Journal articles on the topic 'Antidot lattice'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Antidot lattice.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
De, Anulekha, Sucheta Mondal, Sourav Sahoo, et al. "Field-controlled ultrafast magnetization dynamics in two-dimensional nanoscale ferromagnetic antidot arrays." Beilstein Journal of Nanotechnology 9 (April 9, 2018): 1123–34. http://dx.doi.org/10.3762/bjnano.9.104.
Full textHao, Qing, Dongchao Xu, Ximena Ruden, Brian LeRoy, and Xu Du. "Thermoelectric Performance Study of Graphene Antidot Lattices on Different Substrates." MRS Advances 2, no. 58-59 (2017): 3645–50. http://dx.doi.org/10.1557/adv.2017.509.
Full textMackenzie, David M. A., Alberto Cagliani, Lene Gammelgaard, Bjarke S. Jessen, Dirch H. Petersen, and Peter Bøggild. "Graphene antidot lattice transport measurements." International Journal of Nanotechnology 14, no. 1/2/3/4/5/6 (2017): 226. http://dx.doi.org/10.1504/ijnt.2017.082469.
Full textTank, R. W., and R. B. Stinchcombe. "Classical magnetoresistance of an antidot lattice." Journal of Physics: Condensed Matter 5, no. 31 (1993): 5623–36. http://dx.doi.org/10.1088/0953-8984/5/31/024.
Full textMoshchalkov, V. V., M. Baert, V. V. Metlushko, et al. "Pinning by an antidot lattice: The problem of the optimum antidot size." Physical Review B 57, no. 6 (1998): 3615–22. http://dx.doi.org/10.1103/physrevb.57.3615.
Full textWang, C. C., A. O. Adeyeye, and N. Singh. "Magnetic antidot nanostructures: effect of lattice geometry." Nanotechnology 17, no. 6 (2006): 1629–36. http://dx.doi.org/10.1088/0957-4484/17/6/015.
Full textZozulenko, I. V., Frank A. Maao/, and E. H. Hauge. "Quantum magnetotransport in a mesoscopic antidot lattice." Physical Review B 51, no. 11 (1995): 7058–63. http://dx.doi.org/10.1103/physrevb.51.7058.
Full textPalma, Juan L., Alejandro Pereira, Raquel Álvaro, José Miguel García-Martín, and Juan Escrig. "Magnetic properties of Fe3O4 antidot arrays synthesized by AFIR: atomic layer deposition, focused ion beam and thermal reduction." Beilstein Journal of Nanotechnology 9 (June 11, 2018): 1728–34. http://dx.doi.org/10.3762/bjnano.9.164.
Full textBerdiyorov, G. R., M. V. Milošević, and François M. Peeters. "Non commensurate vortex lattices in a composite antidot lattice or dc current." Physica C: Superconductivity and its Applications 468, no. 7-10 (2008): 809–12. http://dx.doi.org/10.1016/j.physc.2007.11.055.
Full textUeki, M., A. Endo, S. Katsumoto, and Y. Iye. "Quantum oscillation and decoherence in triangular antidot lattice." Physica E: Low-dimensional Systems and Nanostructures 22, no. 1-3 (2004): 365–68. http://dx.doi.org/10.1016/j.physe.2003.12.022.
Full textBasmaji, P., G. M. Gusev, D. I. Lubyshev, et al. "Charge capture in heterostructures with disordered antidot lattice." Materials Science and Engineering: B 35, no. 1-3 (1995): 322–24. http://dx.doi.org/10.1016/0921-5107(95)01351-2.
Full textIye, Yaushiro, Masaaki Ueki, Akira Endo, and Shingo Katsumoto. "Aharonov–Bohm-type Effects in Triangular Antidot Lattice." Journal of the Physical Society of Japan 73, no. 12 (2004): 3370–77. http://dx.doi.org/10.1143/jpsj.73.3370.
Full textPetsas, K. I., C. Triché, L. Guidoni, C. Jurczak, J. Y. Courtois, and G. Grynberg. "Pinball atom dynamics in an antidot optical lattice." Europhysics Letters (EPL) 46, no. 1 (1999): 18–23. http://dx.doi.org/10.1209/epl/i1999-00556-5.
Full textSchuster, R., K. Ensslin, D. Wharam, et al. "Phase-coherent electrons in a finite antidot lattice." Physical Review B 49, no. 12 (1994): 8510–13. http://dx.doi.org/10.1103/physrevb.49.8510.
Full textTsukagoshi, K., S. Takaoka, K. Murase, and K. Gamo. "Mechanism of commensurability oscillations in anisotropic antidot lattice." Physica B: Condensed Matter 227, no. 1-4 (1996): 141–43. http://dx.doi.org/10.1016/0921-4526(96)00383-3.
Full textEnsslin, K., S. Sasa, T. Deruelle, and P. M. Petroff. "Anisotropic electron transport through a rectangular antidot lattice." Surface Science 263, no. 1-3 (1992): 319–23. http://dx.doi.org/10.1016/0039-6028(92)90360-i.
Full textWang, Leizhi, Ming Yin, Bochen Zhong, Jan Jaroszynski, Godwin Mbamalu, and Timir Datta. "Quantum transport properties of monolayer graphene with antidot lattice." Journal of Applied Physics 126, no. 8 (2019): 084305. http://dx.doi.org/10.1063/1.5100813.
Full textBaskin, É. M., and M. V. Éntin. "Quantum hall effect in an antidot lattice: Macroscopic limit." Journal of Experimental and Theoretical Physics 90, no. 4 (2000): 646–54. http://dx.doi.org/10.1134/1.559149.
Full textBudantsev, M. V., R. A. Lavrov, A. G. Pogosov, et al. "Mesoscopic fluctuations of thermopower in a periodic antidot lattice." Journal of Experimental and Theoretical Physics Letters 79, no. 4 (2004): 166–70. http://dx.doi.org/10.1134/1.1738716.
Full textSchuster, R., K. Ensslin, J. P. Kotthaus, M. Holland, and S. P. Beaumont. "Pinned and chaotic electron trajectories in an antidot lattice." Superlattices and Microstructures 12, no. 1 (1992): 93–96. http://dx.doi.org/10.1016/0749-6036(92)90228-w.
Full textTacchi, Silvia, Marco Madami, Gianluca Gubbiotti, et al. "Angular Dependence of Magnetic Normal Modes in NiFe Antidot Lattices With Different Lattice Symmetry." IEEE Transactions on Magnetics 46, no. 6 (2010): 1440–43. http://dx.doi.org/10.1109/tmag.2009.2039775.
Full textHu, X. K., S. Sievers, A. Müller, and H. W. Schumacher. "The influence of individual lattice defects on the domain structure in magnetic antidot lattices." Journal of Applied Physics 113, no. 10 (2013): 103907. http://dx.doi.org/10.1063/1.4795147.
Full textMandal, R., S. Barman, S. Saha, Y. Otani, and A. Barman. "Tunable spin wave spectra in two-dimensional Ni80Fe20 antidot lattices with varying lattice symmetry." Journal of Applied Physics 118, no. 5 (2015): 053910. http://dx.doi.org/10.1063/1.4928082.
Full textRosseel, E., T. Puig, M. Baert, M. J. Van Bael, V. V. Moshchalkov, and Y. Bruynseraede. "Upper critical field of Pb films with an antidot lattice." Physica C: Superconductivity 282-287 (August 1997): 1567–68. http://dx.doi.org/10.1016/s0921-4534(97)00934-9.
Full textNihey, F., M. A. Kastner, and K. Nakamura. "Insulator-to-quantum-Hall-liquid transition in an antidot lattice." Physical Review B 55, no. 7 (1997): 4085–88. http://dx.doi.org/10.1103/physrevb.55.4085.
Full textEnsslin, K., and P. M. Petroff. "Magnetotransport through an antidot lattice in GaAs-AlxGa1−xAs heterostructures." Physical Review B 41, no. 17 (1990): 12307–10. http://dx.doi.org/10.1103/physrevb.41.12307.
Full textVan Look, L., E. Rosseel, M. J. Van Bael, K. Temst, V. V. Moshchalkov, and Y. Bruynseraede. "Shapiro steps in a superconducting film with an antidot lattice." Physical Review B 60, no. 10 (1999): R6998—R7000. http://dx.doi.org/10.1103/physrevb.60.r6998.
Full textPogosov, A. G., M. V. Budantsev, R. A. Lavrov, A. E. Plotnikov, A. K. Bakarov, and A. I. Toropov. "Observation of commensurability oscillations of thermopower in an antidot lattice." Journal of Experimental and Theoretical Physics Letters 81, no. 9 (2005): 462–66. http://dx.doi.org/10.1134/1.1984030.
Full textDutta, Koustuv, Anulekha De, Sucheta Mondal, Saswati Barman, Yoshichika Otani, and Anjan Barman. "Dynamic configurational anisotropy in Ni80Fe20 antidot lattice with complex geometry." Journal of Alloys and Compounds 884 (December 2021): 161105. http://dx.doi.org/10.1016/j.jallcom.2021.161105.
Full textZhang, Kai, Kai Du, Hao Liu, et al. "Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots." Proceedings of the National Academy of Sciences 112, no. 31 (2015): 9558–62. http://dx.doi.org/10.1073/pnas.1512326112.
Full textZhang Ting-Ting, Cheng Meng, Yang Rong, and Zhang Guang-Yu. "Fabrication of zigzag-edged graphene antidot lattice and its transport properties." Acta Physica Sinica 66, no. 21 (2017): 216103. http://dx.doi.org/10.7498/aps.66.216103.
Full textOoi, S., T. Mochiku, and K. Hirata. "Fractional matching effect in single-crystal films of with antidot lattice." Physica C: Superconductivity 469, no. 15-20 (2009): 1113–15. http://dx.doi.org/10.1016/j.physc.2009.05.206.
Full textMoshchalkov, Victor V., Marijke Baert, Vitaly V. Metlushko, et al. "Quantization and Confinement Effects in Superconducting Films with an Antidot Lattice." Japanese Journal of Applied Physics 34, Part 1, No. 8B (1995): 4559–61. http://dx.doi.org/10.1143/jjap.34.4559.
Full textOlshanetsky, E. B., V. T. Renard, Z. D. Kvon, J. C. Portal, and J. M. Hartmann. "Electron transport through antidot superlattices in Si/SiGe heterostructures: New magnetoresistance resonances in lattices with a large aspect ratio of antidot diameter to lattice period." Europhysics Letters (EPL) 76, no. 4 (2006): 657–63. http://dx.doi.org/10.1209/epl/i2006-10320-5.
Full textKang, Ning, Eisuke Abe, Yoshiaki Hashimoto, Yasuhiro Iye, and Shingo Katsumoto. "Magnetotransport through a two-dimensional hole antidot lattice: Signatures of Berry phase." physica status solidi (c) 5, no. 9 (2008): 2847–49. http://dx.doi.org/10.1002/pssc.200779258.
Full textSilhanek, A. V., L. Van Look, R. Jonckheere, B. Y. Zhu, S. Raedts, and V. V. Moshchalkov. "Enhanced vortex trapping by a composite antidot lattice in a superconducting Pb film." Physica C: Superconductivity 460-462 (September 2007): 1434–35. http://dx.doi.org/10.1016/j.physc.2007.04.144.
Full textVavassori, P., G. Gubbiotti, G. Zangari, et al. "Lattice symmetry and magnetization reversal in micron-size antidot arrays in Permalloy film." Journal of Applied Physics 91, no. 10 (2002): 7992. http://dx.doi.org/10.1063/1.1453321.
Full textBudantsev, M. V., R. A. Lavrov, A. G. Pogosov, E. Yu Zhdanov, and D. A. Pokhabov. "Piecewise parabolic negative magnetoresistance of two-dimensional electron gas with triangular antidot lattice." Semiconductors 45, no. 2 (2011): 203–7. http://dx.doi.org/10.1134/s1063782611020059.
Full textPechan, Michael J., Chengtao Yu, R. L. Compton, J. P. Park, and P. A. Crowell. "Direct measurement of spatially localized ferromagnetic-resonance modes in an antidot lattice (invited)." Journal of Applied Physics 97, no. 10 (2005): 10J903. http://dx.doi.org/10.1063/1.1857412.
Full textMallick, Sougata, and Subhankar Bedanta. "Size and shape dependence study of magnetization reversal in magnetic antidot lattice arrays." Journal of Magnetism and Magnetic Materials 382 (May 2015): 158–64. http://dx.doi.org/10.1016/j.jmmm.2015.01.049.
Full textRosseel, E., M. Van Bael, M. Baert, R. Jonckheere, V. V. Moshchalkov, and Y. Bruynseraede. "Depinning of caged interstitial vortices in superconductinga- WGe films with an antidot lattice." Physical Review B 53, no. 6 (1996): R2983—R2986. http://dx.doi.org/10.1103/physrevb.53.r2983.
Full textPorwal, Nikita, Sucheta Mondal, Samiran Choudhury, et al. "All optical detection of picosecond spin-wave dynamics in 2D annular antidot lattice." Journal of Physics D: Applied Physics 51, no. 5 (2018): 055004. http://dx.doi.org/10.1088/1361-6463/aaa21f.
Full textMarconcini, Paolo, and Massimo Macucci. "Envelope-Function-Based Transport Simulation of a Graphene Ribbon With an Antidot Lattice." IEEE Transactions on Nanotechnology 16, no. 4 (2017): 534–44. http://dx.doi.org/10.1109/tnano.2016.2645663.
Full textMATTIS, D. C., and T. SJOSTROM. "BLOCH'S THEOREM IN NANOARCHITECTURES." Modern Physics Letters B 20, no. 09 (2006): 501–13. http://dx.doi.org/10.1142/s0217984906011074.
Full textPogosov, A. G., M. V. Budantsev, Z. D. Kvon, A. Pouydebasque, D. K. Maude, and J. C. Portal. "Nonlocal resistance of 2D electron gas in antidot lattice in quantum Hall effect regime." Physica B: Condensed Matter 298, no. 1-4 (2001): 93–96. http://dx.doi.org/10.1016/s0921-4526(01)00267-8.
Full textNeusser, S., B. Botters, M. Becherer, D. Schmitt-Landsiedel, and D. Grundler. "Spin-wave localization between nearest and next-nearest neighboring holes in an antidot lattice." Applied Physics Letters 93, no. 12 (2008): 122501. http://dx.doi.org/10.1063/1.2988290.
Full textMoon, J. S., J. A. Simmons, and J. L. Reno. "Higher order magnetoresistance commensurability oscillations in low aspect ratio antidot lattice and focusing structures." Applied Physics Letters 71, no. 5 (1997): 656–58. http://dx.doi.org/10.1063/1.119820.
Full textSalaheldeen, Mohamed, Victor Vega, Angel Ibabe, et al. "Tailoring of Perpendicular Magnetic Anisotropy in Dy13Fe87 Thin Films with Hexagonal Antidot Lattice Nanostructure." Nanomaterials 8, no. 4 (2018): 227. http://dx.doi.org/10.3390/nano8040227.
Full textCoïsson, Marco, Alessandra Manzin, Gabriele Barrera, et al. "Anisotropic magneto-resistance in Ni 80 Fe 20 antidot arrays with different lattice configurations." Applied Surface Science 316 (October 2014): 380–84. http://dx.doi.org/10.1016/j.apsusc.2014.08.014.
Full textSemenova, E. K., and D. V. Berkov. "Spin wave propagation through an antidot lattice and a concept of a tunable magnonic filter." Journal of Applied Physics 114, no. 1 (2013): 013905. http://dx.doi.org/10.1063/1.4812468.
Full text