Academic literature on the topic 'Antiferromagnetic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Antiferromagnetic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Antiferromagnetic"

1

Tsoi, Maxim. "Antiferromagnetic spintronics: From metals to functional oxides." Low Temperature Physics 49, no. 7 (2023): 786–93. http://dx.doi.org/10.1063/10.0019689.

Full text
Abstract:
Antiferromagnetic spintronics exploits unique properties of antiferromagnetic materials to create new and improved functionalities in future spintronic applications. Here, we briefly review the experimental efforts in our group to unravel spin transport properties in antiferromagnetic materials. Our investigations were initially focused on metallic antiferromagnets, where the first evidence of antiferromagnetic spin-transfer torque was discovered. Because of the lack of metallic antiferromagnets, we then shifted towards antiferromagnetic Mott insulators, where a plethora of transport phenomena
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Wenda, Mingyue Chen, Cailei Yuan, et al. "Antiferromagnetic Phase Induced by Nitrogen Doping in 2D Cr2S3." Materials 15, no. 5 (2022): 1716. http://dx.doi.org/10.3390/ma15051716.

Full text
Abstract:
Exploration for the new members of air-stable 2D antiferromagnetic magnets to widen the magnetic families has drawn great attention due to its potential applications in spintronic devices. In addition to seeking the intrinsic antiferromagnets, externally introducing antiferromagnetic ordering in existing 2D materials, such as structural regulation and phase engineering, may be a promising way to modulate antiferromagnetism in the 2D limit. In this work, the in situ nitrogen doping growth of ultrathin 2D Cr2S3 nanoflakes has been achieved. Antiferromagnetic ordering in 2D Cr2S3 nanoflakes can b
APA, Harvard, Vancouver, ISO, and other styles
3

Dan’shin, N. K., A. S. Zel’tser, and V. A. Popov. "Four-sublattice model of a biaxial antiferromagnet and its comparison with experiment." Soviet Journal of Low Temperature Physics 11, no. 7 (1985): 415–22. https://doi.org/10.1063/10.0031328.

Full text
Abstract:
Utilizing a four-sublattice model that takes account of the Dzyaloshinskii interaction and the tensor nature of the g-factor for spectroscopic splitting, we consider the ground states and frequency–field dependences of the antiferromagnetic resonance of a biaxial antiferromagnet at T = 0 in a magnetic field parallel to the “easy” antiferromagnetism axis. It is shown that the effect of the Dzyaloshinskii interaction and the anisotropy of the g-factor may be reduced to a renormalization of the frequency–field dependences of the antiferromagnetic resonance parameters of the two-sublattice model o
APA, Harvard, Vancouver, ISO, and other styles
4

Maniv, Eran, Nityan L. Nair, Shannon C. Haley, et al. "Antiferromagnetic switching driven by the collective dynamics of a coexisting spin glass." Science Advances 7, no. 2 (2021): eabd8452. http://dx.doi.org/10.1126/sciadv.abd8452.

Full text
Abstract:
The theory behind the electrical switching of antiferromagnets is premised on the existence of a well-defined broken symmetry state that can be rotated to encode information. A spin glass is, in many ways, the antithesis of this state, characterized by an ergodic landscape of nearly degenerate magnetic configurations, choosing to freeze into a distribution of these in a manner that is seemingly bereft of information. Here, we show that the coexistence of spin glass and antiferromagnetic order allows a novel mechanism to facilitate the switching of the antiferromagnet Fe1/3 + δNbS2, rooted in t
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Xinyu, Ning Ding, Jun Chen, Ziwen Wang, Ming An, and Shuai Dong. "Electrical tuning of robust layered antiferromagnetism in MXene monolayer." Applied Physics Letters 122, no. 16 (2023): 162403. http://dx.doi.org/10.1063/5.0142852.

Full text
Abstract:
A-type antiferromagnetism, with an in-plane ferromagnetic order and the interlayer antiferromagnetic coupling, owns inborn advantages for electrical manipulations but is naturally rare in real materials except in those artificial antiferromagnetic heterostructures. Here, a robust layered antiferromagnetism with a high Néel temperature is predicted in a MXene Cr2CCl2 monolayer, which provides an ideal platform as a magnetoelectric field effect transistor. Based on first-principles calculations, we demonstrate that an electric field can induce the band splitting between spin-up and spin-down cha
APA, Harvard, Vancouver, ISO, and other styles
6

Grishin S. V., Amel'chenko M. D., Sharaevskii Yu. P., and Nikitov S. A. "Double negative media based on antiferromagnetic metamaterials." Technical Physics Letters 48, no. 13 (2022): 18. http://dx.doi.org/10.21883/tpl.2022.13.53491.18873.

Full text
Abstract:
The paper presents the theoretical study results of the dispersion characteristics of electromagnetic waves existing in antiferromagnetic (AFM) metamaterial. The AFM metamaterial consists of a transversely magnetized antiferromagnet, inside of which a two-dimensional periodic structure of thin conducting wires surrounded by insulators is placed. It has been established that the AFM metamaterial has two frequency ranges, in which there are backward waves, and the material pa-rameters of the medium are twice negative. The indicated areas are located in the terahertz range. Keywords: metamaterial
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Xianzhe, Tomoya Higo, Katsuhiro Tanaka, et al. "Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction." Nature 613, no. 7944 (2023): 490–95. http://dx.doi.org/10.1038/s41586-022-05463-w.

Full text
Abstract:
AbstractThe tunnelling electric current passing through a magnetic tunnel junction (MTJ) is strongly dependent on the relative orientation of magnetizations in ferromagnetic electrodes sandwiching an insulating barrier, rendering efficient readout of spintronics devices1–5. Thus, tunnelling magnetoresistance (TMR) is considered to be proportional to spin polarization at the interface1 and, to date, has been studied primarily in ferromagnets. Here we report observation of TMR in an all-antiferromagnetic tunnel junction consisting of Mn3Sn/MgO/Mn3Sn (ref. 6). We measured a TMR ratio of around 2%
APA, Harvard, Vancouver, ISO, and other styles
8

Kalita, V. M., G. Yu Lavanov, and V. M. Loktev. "Magnetization and Magnetocaloric Effect in Antiferromagnets with Competing Ising Exchange and Single-Ion Anisotropies." Ukrainian Journal of Physics 65, no. 10 (2020): 858. http://dx.doi.org/10.15407/ujpe65.10.858.

Full text
Abstract:
The magnetization of a two-sublattice Ising antiferromagnet with easy-plane single-ion anisotropy, which is accompanied by two phase transitions, has been studied. The both phase transitions are induced by the magnetic field. One of them is isostructural, i.e., the system symmetry remains unchanged and a transition between two antiferromagnetic states with different sublattice magnetizations takes place. The other phase transition occurs when the antiferromagnetic state transforms into the ferromagnetic one. At both phase transitions, the field dependence of the system entropy has two successi
APA, Harvard, Vancouver, ISO, and other styles
9

Lima, Leonardo S. "Entanglement Negativity and Concurrence in Some Low-Dimensional Spin Systems." Entropy 24, no. 11 (2022): 1629. http://dx.doi.org/10.3390/e24111629.

Full text
Abstract:
The influence of magnon bands on entanglement in the antiferromagnetic XXZ model on a triangular lattice, which models the bilayer structure consisting of an antiferromagnetic insulator and normal metal, is investigated. This effect was studied in ferromagnetic as well as antiferromagnetic triangular lattices. Quantum entanglement measures given by the entanglement negativity have been studied, where a magnon current is induced in the antiferromagnet due to interfacial exchange coupling between localized spins in the antiferromagnet and itinerant electrons in a normal metal. Moreover, quantum
APA, Harvard, Vancouver, ISO, and other styles
10

CHANG, ZHE. "GREEN'S FUNCTION THEORY OF THE DOPED ANISOTROPIC ANTIFERROMAGNET." International Journal of Modern Physics B 14, no. 10 (2000): 1037–57. http://dx.doi.org/10.1142/s0217979200001497.

Full text
Abstract:
The Green's function theory of the t–J model is generalized to investigate phase diagram and magnetic properties of the doped anisotropic antiferromagnet, which is believed to describe the elementary properties of the high-temperature superconductors. Antiferromagnetic–metalic phase transition is shown. The explicit dependence of the Néel temperature and sublattice magnetization of the anisotropic doped antiferromagnets on anisotropic parameter ς, doping density δ and parameters of the t–J model are obtained for small doping concentration.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Antiferromagnetic"

1

Sinclair, John. "Novel antiferromagnetic materials." Thesis, University of York, 2018. http://etheses.whiterose.ac.uk/21962/.

Full text
Abstract:
There is intense interest in new antiferromagnetic materials due to the development of antiferromagnetic spintronics. Currently, the material IrMn is used, however, Iridium is one of the scarcest and most expensive elements. In this work, a number of novel, thin film antiferromagnetic materials were produced using sputter deposition and then assessed using magnetic and structural characterisation techniques as well as a temperature dependent resistivity technique developed during the project.
APA, Harvard, Vancouver, ISO, and other styles
2

Ulloa, Osorio Camilo Edgardo. "Aspects of antiferromagnetic spintronics." Tesis, Universidad de Chile, 2016. http://repositorio.uchile.cl/handle/2250/140609.

Full text
Abstract:
Magíster en Ciencias, Mención Física<br>La spintrónica se perfila como una de las corrientes mas atractivas y prometedoras dentro de la materia condensada gracias a la diversidad de fenómenos presentes, como el efecto Hall de spin, la magneto-resistencia gigante. En la spintrónica el estudio de materiales antiferromagnéticos es interesante pues dentro de sus propiedades se encuentran su abundancia natural y la posibilidad de disminuir las escalas temporal y espacial de los fenómenos presentes en ellos. Un ejemplo es la utilización de estos materiales en memorias magnéticas, pues gracias a la a
APA, Harvard, Vancouver, ISO, and other styles
3

Yu, Sisheng. "Spin Dynamics in Antiferromagnetic Heterostructures." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586599000240225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Trzeciecki, Mikołaj. "Second harmonic generation from antiferromagnetic interfaces." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=96147792X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sort, Viñas Jordi. "Magnetic hardening induced by ferromagnetic-antiferromagnetic coupling." Doctoral thesis, Universitat Autònoma de Barcelona, 2002. http://hdl.handle.net/10803/3340.

Full text
Abstract:
Es bien sabido que las interacciones de canje inducidas entre materiales ferromagnéticos (FM) y antiferromagnéticos (AFM) cuando son enfriados desde una temperatura superior a la temperatura de Néel, TN, del AFM, hacen aumentar la coercividad, HC, del componente FM. Nosotros hemos analizado los efectos de hacer una molienda mecánica de polvos FM (Co o SmCo5) con AFM (con TN, ya sea por encima de temperatura ambiente, por ejemplo el NiO, o por debajo, por ejemplo el CoO). Se han estudiado varias combinaciones (Co + NiO, SmCo5 + NiO y SmCo5 + CoO), dando especial énfasis a los sistemas FM + NiO.
APA, Harvard, Vancouver, ISO, and other styles
6

Tajiri, Shinya, and Jun-ichiro Inoue. "Ferromagnetic-antiferromagnetic transition in (La-R)_4Ba_2Cu_2O_10." The American Physical Society, 2006. http://hdl.handle.net/2237/7135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baker, Michael Lloyd. "Antiferromagnetic wheels probed by inelastic neutron scattering." Thesis, University of Manchester, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.542789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Szàllàs, Attila. "Heisenberg antiferromagnetic model on 2D quasiperiodic tilings." Paris 11, 2008. http://www.theses.fr/2008PA112174.

Full text
Abstract:
Le pavage de Penrose est une structure quasipériodique bidimensionnelle, utilisée dans la description des composés quasicristallins. Cette structure est parfaitement ordonnée, avec une symétrie de rotation cinq et elle est invariante sous un changement d'échelle par un facteur τ. Nous avons étudié les propriétés d'un modèle d'Heisenberg sur le pavage de Penrose construit à partir de losanges, en utilisant une méthode de développement en ondes de spin. Les énergies et fonctions d'ondes des magnons (quantum d'une onde des spins) ont été étudiées dans le cadre d'une théorie linéarisée. Les propri
APA, Harvard, Vancouver, ISO, and other styles
9

Chirac, Théophile. "New spintronic components based on antiferromagnetic materials." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS482.

Full text
Abstract:
Les mémoires magnétiques actuelles commencent à atteindre leurs limites physiques en terme de stabilité, vitesse et consommation énergétique, alors que la course à la miniaturisation s'intensifie. Le champ émergeant de la spintronique étudie le comportement collectif des spins dans la matière ainsi que leurs interactions aux interfaces, afin de trouver une solution en termes de matériaux, architectures et sources excitatrices. En particulier, les matériaux antiferromagnétiques sont particulièrement prometteurs. Ces matériaux ordonnées sont abondants, naturellement stables, robustes, ultra rapi
APA, Harvard, Vancouver, ISO, and other styles
10

Bergmann, Andre. "Antiferromagnetic dipolar ordering in [Co2MnGe/V]N multilayers." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980629276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Antiferromagnetic"

1

Gakkai, Nihon Jiki, ed. Han kyōjiseitai: Ōyō e no tenkai = Antiferromagnetic materials. Kyōritsu Shuppan, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Asante, Kofi A. Study of the 3-leg antiferromagnetic ladder using the bond-mean-field theory. Laurentian University, School of Graduate Studies, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shahin, Khalada. Study of the spin-phonon coupling in the antiferromagnetic Heisenberg three-leg ladder. Laurentian University, School of Graduate Studies, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bouillot, Pierre. Statics and Dynamics of Weakly Coupled Antiferromagnetic Spin-1/2 Ladders in a Magnetic Field. Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bouillot, Pierre. Statics and Dynamics of Weakly Coupled Antiferromagnetic Spin-1/2 Ladders in a Magnetic Field. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33808-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Flambaum, V. V. Frequencies of nuclear resonances for copper and electronic wave function of antiferromagnetic La₂CuO₄ / V.V. Flambaum and O.P. Sushkov. Institute of Nuclear Physics, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Staples, I. Application of the coupled cluster method to the two dimensional triangular lattice frustrated spin-1/2 system with an antiferromagnetic Heisenberg Hamiltonian. UMIST, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Binek, Christian. Ising-type Antiferromagnets. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/b10726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Börgermann, F. J. Spinglasverhalten des verdünnten Antiferromagneten EuxSr₁₋xTe. Zentralbibliothek der Kernforschungsanlage, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kushauer, Jorg. Magnetische Domänen in verdünnten uniaxialen Antiferromagneten. [s.n.], 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Antiferromagnetic"

1

Parkinson, John B., and Damian J. J. Farnell. "Antiferromagnetic Spin Waves." In An Introduction to Quantum Spin Systems. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13290-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kurti, Nicholas. "Antiferromagnetic Hysteresis A142." In Selected Works of Louis Neel. CRC Press, 2019. http://dx.doi.org/10.1201/9780367810580-86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moser, H. R., P. F. Meier, M. Warden, and F. Waldner. "Hyperchaos in Antiferromagnetic Resonance." In 25th Congress Ampere on Magnetic Resonance and Related Phenomena. Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76072-3_196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parkinson, John B., and Damian J. J. Farnell. "The Antiferromagnetic Ground State." In An Introduction to Quantum Spin Systems. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13290-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ansermet, Jean-Philippe. "Antiferromagnetic Resonance and Polaritons." In Spintronics. CRC Press, 2024. http://dx.doi.org/10.1201/9781003370017-18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shen, Laichuan, Xue Liang, Jing Xia, et al. "Antiferromagnetic Skyrmions and Bimerons." In Topics in Applied Physics. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62844-4_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fecioru-Morariu, Marian, Ulrich Nowak, and Gernot Güntherodt. "Exchange Bias by Antiferromagnetic Oxides." In Magnetic Properties of Antiferromagnetic Oxide Materials. Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630370.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Finazzi, Marco, Lamberto Duò, and Franco Ciccacci. "Low-Dimensional Antiferromagnetic Oxides: An Overview." In Magnetic Properties of Antiferromagnetic Oxide Materials. Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630370.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Valeri, Sergio, Salvatore Altieri, and Paola Luches. "Growth of Antiferromagnetic Oxide Thin Films." In Magnetic Properties of Antiferromagnetic Oxide Materials. Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630370.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hibma, Tjipke, and Maurits W. Haverkort. "Antiferromagnetic Oxide Films on Nonmagnetic Substrates." In Magnetic Properties of Antiferromagnetic Oxide Materials. Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630370.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Antiferromagnetic"

1

Zhang, Qi. "Strongly coupled terahertz magnons and chiral phonons in antiferromagnets." In JSAP-Optica Joint Symposia. Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.18p_b2_2.

Full text
Abstract:
In quantum materials, collective excitations in the terahertz (THz) regime govern the low-energy responses of ground states to external stimuli, which is crucial in understanding various correlated phenomena. The hybridization of distinct collective modes offers a pathway for coherent manipulation of coupled degrees of freedom and quantum phases. Particularly in antiferromagnets, the strong coupling between angular momentum-carrying spin and lattice excitations, i.e., magnons and chiral phonons, leads to the formation of chiral magnon polarons in the THz regime, exhibiting intriguing novel pro
APA, Harvard, Vancouver, ISO, and other styles
2

Hamdi, Mohammad, Serban Lepadatu та Dirk Grundler. "Spin dynamics of strain induced topological antiferromagnetic spin textures in thin film canted antiferromagnet hematite (α-Fe2O3)". У Spintronics XVII, редактори Henri Jaffrès, Jean-Eric Wegrowe, Manijeh Razeghi та Joseph S. Friedman. SPIE, 2024. http://dx.doi.org/10.1117/12.3029889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Huxter, Vanessa. "Temperature-Controlled Ultrafast Dynamics of an Antiferromagnetically Coupled Molecular Dimer." In Laser Science. Optica Publishing Group, 2023. https://doi.org/10.1364/ls.2023.ltu6f.2.

Full text
Abstract:
Two-dimensional electronic measurements reveal the role of ferromagnetic and antiferromagnetic interactions in the temperature-dependent, reversible dimerization of copper(II) hexaethyl tripyrrin-1,14-dione. Dimerization significantly alters the optical properties, with long relaxation times observed at low temperatures.
APA, Harvard, Vancouver, ISO, and other styles
4

Althammer, Matthias. "All-electrical angular momentum transport experiments in antiferromagnetic insulators." In Spintronics XVII, edited by Henri Jaffrès, Jean-Eric Wegrowe, Manijeh Razeghi, and Joseph S. Friedman. SPIE, 2024. http://dx.doi.org/10.1117/12.3028628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barsukov, Igor. "Spin-torque antiferromagnetic resonance in a single nanoscale device." In Spintronics XVII, edited by Henri Jaffrès, Jean-Eric Wegrowe, Manijeh Razeghi, and Joseph S. Friedman. SPIE, 2024. http://dx.doi.org/10.1117/12.3030958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Suzuki, H., M. Ono, and N. Mizutani. "Antiferromagnetic resonance of hyperfine-enhanced nuclear antiferromagnet HoVO4." In Symposium on quantum fluids and solids−1989. AIP, 1989. http://dx.doi.org/10.1063/1.38801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Manchon, A., H. Saidaoui, and S. Ghosh. "Antiferromagnetic spin-orbitronics." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Turov, E. A., V. V. Men'shenin, and M. I. Kurkin. "Antiferromagnetic photovoltaic effect." In SPIE Proceedings, edited by Vitaly V. Samartsev. SPIE, 2004. http://dx.doi.org/10.1117/12.562181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Basset, J., A. Sharma, Z. Wei, J. Bass, and M. Tsoi. "Toward antiferromagnetic metal spintronics." In NanoScience + Engineering, edited by Manijeh Razeghi, Henri-Jean M. Drouhin, and Jean-Eric Wegrowe. SPIE, 2008. http://dx.doi.org/10.1117/12.798220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tsoi, Maxim. "Towards Antiferromagnetic Metal Spintronics." In 2008 8th IEEE Conference on Nanotechnology (NANO). IEEE, 2008. http://dx.doi.org/10.1109/nano.2008.178.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Antiferromagnetic"

1

Fullerton, E. E., J. E. Matson, C. H. Sowers, and S. D. Bader. Antiferromagnetic interlayer coupling of Ni/Mo superlattices. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/10194947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fullerton, E. E., J. E. Mattson, S. R. Lee, et al. Non-oscillatory antiferromagnetic coupling in sputtered Fe/Si superlattices. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10184587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Hyung-Cheol. NMR studies of the antiferromagnetic insulators SrMn 2P2 and CaMn2P2. Iowa State University, 2022. http://dx.doi.org/10.31274/cc-20240624-1057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mankey, Gary J. UA/ORNL Collaboration: Neutron Scattering Studies of Antiferromagnetic Films, Final Report. Office of Scientific and Technical Information (OSTI), 2006. http://dx.doi.org/10.2172/887250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Islam, Farhan. Spin dynamics in antiferromagnetic oxypnictides and fluoropnictides: LaMnAsO, LaMnSbO, and BaMnAsF. Iowa State University, 2021. http://dx.doi.org/10.31274/cc-20240624-1321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Casadei, Cecilia. Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance. Office of Scientific and Technical Information (OSTI), 2011. http://dx.doi.org/10.2172/1048524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Weigand, Marcus, Boris A. Maiorov, Leonardo Civale, et al. Strong Enhancement of the Critical Current at the Antiferromagnetic Transition in ErNi2B2C Single Crystals. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1086753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Onuki, Y., A. Umezawa, W. K. Kwok, et al. High field magnetoresistance and de Haas-van Alphen effect in antiferromagnetic PrB/sub 6/ and NdB/sub 6/. Office of Scientific and Technical Information (OSTI), 1987. http://dx.doi.org/10.2172/6419453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fernandez-Baca, J. A., E. Fawcett, H. L. Alberts, V. Yu Galkin, and Y. Endoh. Effect of pressure on the magnetic phase diagram of the antiferromagnetic spin-density-wave alloy Cr-1.6% Si. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/425297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Halperin, william. Antiferromagnetism and Superconductivity. Office of Scientific and Technical Information (OSTI), 2023. http://dx.doi.org/10.2172/1958216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!