To see the other types of publications on this topic, follow the link: Antidot lattice.

Journal articles on the topic 'Antidot lattice'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Antidot lattice.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

De, Anulekha, Sucheta Mondal, Sourav Sahoo, et al. "Field-controlled ultrafast magnetization dynamics in two-dimensional nanoscale ferromagnetic antidot arrays." Beilstein Journal of Nanotechnology 9 (April 9, 2018): 1123–34. http://dx.doi.org/10.3762/bjnano.9.104.

Full text
Abstract:
Ferromagnetic antidot arrays have emerged as a system of tremendous interest due to their interesting spin configuration and dynamics as well as their potential applications in magnetic storage, memory, logic, communications and sensing devices. Here, we report experimental and numerical investigation of ultrafast magnetization dynamics in a new type of antidot lattice in the form of triangular-shaped Ni80Fe20 antidots arranged in a hexagonal array. Time-resolved magneto-optical Kerr effect and micromagnetic simulations have been exploited to study the magnetization precession and spin-wave modes of the antidot lattice with varying lattice constant and in-plane orientation of the bias-magnetic field. A remarkable variation in the spin-wave modes with the orientation of in-plane bias magnetic field is found to be associated with the conversion of extended spin-wave modes to quantized ones and vice versa. The lattice constant also influences this variation in spin-wave spectra and spin-wave mode profiles. These observations are important for potential applications of the antidot lattices with triangular holes in future magnonic and spintronic devices.
APA, Harvard, Vancouver, ISO, and other styles
2

Hao, Qing, Dongchao Xu, Ximena Ruden, Brian LeRoy, and Xu Du. "Thermoelectric Performance Study of Graphene Antidot Lattices on Different Substrates." MRS Advances 2, no. 58-59 (2017): 3645–50. http://dx.doi.org/10.1557/adv.2017.509.

Full text
Abstract:
ABSTRACT Pristine graphene has low thermoelectric performance due to its ultra-high thermal conductivity and a low Seebeck coefficient, the latter of which results from the zero-band gap of graphene. To improve the thermoelectric performance of graphene-based materials, various methods have been proposed to open a band gap in graphene. Graphene antidot lattices is one of the most effective methods to reach this goal by patterning periodic nano- or sub-1-nm pores (antidots) across graphene. In high-porosity graphene antidot lattices, charge carriers mainly flow through the narrow necks between pores, forming a comparable case as graphene nanoribbons. This will open a geometry-dependent band gap and dramatically increase the Seebeck coefficient. The antidots also strongly scatter phonons, leading to a dramatically reduced lattice thermal conductivity to further enhance the thermoelectric performance. In computations, the thermoelectric figure of merit of a graphene antidot lattices was predicted to be around 1.0 at 300 K but experimental validation is still required. The electrical conductivity and Seebeck coefficient of graphene antidot lattices on various substrates including SiO2, SiC and hexagonal boron nitride were measured. The antidots were drilled with a focused ion beam or reactive ion etching.
APA, Harvard, Vancouver, ISO, and other styles
3

Mackenzie, David M. A., Alberto Cagliani, Lene Gammelgaard, Bjarke S. Jessen, Dirch H. Petersen, and Peter Bøggild. "Graphene antidot lattice transport measurements." International Journal of Nanotechnology 14, no. 1/2/3/4/5/6 (2017): 226. http://dx.doi.org/10.1504/ijnt.2017.082469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tank, R. W., and R. B. Stinchcombe. "Classical magnetoresistance of an antidot lattice." Journal of Physics: Condensed Matter 5, no. 31 (1993): 5623–36. http://dx.doi.org/10.1088/0953-8984/5/31/024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moshchalkov, V. V., M. Baert, V. V. Metlushko, et al. "Pinning by an antidot lattice: The problem of the optimum antidot size." Physical Review B 57, no. 6 (1998): 3615–22. http://dx.doi.org/10.1103/physrevb.57.3615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, C. C., A. O. Adeyeye, and N. Singh. "Magnetic antidot nanostructures: effect of lattice geometry." Nanotechnology 17, no. 6 (2006): 1629–36. http://dx.doi.org/10.1088/0957-4484/17/6/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zozulenko, I. V., Frank A. Maao/, and E. H. Hauge. "Quantum magnetotransport in a mesoscopic antidot lattice." Physical Review B 51, no. 11 (1995): 7058–63. http://dx.doi.org/10.1103/physrevb.51.7058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Palma, Juan L., Alejandro Pereira, Raquel Álvaro, José Miguel García-Martín, and Juan Escrig. "Magnetic properties of Fe3O4 antidot arrays synthesized by AFIR: atomic layer deposition, focused ion beam and thermal reduction." Beilstein Journal of Nanotechnology 9 (June 11, 2018): 1728–34. http://dx.doi.org/10.3762/bjnano.9.164.

Full text
Abstract:
Magnetic films of magnetite (Fe3O4) with controlled defects, so-called antidot arrays, were synthesized by a new technique called AFIR. AFIR consists of the deposition of a thin film by atomic layer deposition, the generation of square and hexagonal arrays of holes using focused ion beam milling, and the subsequent thermal reduction of the antidot arrays. Magnetic characterizations were carried out by magneto-optic Kerr effect measurements, showing the enhancement of the coercivity for the antidot arrays. AFIR opens a new route to manufacture ordered antidot arrays of magnetic oxides with variable lattice parameters.
APA, Harvard, Vancouver, ISO, and other styles
9

Berdiyorov, G. R., M. V. Milošević, and François M. Peeters. "Non commensurate vortex lattices in a composite antidot lattice or dc current." Physica C: Superconductivity and its Applications 468, no. 7-10 (2008): 809–12. http://dx.doi.org/10.1016/j.physc.2007.11.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ueki, M., A. Endo, S. Katsumoto, and Y. Iye. "Quantum oscillation and decoherence in triangular antidot lattice." Physica E: Low-dimensional Systems and Nanostructures 22, no. 1-3 (2004): 365–68. http://dx.doi.org/10.1016/j.physe.2003.12.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Basmaji, P., G. M. Gusev, D. I. Lubyshev, et al. "Charge capture in heterostructures with disordered antidot lattice." Materials Science and Engineering: B 35, no. 1-3 (1995): 322–24. http://dx.doi.org/10.1016/0921-5107(95)01351-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Iye, Yaushiro, Masaaki Ueki, Akira Endo, and Shingo Katsumoto. "Aharonov–Bohm-type Effects in Triangular Antidot Lattice." Journal of the Physical Society of Japan 73, no. 12 (2004): 3370–77. http://dx.doi.org/10.1143/jpsj.73.3370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Petsas, K. I., C. Triché, L. Guidoni, C. Jurczak, J. Y. Courtois, and G. Grynberg. "Pinball atom dynamics in an antidot optical lattice." Europhysics Letters (EPL) 46, no. 1 (1999): 18–23. http://dx.doi.org/10.1209/epl/i1999-00556-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Schuster, R., K. Ensslin, D. Wharam, et al. "Phase-coherent electrons in a finite antidot lattice." Physical Review B 49, no. 12 (1994): 8510–13. http://dx.doi.org/10.1103/physrevb.49.8510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Tsukagoshi, K., S. Takaoka, K. Murase, and K. Gamo. "Mechanism of commensurability oscillations in anisotropic antidot lattice." Physica B: Condensed Matter 227, no. 1-4 (1996): 141–43. http://dx.doi.org/10.1016/0921-4526(96)00383-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ensslin, K., S. Sasa, T. Deruelle, and P. M. Petroff. "Anisotropic electron transport through a rectangular antidot lattice." Surface Science 263, no. 1-3 (1992): 319–23. http://dx.doi.org/10.1016/0039-6028(92)90360-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wang, Leizhi, Ming Yin, Bochen Zhong, Jan Jaroszynski, Godwin Mbamalu, and Timir Datta. "Quantum transport properties of monolayer graphene with antidot lattice." Journal of Applied Physics 126, no. 8 (2019): 084305. http://dx.doi.org/10.1063/1.5100813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Baskin, É. M., and M. V. Éntin. "Quantum hall effect in an antidot lattice: Macroscopic limit." Journal of Experimental and Theoretical Physics 90, no. 4 (2000): 646–54. http://dx.doi.org/10.1134/1.559149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Budantsev, M. V., R. A. Lavrov, A. G. Pogosov, et al. "Mesoscopic fluctuations of thermopower in a periodic antidot lattice." Journal of Experimental and Theoretical Physics Letters 79, no. 4 (2004): 166–70. http://dx.doi.org/10.1134/1.1738716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Schuster, R., K. Ensslin, J. P. Kotthaus, M. Holland, and S. P. Beaumont. "Pinned and chaotic electron trajectories in an antidot lattice." Superlattices and Microstructures 12, no. 1 (1992): 93–96. http://dx.doi.org/10.1016/0749-6036(92)90228-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Tacchi, Silvia, Marco Madami, Gianluca Gubbiotti, et al. "Angular Dependence of Magnetic Normal Modes in NiFe Antidot Lattices With Different Lattice Symmetry." IEEE Transactions on Magnetics 46, no. 6 (2010): 1440–43. http://dx.doi.org/10.1109/tmag.2009.2039775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hu, X. K., S. Sievers, A. Müller, and H. W. Schumacher. "The influence of individual lattice defects on the domain structure in magnetic antidot lattices." Journal of Applied Physics 113, no. 10 (2013): 103907. http://dx.doi.org/10.1063/1.4795147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Mandal, R., S. Barman, S. Saha, Y. Otani, and A. Barman. "Tunable spin wave spectra in two-dimensional Ni80Fe20 antidot lattices with varying lattice symmetry." Journal of Applied Physics 118, no. 5 (2015): 053910. http://dx.doi.org/10.1063/1.4928082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Rosseel, E., T. Puig, M. Baert, M. J. Van Bael, V. V. Moshchalkov, and Y. Bruynseraede. "Upper critical field of Pb films with an antidot lattice." Physica C: Superconductivity 282-287 (August 1997): 1567–68. http://dx.doi.org/10.1016/s0921-4534(97)00934-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Nihey, F., M. A. Kastner, and K. Nakamura. "Insulator-to-quantum-Hall-liquid transition in an antidot lattice." Physical Review B 55, no. 7 (1997): 4085–88. http://dx.doi.org/10.1103/physrevb.55.4085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ensslin, K., and P. M. Petroff. "Magnetotransport through an antidot lattice in GaAs-AlxGa1−xAs heterostructures." Physical Review B 41, no. 17 (1990): 12307–10. http://dx.doi.org/10.1103/physrevb.41.12307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Van Look, L., E. Rosseel, M. J. Van Bael, K. Temst, V. V. Moshchalkov, and Y. Bruynseraede. "Shapiro steps in a superconducting film with an antidot lattice." Physical Review B 60, no. 10 (1999): R6998—R7000. http://dx.doi.org/10.1103/physrevb.60.r6998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Pogosov, A. G., M. V. Budantsev, R. A. Lavrov, A. E. Plotnikov, A. K. Bakarov, and A. I. Toropov. "Observation of commensurability oscillations of thermopower in an antidot lattice." Journal of Experimental and Theoretical Physics Letters 81, no. 9 (2005): 462–66. http://dx.doi.org/10.1134/1.1984030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Dutta, Koustuv, Anulekha De, Sucheta Mondal, Saswati Barman, Yoshichika Otani, and Anjan Barman. "Dynamic configurational anisotropy in Ni80Fe20 antidot lattice with complex geometry." Journal of Alloys and Compounds 884 (December 2021): 161105. http://dx.doi.org/10.1016/j.jallcom.2021.161105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zhang, Kai, Kai Du, Hao Liu, et al. "Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots." Proceedings of the National Academy of Sciences 112, no. 31 (2015): 9558–62. http://dx.doi.org/10.1073/pnas.1512326112.

Full text
Abstract:
The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic phase-separated domains. By fabricating antidot arrays in La0.325Pr0.3Ca0.375MnO3 (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic metallic (FMM) rings in the LPCMO films that lead to dramatically increased metal–insulator transition temperatures and reduced resistances. The FMM rings emerge from the edges of the antidots where the lattice symmetry is broken. Based on our Monte Carlo simulation, these FMM rings assist the nucleation and growth of FMM phase domains increasing the metal–insulator transition with decreasing temperature or increasing magnetic field. This study points to a way in which electronic phase separation in manganites can be artificially controlled without changing chemical composition or applying external field.
APA, Harvard, Vancouver, ISO, and other styles
31

Zhang Ting-Ting, Cheng Meng, Yang Rong, and Zhang Guang-Yu. "Fabrication of zigzag-edged graphene antidot lattice and its transport properties." Acta Physica Sinica 66, no. 21 (2017): 216103. http://dx.doi.org/10.7498/aps.66.216103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ooi, S., T. Mochiku, and K. Hirata. "Fractional matching effect in single-crystal films of with antidot lattice." Physica C: Superconductivity 469, no. 15-20 (2009): 1113–15. http://dx.doi.org/10.1016/j.physc.2009.05.206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Moshchalkov, Victor V., Marijke Baert, Vitaly V. Metlushko, et al. "Quantization and Confinement Effects in Superconducting Films with an Antidot Lattice." Japanese Journal of Applied Physics 34, Part 1, No. 8B (1995): 4559–61. http://dx.doi.org/10.1143/jjap.34.4559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Olshanetsky, E. B., V. T. Renard, Z. D. Kvon, J. C. Portal, and J. M. Hartmann. "Electron transport through antidot superlattices in Si/SiGe heterostructures: New magnetoresistance resonances in lattices with a large aspect ratio of antidot diameter to lattice period." Europhysics Letters (EPL) 76, no. 4 (2006): 657–63. http://dx.doi.org/10.1209/epl/i2006-10320-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kang, Ning, Eisuke Abe, Yoshiaki Hashimoto, Yasuhiro Iye, and Shingo Katsumoto. "Magnetotransport through a two-dimensional hole antidot lattice: Signatures of Berry phase." physica status solidi (c) 5, no. 9 (2008): 2847–49. http://dx.doi.org/10.1002/pssc.200779258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Silhanek, A. V., L. Van Look, R. Jonckheere, B. Y. Zhu, S. Raedts, and V. V. Moshchalkov. "Enhanced vortex trapping by a composite antidot lattice in a superconducting Pb film." Physica C: Superconductivity 460-462 (September 2007): 1434–35. http://dx.doi.org/10.1016/j.physc.2007.04.144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Vavassori, P., G. Gubbiotti, G. Zangari, et al. "Lattice symmetry and magnetization reversal in micron-size antidot arrays in Permalloy film." Journal of Applied Physics 91, no. 10 (2002): 7992. http://dx.doi.org/10.1063/1.1453321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Budantsev, M. V., R. A. Lavrov, A. G. Pogosov, E. Yu Zhdanov, and D. A. Pokhabov. "Piecewise parabolic negative magnetoresistance of two-dimensional electron gas with triangular antidot lattice." Semiconductors 45, no. 2 (2011): 203–7. http://dx.doi.org/10.1134/s1063782611020059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Pechan, Michael J., Chengtao Yu, R. L. Compton, J. P. Park, and P. A. Crowell. "Direct measurement of spatially localized ferromagnetic-resonance modes in an antidot lattice (invited)." Journal of Applied Physics 97, no. 10 (2005): 10J903. http://dx.doi.org/10.1063/1.1857412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mallick, Sougata, and Subhankar Bedanta. "Size and shape dependence study of magnetization reversal in magnetic antidot lattice arrays." Journal of Magnetism and Magnetic Materials 382 (May 2015): 158–64. http://dx.doi.org/10.1016/j.jmmm.2015.01.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Rosseel, E., M. Van Bael, M. Baert, R. Jonckheere, V. V. Moshchalkov, and Y. Bruynseraede. "Depinning of caged interstitial vortices in superconductinga- WGe films with an antidot lattice." Physical Review B 53, no. 6 (1996): R2983—R2986. http://dx.doi.org/10.1103/physrevb.53.r2983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Porwal, Nikita, Sucheta Mondal, Samiran Choudhury, et al. "All optical detection of picosecond spin-wave dynamics in 2D annular antidot lattice." Journal of Physics D: Applied Physics 51, no. 5 (2018): 055004. http://dx.doi.org/10.1088/1361-6463/aaa21f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Marconcini, Paolo, and Massimo Macucci. "Envelope-Function-Based Transport Simulation of a Graphene Ribbon With an Antidot Lattice." IEEE Transactions on Nanotechnology 16, no. 4 (2017): 534–44. http://dx.doi.org/10.1109/tnano.2016.2645663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

MATTIS, D. C., and T. SJOSTROM. "BLOCH'S THEOREM IN NANOARCHITECTURES." Modern Physics Letters B 20, no. 09 (2006): 501–13. http://dx.doi.org/10.1142/s0217984906011074.

Full text
Abstract:
We identify and characterize mini-Bloch-sub-bands that condense out of the low-lying states in a semiconductor's conduction band due to repetitive patterns (as in an "antidot lattice"). We discuss limits on the validity of the tight-binding approximation. One appendix touches upon the complications (actually, simplification, in the case of silicon) when the dispersion is given by a set of anisotropic mass tensors, another treats the effects of cross-sectional shape on threshhold energy level of a conduit.
APA, Harvard, Vancouver, ISO, and other styles
45

Pogosov, A. G., M. V. Budantsev, Z. D. Kvon, A. Pouydebasque, D. K. Maude, and J. C. Portal. "Nonlocal resistance of 2D electron gas in antidot lattice in quantum Hall effect regime." Physica B: Condensed Matter 298, no. 1-4 (2001): 93–96. http://dx.doi.org/10.1016/s0921-4526(01)00267-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Neusser, S., B. Botters, M. Becherer, D. Schmitt-Landsiedel, and D. Grundler. "Spin-wave localization between nearest and next-nearest neighboring holes in an antidot lattice." Applied Physics Letters 93, no. 12 (2008): 122501. http://dx.doi.org/10.1063/1.2988290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Moon, J. S., J. A. Simmons, and J. L. Reno. "Higher order magnetoresistance commensurability oscillations in low aspect ratio antidot lattice and focusing structures." Applied Physics Letters 71, no. 5 (1997): 656–58. http://dx.doi.org/10.1063/1.119820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Salaheldeen, Mohamed, Victor Vega, Angel Ibabe, et al. "Tailoring of Perpendicular Magnetic Anisotropy in Dy13Fe87 Thin Films with Hexagonal Antidot Lattice Nanostructure." Nanomaterials 8, no. 4 (2018): 227. http://dx.doi.org/10.3390/nano8040227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Coïsson, Marco, Alessandra Manzin, Gabriele Barrera, et al. "Anisotropic magneto-resistance in Ni 80 Fe 20 antidot arrays with different lattice configurations." Applied Surface Science 316 (October 2014): 380–84. http://dx.doi.org/10.1016/j.apsusc.2014.08.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Semenova, E. K., and D. V. Berkov. "Spin wave propagation through an antidot lattice and a concept of a tunable magnonic filter." Journal of Applied Physics 114, no. 1 (2013): 013905. http://dx.doi.org/10.1063/1.4812468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography