Academic literature on the topic 'Antiferromagneten'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Antiferromagneten.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Antiferromagneten"
Gutschke, Siegfried O. H., Daniel J. Price, Annie K. Powell, and Paul T. Wood. "Solvothermalsynthese des verkanteten Antiferromagneten {K2[CoO3PCH2N(CH2CO2)2]}6⋅x H2O." Angewandte Chemie 111, no. 8 (April 19, 1999): 1158–60. http://dx.doi.org/10.1002/(sici)1521-3757(19990419)111:8<1158::aid-ange1158>3.0.co;2-h.
Full textCHANG, ZHE. "GREEN'S FUNCTION THEORY OF THE DOPED ANISOTROPIC ANTIFERROMAGNET." International Journal of Modern Physics B 14, no. 10 (April 20, 2000): 1037–57. http://dx.doi.org/10.1142/s0217979200001497.
Full textManiv, Eran, Nityan L. Nair, Shannon C. Haley, Spencer Doyle, Caolan John, Stefano Cabrini, Ariel Maniv, et al. "Antiferromagnetic switching driven by the collective dynamics of a coexisting spin glass." Science Advances 7, no. 2 (January 2021): eabd8452. http://dx.doi.org/10.1126/sciadv.abd8452.
Full textKalita, V. M., G. Yu Lavanov, and V. M. Loktev. "Magnetization and Magnetocaloric Effect in Antiferromagnets with Competing Ising Exchange and Single-Ion Anisotropies." Ukrainian Journal of Physics 65, no. 10 (October 9, 2020): 858. http://dx.doi.org/10.15407/ujpe65.10.858.
Full textWENG, ZHENG-YU. "PHASE STRING THEORY FOR DOPED ANTIFERROMAGNETS." International Journal of Modern Physics B 21, no. 06 (March 10, 2007): 773–827. http://dx.doi.org/10.1142/s0217979207036722.
Full textSoh, Yeong-Ah, and Ravi K. Kummamuru. "Spintronics in antiferromagnets." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1951 (September 28, 2011): 3646–57. http://dx.doi.org/10.1098/rsta.2011.0186.
Full textCoileáin, Cormac Ó., and Han Chun Wu. "Materials, Devices and Spin Transfer Torque in Antiferromagnetic Spintronics: A Concise Review." SPIN 07, no. 03 (September 2017): 1740014. http://dx.doi.org/10.1142/s2010324717400148.
Full textMigachev, S. A., M. F. Sadykov, M. M. Shakirzyanov, and D. A. Ivanov. "Antiferromagnetic Conic Refraction of Sound in Hematite." Solid State Phenomena 168-169 (December 2010): 173–76. http://dx.doi.org/10.4028/www.scientific.net/ssp.168-169.173.
Full textClark, Judith, Chongin Pak, Huibo Cao, and Michael Shatruk. "Helimagnetism in MnBi2Se4 Driven by Spin-Frustrating Interactions Between Antiferromagnetic Chains." Crystals 11, no. 3 (February 27, 2021): 242. http://dx.doi.org/10.3390/cryst11030242.
Full textCAPRIOTTI, LUCA. "QUANTUM EFFECTS AND BROKEN SYMMETRIES IN FRUSTRATED ANTIFERROMAGNETS." International Journal of Modern Physics B 15, no. 12 (May 20, 2001): 1799–842. http://dx.doi.org/10.1142/s0217979201004605.
Full textDissertations / Theses on the topic "Antiferromagneten"
Brehmer, Sven. "Niederenergetische Anregungen in eindimensionalen Quanten-Antiferromagneten." [S.l. : s.n.], 1998. http://deposit.ddb.de/cgi-bin/dokserv?idn=955900182.
Full textLeidl, Reinhard. "Oberflächenordnungsphänomene und universelles kritisches Verhalten in binären Legierungen und Ising-Antiferromagneten." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=967218292.
Full textWollny, Alexander. "Fractional Moments and Singular Field Response." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-219916.
Full textWilliamson, Hailey L. Verfasser], Manuel [Akademischer Betreuer] Angst, Uwe [Akademischer Betreuer] Klemradt, and Carsten [Akademischer Betreuer] [Honerkamp. "Spin- und Ladungsordnung in dem neu bewerteten Antiferromagneten YbFe$_2}$O$_4}$ / Hailey L. Williamson ; Manuel Angst, Uwe Klemradt, Carsten Honerkamp." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1235280632/34.
Full textMeyl, Markus [Verfasser]. "Abhängigkeit des Exchange-Bias Feldes und des Koerzitivfeldes von der mittels Röntgendiffraktometrie gemessenen Kornvolumenverteilung des Antiferromagneten in Exchange-Bias Schichtsystemen / Markus Meyl." Kassel : Universitätsbibliothek Kassel, 2020. http://d-nb.info/1216666385/34.
Full textStaats, Michael. "Numerische Untersuchungen von Gleichgewichts- und Nichtgleichgewichtseigenschaften verdünnter Antiferromagnete - Numerical investigations of equilibrium and non-equilibrium properties of diluted antiferromagnets." Gerhard-Mercator-Universitaet Duisburg, 2001. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-09122001-125103/.
Full textSinclair, John. "Novel antiferromagnetic materials." Thesis, University of York, 2018. http://etheses.whiterose.ac.uk/21962/.
Full textUlloa, Osorio Camilo Edgardo. "Aspects of antiferromagnetic spintronics." Tesis, Universidad de Chile, 2016. http://repositorio.uchile.cl/handle/2250/140609.
Full textLa spintrónica se perfila como una de las corrientes mas atractivas y prometedoras dentro de la materia condensada gracias a la diversidad de fenómenos presentes, como el efecto Hall de spin, la magneto-resistencia gigante. En la spintrónica el estudio de materiales antiferromagnéticos es interesante pues dentro de sus propiedades se encuentran su abundancia natural y la posibilidad de disminuir las escalas temporal y espacial de los fenómenos presentes en ellos. Un ejemplo es la utilización de estos materiales en memorias magnéticas, pues gracias a la ausencia de magnetización neta en un material antiferromagnético es posible almacenar información en regiones de menor tamaño debido a la nula interacción dipolar entre dominios magnéticos. Esta tesis esté compuesta de tres trabajos teóricos orientados al desarrollo de la spintrónica antiferromagnética. En la primera parte se presenta la teoría efectiva de un sistema antiferromagnético no colineal. Para esto consideramos un sistema anisotrópico y con interacción de intercambio entre spines vecinos. A través de un parámetro de orden perteneciente al grupo de rotaciones estudiamos la dinámica de las excitaciones de baja energía del sistema obteniendo como resultado una familia de solitones topológicos que están descritos por la ecuación de sine-Gordon. Finalmente comparamos nuestros resultados con simulaciones numéricas de un sistema de momentos magnéticos obteniendo resultados completamente concordantes. La segunda parte corresponde al estudio de un cristal magnónico antiferromagnético. A partir de una teoría fenomenológica estudiamos la dinámica del campo de magnetización bajo el efecto de interacción de intercambio, y anisotropía uniaxial. A través de una modulación periódica de la anisotropía y del campo magnético caracterizamos el espectro de ondas de spín y las estructura de bandas del sistema. En la tercera y última parte se presenta el estudio de la generación de corrientes de spin mediante deformaciones de una red antiferromagnética gracias a efectos cuánticos. Este fenómeno, conocido como efecto piezospintrónico, es estudiado en dos modelos de interés: grafeno antiferromagnético y zinc-blende antiferromagnético. Este efecto, en conjunto con el efecto Hall de spín inverso pueden ser útiles para la detección de corrientes de spín puras.
Spintronics is one of the most attractive and promising areas in condensed matter due to the diversity of phenomena present in it as the spin Hall e ect and the giant magnetoresistance. In spintronics the study of antiferromagnetic materials is interesting due to their natural abundance and the possibility of decreasing the temporal and spatial scale of the phenomena in which they are involved. One example of this is the use of antiferromagnetic materials in magnetic memories, where due to the absence of net magnetization it is possible to store information in smaller regions because of the null dipolar interaction between domains. This thesis is made of three theoretical works focused in di erent aspects of antiferromagnetic spintronics. In the rst chapter we present the e ective theory of a non collinear antiferromagnet. For this we consider an anisotropic system with exchange interaction among neighbor spins. By making use of an order parameter in the rotation group we study the dynamics of low energy excitations of the system obtaining as result a family of topological solitons which are described by the sine-Gordon equation. Finally we compare our results with numerical simulations of a system of magnetic moments obtaining totally concordant results. The second chapter corresponds to the study of an antiferromagnetic magnonic crystal. From a phenomenological theory we study the dynamics of the magnetization eld under the e ect of exchange interaction and uniaxial anisotropy. Through a periodic modulation of the anisotropy and of the magnetic eld we characterize the spin wave spectra and the band structure of the system. In the third and last chapter we show the study of generation of spin currents by deformation of an antiferromagnetic lattice thanks to quantum mechanical e ects. This phenomenon, known as piezospintronic e ect, is studied in two interesting models: antiferromagnetic graphene and antiferromagnetic zinc-blende. This e ect together with the inverse spin Hall e ect could be useful for the detection of pure spin currents. v
Este trabajo ha sido parcialmente financiado por Proyecto Fondecyt N° 1150072, Proyecto Basal N° FB0807- CEDENNA, y Anillo de Ciencia y Tecnología N° ACT 1117
Meschke, Matthias. "Untersuchung der magnetischen Eigenschaften kubischer Antiferromagnete." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=961045450.
Full textYu, Sisheng. "Spin Dynamics in Antiferromagnetic Heterostructures." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586599000240225.
Full textBooks on the topic "Antiferromagneten"
Binek, Christian. Ising-type Antiferromagnets. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/b10726.
Full textEremenko, V. V., Yu G. Litvinenko, N. K. Kharchenko, and V. M. Naumenko. Magneto-Optics and Spectroscopy of Antiferromagnets. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2846-2.
Full textDalla Piazza, Bastien. Excitation Spectra of Square Lattice Antiferromagnets. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26419-6.
Full textEremenko, V. V. Magneto-Optics and Spectroscopy of Antiferromagnets. New York, NY: Springer New York, 1992.
Find full textGakkai, Nihon Jiki, ed. Han kyōjiseitai: Ōyō e no tenkai = Antiferromagnetic materials. Tōkyō-to Bunkyō-ku: Kyōritsu Shuppan, 2014.
Find full textSiddle, David Robin. The role of impurities in frustrated Heisenberg antiferromagnets. Birmingham: University of Birmingham, 1997.
Find full textEremenko, V. V. Magnetic and magnetoelastic properties of antiferromagnets and superconductors. [Cambridge, U.K.]: Cambridge Scientific Publishers, 2007.
Find full textMagnetic properties of antiferromagnetic oxide materials: Surfaces, interfaces, and thin films. Weinheim: Wiley-VCH, 2010.
Find full textPearce, Adrian Simon. Domains, phase coexistence and extinction phenomena in helical and modulated antiferromagnets. [s.l.]: typescript, 1991.
Find full textShahin, Khalada. Study of the spin-phonon coupling in the antiferromagnetic Heisenberg three-leg ladder. Sudbury, Ont: Laurentian University, School of Graduate Studies, 2007.
Find full textBook chapters on the topic "Antiferromagneten"
Binek, Christian. "Introduction." In Ising-type Antiferromagnets, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45001-6_1.
Full textBinek, Christian. "Ising-type Antiferromagnets: Model Systems in Statistical Physics." In Ising-type Antiferromagnets, 5–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45001-6_2.
Full textBinek, Christian. "Ferromagnetic Thin Films for Perpendicular and Planar Exchange-bias Systems." In Ising-type Antiferromagnets, 41–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45001-6_3.
Full textBinek, Christian. "Exchange Bias in Magnetic Heterosystems." In Ising-type Antiferromagnets, 55–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45001-6_4.
Full textBinek, Christian. "Summary." In Ising-type Antiferromagnets, 113–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45001-6_5.
Full textBinek, Christian. "Index." In Ising-type Antiferromagnets, 115–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45001-6_6.
Full textParkinson, John B., and Damian J. J. Farnell. "Antiferromagnetic Spin Waves." In An Introduction to Quantum Spin Systems, 49–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13290-2_5.
Full textRezende, Sergio M. "Magnons in Antiferromagnets." In Fundamentals of Magnonics, 187–222. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41317-0_5.
Full textAwaga, Kunio, Nobuo Wada, Isao Watanabe, and Tamotsu Inabe. "Organic Kagome Antiferromagnets." In Magnetism: Molecules to Materials, 121–09. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2003. http://dx.doi.org/10.1002/9783527620548.ch3a.
Full textMoser, H. R., P. F. Meier, M. Warden, and F. Waldner. "Hyperchaos in Antiferromagnetic Resonance." In 25th Congress Ampere on Magnetic Resonance and Related Phenomena, 376–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76072-3_196.
Full textConference papers on the topic "Antiferromagneten"
Suzuki, H., M. Ono, and N. Mizutani. "Antiferromagnetic resonance of hyperfine-enhanced nuclear antiferromagnet HoVO4." In Symposium on quantum fluids and solids−1989. AIP, 1989. http://dx.doi.org/10.1063/1.38801.
Full textMitsumata, C., A. Sakuma, and K. Fukamichi. "Exchange bias model in ferromagnetic/antiferromagnetic bilayer with Ll/sub 2/-type ordered antiferromagnet." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1464453.
Full textManchon, A., H. Saidaoui, and S. Ghosh. "Antiferromagnetic spin-orbitronics." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157008.
Full textTurov, E. A., V. V. Men'shenin, and M. I. Kurkin. "Antiferromagnetic photovoltaic effect." In SPIE Proceedings, edited by Vitaly V. Samartsev. SPIE, 2004. http://dx.doi.org/10.1117/12.562181.
Full textO'Grady, K., and G. Vallejo-Fernandez. "Characterisation of Antiferromagnets." In 2018 IEEE International Magnetic Conference (INTERMAG). IEEE, 2018. http://dx.doi.org/10.1109/intmag.2018.8508343.
Full textTsoi, Maxim. "Towards Antiferromagnetic Metal Spintronics." In 2008 8th IEEE Conference on Nanotechnology (NANO). IEEE, 2008. http://dx.doi.org/10.1109/nano.2008.178.
Full textBasset, J., A. Sharma, Z. Wei, J. Bass, and M. Tsoi. "Toward antiferromagnetic metal spintronics." In NanoScience + Engineering, edited by Manijeh Razeghi, Henri-Jean M. Drouhin, and Jean-Eric Wegrowe. SPIE, 2008. http://dx.doi.org/10.1117/12.798220.
Full textHoffmann, Axel, Wei Zhang, Stephen M. Wu, Hilal Saglam, Joseph Sklenar, M. Benjamin Jungfleisch, Wanjun Jiang, et al. "Spin Currents in Antiferromagnets." In 2016 International Conference of Asian Union of Magnetics Societies (ICAUMS). IEEE, 2016. http://dx.doi.org/10.1109/icaums.2016.8479782.
Full textHofmann, C. P., Alejandro Ayala, Guillermo Contreras, Ildefonso Leon, and Pedro Podesta. "Antiferromagnets at Low Temperatures." In XII MEXICAN WORKSHOP ON PARTICLES AND FIELDS. AIP, 2011. http://dx.doi.org/10.1063/1.3622710.
Full textMuro, Yuji, Tomokazu Wada, Tadashi Fukuhara, and Tomohiko Kuwai. "Antiferromagnetic Kondo Lattice Compound Ce2Ru3Ga5." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.3.011004.
Full textReports on the topic "Antiferromagneten"
Weinstein, Marvin. Quarks, Gluons and Frustrated Antiferromagnets. Office of Scientific and Technical Information (OSTI), October 1999. http://dx.doi.org/10.2172/15073.
Full textWiener, Timothy. Characterization of the Dilute Ising Antiferromagnet. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/764680.
Full textFullerton, E. E., J. E. Matson, C. H. Sowers, and S. D. Bader. Antiferromagnetic interlayer coupling of Ni/Mo superlattices. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10194947.
Full textFullerton, E. E., J. E. Mattson, S. R. Lee, C. H. Sowers, Y. Y. Huang, G. Felcher, S. D. Bader, and F. T. Parker. Non-oscillatory antiferromagnetic coupling in sputtered Fe/Si superlattices. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/10184587.
Full textZhou, H. D., Laurel Elaine Winter Stritzinger, and Neil Harrison. High magnetic field magnetization of a new triangular lattice antiferromagnet. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1351218.
Full textMankey, Gary J. UA/ORNL Collaboration: Neutron Scattering Studies of Antiferromagnetic Films, Final Report. Office of Scientific and Technical Information (OSTI), July 2006. http://dx.doi.org/10.2172/887250.
Full textCasadei, Cecilia. Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1048524.
Full textWeigand, Marcus, Boris A. Maiorov, Leonardo Civale, Jeehoon Kim, Paul C. Canfield, Sergey L. Bud'ko, and J. F. Baca. Strong Enhancement of the Critical Current at the Antiferromagnetic Transition in ErNi2B2C Single Crystals. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1086753.
Full textKojima, K., M. Larkin, and G. M. Luke. Reduced size of ordered moments of a quasi 1d antiferromagnet Sr{sub 2}CuO{sub 3}. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/373917.
Full textFernandez-Baca, J. A., E. Fawcett, H. L. Alberts, V. Yu Galkin, and Y. Endoh. Effect of pressure on the magnetic phase diagram of the antiferromagnetic spin-density-wave alloy Cr-1.6% Si. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/425297.
Full text