020): 1558–70. http://dx.doi.org/10.2174/1871520620666200504103056.
Full text