Journal articles on the topic 'Antiferromagneten'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Antiferromagneten.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gutschke, Siegfried O. H., Daniel J. Price, Annie K. Powell, and Paul T. Wood. "Solvothermalsynthese des verkanteten Antiferromagneten {K2[CoO3PCH2N(CH2CO2)2]}6⋅x H2O." Angewandte Chemie 111, no. 8 (April 19, 1999): 1158–60. http://dx.doi.org/10.1002/(sici)1521-3757(19990419)111:8<1158::aid-ange1158>3.0.co;2-h.
Full textCHANG, ZHE. "GREEN'S FUNCTION THEORY OF THE DOPED ANISOTROPIC ANTIFERROMAGNET." International Journal of Modern Physics B 14, no. 10 (April 20, 2000): 1037–57. http://dx.doi.org/10.1142/s0217979200001497.
Full textManiv, Eran, Nityan L. Nair, Shannon C. Haley, Spencer Doyle, Caolan John, Stefano Cabrini, Ariel Maniv, et al. "Antiferromagnetic switching driven by the collective dynamics of a coexisting spin glass." Science Advances 7, no. 2 (January 2021): eabd8452. http://dx.doi.org/10.1126/sciadv.abd8452.
Full textKalita, V. M., G. Yu Lavanov, and V. M. Loktev. "Magnetization and Magnetocaloric Effect in Antiferromagnets with Competing Ising Exchange and Single-Ion Anisotropies." Ukrainian Journal of Physics 65, no. 10 (October 9, 2020): 858. http://dx.doi.org/10.15407/ujpe65.10.858.
Full textWENG, ZHENG-YU. "PHASE STRING THEORY FOR DOPED ANTIFERROMAGNETS." International Journal of Modern Physics B 21, no. 06 (March 10, 2007): 773–827. http://dx.doi.org/10.1142/s0217979207036722.
Full textSoh, Yeong-Ah, and Ravi K. Kummamuru. "Spintronics in antiferromagnets." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1951 (September 28, 2011): 3646–57. http://dx.doi.org/10.1098/rsta.2011.0186.
Full textCoileáin, Cormac Ó., and Han Chun Wu. "Materials, Devices and Spin Transfer Torque in Antiferromagnetic Spintronics: A Concise Review." SPIN 07, no. 03 (September 2017): 1740014. http://dx.doi.org/10.1142/s2010324717400148.
Full textMigachev, S. A., M. F. Sadykov, M. M. Shakirzyanov, and D. A. Ivanov. "Antiferromagnetic Conic Refraction of Sound in Hematite." Solid State Phenomena 168-169 (December 2010): 173–76. http://dx.doi.org/10.4028/www.scientific.net/ssp.168-169.173.
Full textClark, Judith, Chongin Pak, Huibo Cao, and Michael Shatruk. "Helimagnetism in MnBi2Se4 Driven by Spin-Frustrating Interactions Between Antiferromagnetic Chains." Crystals 11, no. 3 (February 27, 2021): 242. http://dx.doi.org/10.3390/cryst11030242.
Full textCAPRIOTTI, LUCA. "QUANTUM EFFECTS AND BROKEN SYMMETRIES IN FRUSTRATED ANTIFERROMAGNETS." International Journal of Modern Physics B 15, no. 12 (May 20, 2001): 1799–842. http://dx.doi.org/10.1142/s0217979201004605.
Full textŚlęzak, M., P. Dróżdż, W. Janus, H. Nayyef, A. Kozioł-Rachwał, M. Szpytma, M. Zając, et al. "Correction: Fine tuning of ferromagnet/antiferromagnet interface magnetic anisotropy for field-free switching of antiferromagnetic spins." Nanoscale 12, no. 37 (2020): 19477. http://dx.doi.org/10.1039/d0nr90207a.
Full textZhang, Ying, Wenhui Wang, Meng Huang, Ping Liu, Guojing Hu, Chao Feng, Xueyan Lei, et al. "MnPS3 spin-flop transition-induced anomalous Hall effect in graphite flake via van der Waals proximity coupling." Nanoscale 12, no. 45 (2020): 23266–73. http://dx.doi.org/10.1039/d0nr05314g.
Full textHuminiuc, Teodor, Oliver Whear, Andrew J. Vick, David C. Lloyd, Gonzalo Vallejo-Fernandez, Kevin O’Grady, and Atsufumi Hirohata. "Growth and Characterisation of Antiferromagnetic Ni2MnAl Heusler Alloy Films." Magnetochemistry 7, no. 9 (September 13, 2021): 127. http://dx.doi.org/10.3390/magnetochemistry7090127.
Full textIZYUMOV, Y. A., and V. M. LAPTEV. "COEXISTENCE OF SUPERCONDUCTIVITY AND ANTIFERROMAGNETISM." International Journal of Modern Physics B 05, no. 04 (February 20, 1991): 563–645. http://dx.doi.org/10.1142/s0217979291000341.
Full textWang, Jian, Shinji Muraishi, Ji Shi, and Yoshio Nakamura. "Antiferromagnetic Layer Thickness Dependence of Exchange Bias in Sputter-Deposited Co/CoO/Co Trilayer." Materials Science Forum 675-677 (February 2011): 1263–66. http://dx.doi.org/10.4028/www.scientific.net/msf.675-677.1263.
Full textKosaka, Wataru, Masahisa Itoh, and Hitoshi Miyasaka. "Metamagnetism with TN = 97 K in a layered assembly of paddlewheel [Ru2] units and TCNQ: an empirical rule for interlayer distances determining the magnetic ground state." Materials Chemistry Frontiers 2, no. 3 (2018): 497–504. http://dx.doi.org/10.1039/c7qm00534b.
Full textWang, Jiao-Yang, Qian Yang, Yi-Quan Zhang, Guang-Bo Che, Jiong-Peng Zhao, and Fu-Chen Liu. "Two isomorphous azide/formate Mn(ii) coordination polymers show spin-canted antiferromagnetism only in the formate system." Inorganic Chemistry Frontiers 5, no. 3 (2018): 719–22. http://dx.doi.org/10.1039/c7qi00789b.
Full textYAKUBO, KOUSUKE, TAKAMICHI TERAO, and TSUNEYOSHI NAKAYAMA. "ANTIFERROMAGNETIC FRACTON AND ITS SPECTRAL DIMENSION." Fractals 01, no. 04 (December 1993): 881–86. http://dx.doi.org/10.1142/s0218348x93000915.
Full textVallejo-Fernandez, Gonzalo, and Markus Meinert. "Recent Developments on MnN for Spintronic Applications." Magnetochemistry 7, no. 8 (August 11, 2021): 116. http://dx.doi.org/10.3390/magnetochemistry7080116.
Full textСафин, А. Р., Е. Е. Козлова, Д. В. Калябин, and С. А. Никитов. "Детектирование терагерцевых электромагнитных волн с помощью проводящих антиферромагнетиков." Письма в журнал технической физики 47, no. 16 (2021): 20. http://dx.doi.org/10.21883/pjtf.2021.16.51323.18840.
Full textДжунь, И. О., Г. В. Бабайцев, М. Г. Козин, И. Л. Ромашкина, Е. И. Шанова, and Н. Г. Чеченин. "Влияние внешних факторов на ширину линии ферромагнитного резонанса в структурах с обменным смещением." Физика твердого тела 63, no. 6 (2021): 693. http://dx.doi.org/10.21883/ftt.2021.06.50924.185.
Full textSISSON, CYNTHIA J. "CRITICAL DYNAMICS IN THE 3D SPIN-1/2 HEISENBERG MODEL: A DECOUPLED CELL MONTE CARLO STUDY." International Journal of Modern Physics C 07, no. 03 (June 1996): 441–47. http://dx.doi.org/10.1142/s0129183196000399.
Full textSEMENOFF, GORDON W. "STRONG COUPLING QED BREAKS CHIRAL SYMMETRY." Modern Physics Letters A 07, no. 30 (September 28, 1992): 2811–18. http://dx.doi.org/10.1142/s0217732392004183.
Full textMinakov, A. A., I. V. Shvets, and V. G. Veselago. "Low temperature antiferromagnetic domains dynamics in helical antiferromagnets." Physica B: Condensed Matter 165-166 (August 1990): 243–44. http://dx.doi.org/10.1016/s0921-4526(90)80971-k.
Full textMinakov, A. A., I. V. Shvets, and V. G. Veselago. "Magnetostriction and antiferromagnetic domains dynamics in helical antiferromagnets." Journal of Magnetism and Magnetic Materials 88, no. 1-2 (July 1990): 121–33. http://dx.doi.org/10.1016/s0304-8853(97)90022-6.
Full textIOFFE, L. B., and A. I. LARKIN. "EFFECTIVE ACTION OF A TWO-DIMENSIONAL ANTIFERROMAGNET." International Journal of Modern Physics B 02, no. 02 (April 1988): 203–19. http://dx.doi.org/10.1142/s0217979288000160.
Full textMukhin, A. A., M. Biberacher, A. Pimenov, and A. Loidl. "Antiferromagnetic resonances and magnetization of a canted antiferromagnet." Journal of Magnetic Resonance 170, no. 1 (September 2004): 8–14. http://dx.doi.org/10.1016/j.jmr.2004.05.019.
Full textVaidya, Priyanka, Sophie A. Morley, Johan van Tol, Yan Liu, Ran Cheng, Arne Brataas, David Lederman, and Enrique del Barco. "Subterahertz spin pumping from an insulating antiferromagnet." Science 368, no. 6487 (April 9, 2020): 160–65. http://dx.doi.org/10.1126/science.aaz4247.
Full textOkabayashi, Akira, and Takao Morinari. "Anisotropic diffusion of conduction electron under antiferromagnetic spin configuration." International Journal of Modern Physics B 30, no. 31 (December 5, 2016): 1650226. http://dx.doi.org/10.1142/s021797921650226x.
Full textGOLINELLI, O., Th JOLICOEUR, and R. LACAZE. "HEISENBERG ANTIFERROMAGNETIC CHAIN of SPIN S=1." International Journal of Modern Physics C 05, no. 02 (April 1994): 259–61. http://dx.doi.org/10.1142/s0129183194000271.
Full textZimmermann, Iwan, Reinhard K. Kremer, Shichao Hu, and Mats Johnsson. "Synthesis, crystal structure and magnetic properties of a new copper oxo-antimony sulphate CuSb6O8(SO4)2." Dalton Transactions 45, no. 1 (2016): 392–96. http://dx.doi.org/10.1039/c5dt04157k.
Full textLegrand, William, Davide Maccariello, Fernando Ajejas, Sophie Collin, Aymeric Vecchiola, Karim Bouzehouane, Nicolas Reyren, Vincent Cros, and Albert Fert. "Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets." Nature Materials 19, no. 1 (September 2, 2019): 34–42. http://dx.doi.org/10.1038/s41563-019-0468-3.
Full textSergeeva, G. G. "Underdoped cuprate antiferromagnet as a two-dimensional antiferromagnetic metal." Low Temperature Physics 31, no. 12 (December 2005): 1040–42. http://dx.doi.org/10.1063/1.2144455.
Full textKWEK, L. C., and M. K. KWAN. "BERRY PHASE IN MAGNETOELECTRIC MATERIALS." International Journal of Quantum Information 07, supp01 (January 2009): 105–15. http://dx.doi.org/10.1142/s0219749909004761.
Full textKubota, Takahide, Yusuke Shimada, Tomoki Tsuchiya, Tomoki Yoshikawa, Keita Ito, Yukiharu Takeda, Yuji Saitoh, Toyohiko Konno, Akio Kimura, and Koki Takanashi. "Microstructures and Interface Magnetic Moments in Mn2VAl/Fe Layered Films Showing Exchange Bias." Nanomaterials 11, no. 7 (June 30, 2021): 1723. http://dx.doi.org/10.3390/nano11071723.
Full textKim, Woo Jin, Taekoo Oh, Jeongkeun Song, Eun Kyo Ko, Yangyang Li, Junsik Mun, Bongju Kim, et al. "Strain engineering of the magnetic multipole moments and anomalous Hall effect in pyrochlore iridate thin films." Science Advances 6, no. 29 (July 2020): eabb1539. http://dx.doi.org/10.1126/sciadv.abb1539.
Full textSU, GANG, HUAIZHONG XING, DESHENG XUE, ZIYU CHEN, and FASHEN LI. "ONE-DIMENSIONAL SPIN-ONE HEISENBERG ANTIFERROMAGNET WITH SINGLE-ION ANISOTROPY IN A MAGNETIC FIELD: SCHWINGER BOSON THEORY." International Journal of Modern Physics B 14, no. 24 (September 30, 2000): 2561–75. http://dx.doi.org/10.1142/s0217979200002259.
Full textГришин, С. В., М. Д. Амельченко, Ю. П. Шараевский, and С. А. Никитов. "Дважды отрицательные среды на основе антиферромагнитных метаматериалов для терагерцевого диапазона частот." Письма в журнал технической физики 47, no. 18 (2021): 32. http://dx.doi.org/10.21883/pjtf.2021.18.51470.18873.
Full textLan, Da, Binbin Chen, Lili Qu, Kexuan Zhang, Liqiang Xu, Feng Jin, Zhuang Guo, Feng Chen, Guanyin Gao, and Wenbin Wu. "Tuning antiferromagnetic interlayer exchange coupling in La0.67Ca0.33MnO3-based synthetic antiferromagnets." APL Materials 7, no. 3 (March 2019): 031119. http://dx.doi.org/10.1063/1.5087570.
Full textRICHTER, J., R. DARRADI, R. ZINKE, and R. F. BISHOP. "FRUSTRATED QUANTUM ANTIFERROMAGNETS: APPLICATION OF HIGH-ORDER COUPLED CLUSTER METHOD." International Journal of Modern Physics B 21, no. 13n14 (May 30, 2007): 2273–88. http://dx.doi.org/10.1142/s0217979207043658.
Full textSouthern, B. W., and A. Peles. "Topological phase transitions in frustrated magnets." Canadian Journal of Physics 84, no. 6-7 (January 15, 2006): 517–22. http://dx.doi.org/10.1139/p06-014.
Full textSONG, YUN. "LOCAL MODES AROUND THE FERROMAGNETIC IMPURITIES IN THE TWO-DIMENSIONAL HEISENBERG ANTIFERROMAGNETS." Modern Physics Letters B 15, no. 08 (April 10, 2001): 243–51. http://dx.doi.org/10.1142/s0217984901001720.
Full textZhang, D. L., X. G. Xu, Y. Wu, X. Q. Li, J. Miao, and Y. Jiang. "Enhanced antiferromagnetic coupling in dual-synthetic antiferromagnet with Co2FeAl electrodes." Journal of Magnetism and Magnetic Materials 324, no. 10 (May 2012): 1822–25. http://dx.doi.org/10.1016/j.jmmm.2012.01.008.
Full textSharmin, S., I. Umegaki, H. Tanaka, T. Ono, G. Tanaka, H. Nojiri, M. Fujisawa, et al. "Antiferromagnetic resonance modes for theS= 1/2 kagome antiferromagnet Cs2Cu3SnF12." Journal of Physics: Conference Series 302 (July 20, 2011): 012011. http://dx.doi.org/10.1088/1742-6596/302/1/012011.
Full textYao, Xiaoyan. "Partially disordered antiferromagnetic state in two-dimensional triangular-lattice antiferromagnet." Physics Letters A 374, no. 6 (January 2010): 886–90. http://dx.doi.org/10.1016/j.physleta.2009.12.001.
Full textSizanov, A. V., and A. V. Syromyatnikov. "Antiferromagnet with two coupled antiferromagnetic sublattices in a magnetic field." Journal of Physics: Condensed Matter 23, no. 14 (March 22, 2011): 146002. http://dx.doi.org/10.1088/0953-8984/23/14/146002.
Full textGlazkov, V., T. Soldatov, and Yu Krasnikova. "Numeric Calculation of Antiferromagnetic Resonance Frequencies for the Noncollinear Antiferromagnet." Applied Magnetic Resonance 47, no. 10 (August 27, 2016): 1069–80. http://dx.doi.org/10.1007/s00723-016-0825-1.
Full textСафин, А. Р., П. А. Попов, Д. В. Калябин, and С. А. Никитов. "Синтезатор дискретной сетки частот на основе антиферромагнитного спинтронного осциллятора." Письма в журнал технической физики 46, no. 20 (2020): 23. http://dx.doi.org/10.21883/pjtf.2020.20.50151.18311.
Full textKAWAGUCHI, A., A. KOGA, N. KAWAKAMI, and K. OKUNISHI. "MAGNETIZATION CURVES OF QUASI-ONE-DIMENSIONAL HALDANE SYSTEMS." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 3339–42. http://dx.doi.org/10.1142/s021797920201436x.
Full textCHEN, YONG-CONG. "OPTIMIZING THE RVB STATE ON A TRIANGULAR LATTICE: PRESENCE OF THE LONG RANGE ORDER." Modern Physics Letters B 08, no. 20 (August 30, 1994): 1253–60. http://dx.doi.org/10.1142/s0217984994001242.
Full text