Journal articles on the topic 'Antifungal metabolites'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Antifungal metabolites.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Fernando, Krishni, Priyanka Reddy, Kathryn M. Guthridge, German C. Spangenberg, and Simone J. Rochfort. "A Metabolomic Study of Epichloë Endophytes for Screening Antifungal Metabolites." Metabolites 12, no. 1 (2022): 37. http://dx.doi.org/10.3390/metabo12010037.
Full textLemriss, S., F. Laurent, A. Couble, et al. "Screening of nonpolyenic antifungal metabolites produced by clinical isolates of actinomycetes." Canadian Journal of Microbiology 49, no. 11 (2003): 669–74. http://dx.doi.org/10.1139/w03-088.
Full textSaxena, Sanjai, Laurent Dufossé, Sunil K. Deshmukh, Hemraj Chhipa, and Manish Kumar Gupta. "Endophytic Fungi: A Treasure Trove of Antifungal Metabolites." Microorganisms 12, no. 9 (2024): 1903. http://dx.doi.org/10.3390/microorganisms12091903.
Full textde Jesus Freitas Sá, Hilzimar, Anne Karoline Maiorana Santos, Adriano Souza Fonseca, et al. "Assessment of Metabolic Alterations Induced by Halogenated Additives and Antifungal Activity of Extracts from the Endophytic Fungus Fusarium sp. Associated with Dizygostemon riparius (Plantaginaceae)." Metabolites 15, no. 7 (2025): 451. https://doi.org/10.3390/metabo15070451.
Full textKokil, Sachin, and Manish Bhatia. "Antifungal Azole Metabolites: Significance in Pharmaceutical and Biomedical Analysis." Journal of Medical Biochemistry 28, no. 1 (2009): 1–10. http://dx.doi.org/10.2478/v10011-008-0040-1.
Full textZhao, Jing, Ju Tang, Zhandi Wang, et al. "Extraction, analysis, and antifungal activity study of algae antibiotic active substances in plateau lakes." PLOS One 20, no. 5 (2025): e0319853. https://doi.org/10.1371/journal.pone.0319853.
Full textSantos, Anne Karoline Maiorana, Bianca Araújo dos Santos, Josivan Regis Farias, et al. "Effect of Mn(II) and Co(II) on Anti-Candida Metabolite Production by Aspergillus sp. an Endophyte Isolated from Dizygostemon riparius (Plantaginaceae)." Pharmaceuticals 17, no. 12 (2024): 1678. https://doi.org/10.3390/ph17121678.
Full textVargas Hoyos, Harold Alexander, Cristian David Grisales Vargas, Daniel Osorio Giraldo, María Alejandra Villamizar Monsalve, Juan Camilo Arboleda Rivera, and Ana María Mesa Vanegas. "Actinobacteria: Source of antifungal secondary metabolites for agricultural sustainability." Scientia Agropecuaria 16, no. 2 (2025): 307–26. https://doi.org/10.17268/sci.agropecu.2025.023.
Full textXiong, Zirui Ray, Mario Cobo, Randy M. Whittal, Abigail B. Snyder, and Randy W. Worobo. "Purification and characterization of antifungal lipopeptide produced by Bacillus velezensis isolated from raw honey." PLOS ONE 17, no. 4 (2022): e0266470. http://dx.doi.org/10.1371/journal.pone.0266470.
Full textWhyte, Authrine C., Katherine B. Gloer, James B. Gloer, Brenda Koster, and David Malloch. "New antifungal metabolites from the coprophilous fungus Cercophorasordarioides." Canadian Journal of Chemistry 75, no. 6 (1997): 768–72. http://dx.doi.org/10.1139/v97-093.
Full textLi, Hong-yu, Shigeki Matsunaga, and Nobuhiro Fusetani. "Antifungal Metabolites from Marine Sponges." Current Organic Chemistry 2, no. 6 (1998): 649–82. http://dx.doi.org/10.2174/1385272802666220130083412.
Full textGhisalberti, Emilio L., and Catherine Y. Rowland. "Antifungal Metabolites from Trichoderma harzianum." Journal of Natural Products 56, no. 10 (1993): 1799–804. http://dx.doi.org/10.1021/np50100a020.
Full textRagasa, Consolacion Y., Angel Lyn Kristin C. Co, and John A. Rideout. "Antifungal metabolites from Blumea balsamifera." Natural Product Research 19, no. 3 (2005): 231–37. http://dx.doi.org/10.1080/14786410410001709773.
Full textPacciaroni, Adriana del V., María de los Angeles Gette, Marcos Derita, et al. "Antifungal activity ofHeterothalamus alienus metabolites." Phytotherapy Research 22, no. 4 (2008): 524–28. http://dx.doi.org/10.1002/ptr.2380.
Full textJonathan, SG, Jonathan, SG, Omeonu FC Omeonu FC, Oshewolo O. Oshewolo O, et al. "Antifungal Activity of Secondary Metabolites from Lantana Camara L. against Bio-Deteriorating Fungi of Oryza Sativa L. (Nigerian Local Rice)." International Journal of Research and Innovation in Applied Science X, no. IV (2025): 453–69. https://doi.org/10.51584/ijrias.2025.10040038.
Full textBroberg, Anders, Karin Jacobsson, Katrin Ström, and Johan Schnürer. "Metabolite Profiles of Lactic Acid Bacteria in Grass Silage." Applied and Environmental Microbiology 73, no. 17 (2007): 5547–52. http://dx.doi.org/10.1128/aem.02939-06.
Full textWidiantini, Fitri, Mia Rahmah Qadryani, Fuji Hartati, and Endah Yulia. "Antifungal Potency of Secondary Metabolites Produced by Endophytic Bacteria against Pathogenic Fungi Pyricularia oryzae Cav." Jurnal Perlindungan Tanaman Indonesia 23, no. 2 (2019): 185. http://dx.doi.org/10.22146/jpti.48392.
Full textKusumawati, Anggun Hari, Siti Kholillah, Farhamzah Mr., et al. "ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES OF Impatiens balsamina (L.): LITERATURE REVIEW ARTICLE." Bacterial Empire 5, no. 2 (2022): e334. http://dx.doi.org/10.36547/be.334.
Full textWang, Weichen, Jin Zhao, and Zhizi Zhang. "Bacillus Metabolites: Compounds, Identification and Anti-Candida albicans Mechanisms." Microbiology Research 13, no. 4 (2022): 972–84. http://dx.doi.org/10.3390/microbiolres13040070.
Full textHang, Sijin, Hui Lu, and Yuanying Jiang. "Marine-Derived Metabolites Act as Promising Antifungal Agents." Marine Drugs 22, no. 4 (2024): 180. http://dx.doi.org/10.3390/md22040180.
Full textColeman, Jeffrey J., Suman Ghosh, Ikechukwu Okoli, and Eleftherios Mylonakis. "Antifungal Activity of Microbial Secondary Metabolites." PLoS ONE 6, no. 9 (2011): e25321. http://dx.doi.org/10.1371/journal.pone.0025321.
Full textKoval, Daniel, Milada Plocková, Jan Kyselka, Pavel Skřivan, Marcela Sluková, and Šárka Horáčková. "Buckwheat Secondary Metabolites: Potential Antifungal Agents." Journal of Agricultural and Food Chemistry 68, no. 42 (2020): 11631–43. http://dx.doi.org/10.1021/acs.jafc.0c04538.
Full textTAHARA, Satoshi, Shiro NAKAHARA, John L. INGHAM, and Junya MIZUTANI. "Fungal metabolites of antifungal isoflavone wighteone." Journal of the agricultural chemical society of Japan 59, no. 10 (1985): 1039–44. http://dx.doi.org/10.1271/nogeikagaku1924.59.1039.
Full textLiang, Yanqiong, Weihuai Wu, Rui Li, et al. "Evaluation of Bacillus subtilis Czk1 Metabolites by LC–MS/MS and Their Antifungal Potential against Pyrrhoderma noxium Causing Brow Rot Disease." Agriculture 13, no. 7 (2023): 1396. http://dx.doi.org/10.3390/agriculture13071396.
Full textMohanty, Niharika, Atmaja Elina Mishra, and Nibha Gupta. "ANTIFUNGAL POTENTIAL OF EXO-METABOLITES PRODUCED BY PENICILLIUM CAPSULATUM AGAINST PHYTOPATHOGENIC FUNGI." Acta Scientifica Malaysia 8, no. 2 (2024): 89–92. https://doi.org/10.26480/asm.02.2024.89.92.
Full textBuatong, Jirayu, Vatcharin Rukachaisirikul, Suthinee Sangkanu, Frank Surup, and Souwalak Phongpaichit. "Antifungal Metabolites from Marine-Derived Streptomyces sp. AMA49 against Pyricularia oryzae." Journal of Pure and Applied Microbiology 13, no. 2 (2019): 653–65. http://dx.doi.org/10.22207/jpam.13.2.02.
Full textSiswadi, Edi, Gallyndra Fatkhu Dinata, Tri Rini Kusparwanti, Rindha Rentina Darah Pertami, Abdurrahman Salim, and Antika Wulandari. "Antifungal Activity of Secondary Metabolites From Trichoderma sp. Against Fusarium Oxysporum f.sp. Cubense." International Journal of Technology, Food and Agriculture 2, no. 2 (2025): 115–21. https://doi.org/10.25047/tefa.v2i2.5617.
Full textHammad, Masooma, Hazrat Ali, Noor Hassan, et al. "Food safety and biological control; genomic insights and antimicrobial potential of Bacillus velezensis FB2 against agricultural fungal pathogens." PLOS ONE 18, no. 11 (2023): e0291975. http://dx.doi.org/10.1371/journal.pone.0291975.
Full textDALIE, D. K. D., A. M. DESCHAMPS, V. ATANASOVA-PENICHON, and F. RICHARD-FORGET. "Potential of Pediococcus pentosaceus (L006) Isolated from Maize Leaf To Suppress Fumonisin-Producing Fungal Growth." Journal of Food Protection 73, no. 6 (2010): 1129–37. http://dx.doi.org/10.4315/0362-028x-73.6.1129.
Full textSidorova, T. M., A. M. Asaturova, and V. V. Allakhverdyan. "Chromatographic profiles of antifungal exo- and endometabolites of Bacillus velezensis." TAURIDA HERALD OF THE AGRARIAN SCIENCES 2(26) (August 3, 2021): 191–99. http://dx.doi.org/10.33952/2542-0720-2021-2-26-191-199.
Full textKarimi, Ali, Torsten Meiners, and Christoph Böttcher. "Metabolite Profiling and Bioassay-Guided Fractionation of Zataria multiflora Boiss. Hydroethanolic Leaf Extracts for Identification of Broad-Spectrum Pre and Postharvest Antifungal Agents." Molecules 27, no. 24 (2022): 8903. http://dx.doi.org/10.3390/molecules27248903.
Full textGiordano, Ana Luisa Perini Leme, Marili Villa Nova Rodrigues, Karen Gabriela Araujo dos Santos, et al. "Enhancing Antifungal Drug Discovery Through Co-Culture with Antarctic Streptomyces albidoflavus Strain CBMAI 1855." International Journal of Molecular Sciences 25, no. 23 (2024): 12744. http://dx.doi.org/10.3390/ijms252312744.
Full textFarooq, Afgan, Iqbal Choudhary, Atta-ur Rahman, Satoshi Tahara, K. Hüsnü Can Başer, and Fatih Demirci. "Detoxification of Terpinolene by Plant Pathogenic Fungus Botrytis cinerea." Zeitschrift für Naturforschung C 57, no. 9-10 (2002): 863–66. http://dx.doi.org/10.1515/znc-2002-9-1018.
Full textMitrović, I., J. Grahovac, J. Dodić, A. Jokić, Z. Rončević, and M. Grahovac. "Production of plant protection agents in medium containing waste glycerol by Streptomyces hygroscopicus: Bioprocess analysis." Acta Alimentaria 49, no. 3 (2020): 270–77. http://dx.doi.org/10.1556/066.2020.49.3.5.
Full textHenkels, Marcella D., Teresa A. Kidarsa, Brenda T. Shaffer, et al. "Pseudomonas protegens Pf-5 Causes Discoloration and Pitting of Mushroom Caps Due to the Production of Antifungal Metabolites." Molecular Plant-Microbe Interactions® 27, no. 7 (2014): 733–46. http://dx.doi.org/10.1094/mpmi-10-13-0311-r.
Full textSriwastava, Akanksha Raj, and Vivek Srivastava. "GC-MS Profiling and Antifungal Activity of Secondary Metabolite from Endophytic Fungus of Giloy." Biosciences Biotechnology Research Asia 18, no. 4 (2021): 651–59. http://dx.doi.org/10.13005/bbra/2948.
Full textLumban Gaol, Josua Gabriel, Delianis Pringgenies, and Wilis Ari Setyati. "Screening for Antibacterial and Antifungal Activity in Fungi Associated with Molluscs." Jurnal Moluska Indonesia 9, no. 1 (2025): 1–7. https://doi.org/10.54115/jmi.v9i1.114.
Full textTambunan, Venita Octavia, Meiskha Bahar, Andri Pramono, Cut Fauziah, Hany Yusmaini, and Fajriati Zulfa. "Potensi Daya Hambat Filtrat Zat Metabolit Actinomycetes dari Kebun Raya Bogor terhadap Pertumbuhan Candida albicans dan Malassezia furfur." Bioscientist : Jurnal Ilmiah Biologi 10, no. 1 (2022): 66. http://dx.doi.org/10.33394/bioscientist.v10i1.4792.
Full textSilva, Eliane O., Antonio Ruano-González, Raquel A. Dos Santos, et al. "Antifungal and Cytotoxic Assessment of Lapachol Derivatives Produced by Fungal Biotransformation." Natural Product Communications 11, no. 1 (2016): 1934578X1601100. http://dx.doi.org/10.1177/1934578x1601100128.
Full textKarličić, Vera, Jelena Jovičić-Petrović, Igor Kljujev, et al. "Biocontrol potential of Bacillus amyloliquefaciens D5 ARV metabolites." Acta agriculturae Serbica 29, no. 57 (2024): 27–33. http://dx.doi.org/10.5937/aaser2357027k.
Full textDubey, Olga, Sylvain Dubey, Sylvain Schnee, et al. "Plant surface metabolites as potent antifungal agents." Plant Physiology and Biochemistry 150 (May 2020): 39–48. http://dx.doi.org/10.1016/j.plaphy.2020.02.026.
Full textYou, Fei, Ting Han, Jing-zhong Wu, Bao-kang Huang, and Lu-ping Qin. "Antifungal secondary metabolites from endophytic Verticillium sp." Biochemical Systematics and Ecology 37, no. 3 (2009): 162–65. http://dx.doi.org/10.1016/j.bse.2009.03.008.
Full textdo Amaral, Samuel Cavalcante, Luciana Pereira Xavier, Vítor Vasconcelos, and Agenor Valadares Santos. "Cyanobacteria: A Promising Source of Antifungal Metabolites." Marine Drugs 21, no. 6 (2023): 359. http://dx.doi.org/10.3390/md21060359.
Full textPeng, Qian, Jing Yang, Qiang Wang, Huayi Suo, Ahmed Mahmoud Hamdy, and Jiajia Song. "Antifungal Effect of Metabolites from a New Strain Lactiplantibacillus Plantarum LPP703 Isolated from Naturally Fermented Yak Yogurt." Foods 12, no. 1 (2023): 181. http://dx.doi.org/10.3390/foods12010181.
Full textKarioti, Anastasia, Helen Skaltsa, Diamanto Lazari, Marina Sokovic, Begoña Garcia, and Catherine Harvala. "Secondary Metabolites from Centaurea deusta with Antimicrobial Activity." Zeitschrift für Naturforschung C 57, no. 1-2 (2002): 75–80. http://dx.doi.org/10.1515/znc-2002-1-213.
Full textAmalia, Anisa Rizki, Arika Purnawati, Endang Triwahyu Prasetyawati, and Vika Yanti. "Secondary Metabolites of Trichoderma sp. as Antifungal Against Rice Seed-borne Pathogen Fungi." JURNAL PEMBELAJARAN DAN BIOLOGI NUKLEUS 9, no. 3 (2023): 483–95. http://dx.doi.org/10.36987/jpbn.v9i3.4822.
Full textZolotykh, Denis Sergeyevich, Dmitriy Igorevich Pozdniakov, Margarita Petrovna Glushko, and Жанна Владимировна Daironas. "CHEMICAL COMPOSITION AND BIOLOGICAL ACTIVITY OF SECONDARY METABOLITES FROM IMPATIENS BALSAMINA." chemistry of plant raw material, no. 3 (September 26, 2022): 27–47. http://dx.doi.org/10.14258/jcprm.20220310518.
Full textJovicic-Petrovic, Jelena, Sanja Jeremic, Ivan Vuckovic, et al. "Aspergillus piperis A/5 from plum-distilling waste compost produces a complex of antifungal metabolites active against the phytopathogen Pythium aphanidermatum." Archives of Biological Sciences 68, no. 2 (2016): 279–89. http://dx.doi.org/10.2298/abs150602016j.
Full textAlfizar, Alfizar, Amda Resdiar, Nana Ariska, et al. "EFFICACY ANTIMICROBIAL ENDOPHYTICS METABOLITES TO CONTROL SIGATOKA DISEASE (MYCOSPHAERELLA MUSICOLA) ON BANANAS IN NORTHERN SUMATERA." International Journal of Applied Science and Engineering Review 05, no. 03 (2024): 58–75. http://dx.doi.org/10.52267/ijaser.2024.5309.
Full textKgosiemang, Julius Leumo, Tshimangadzo Ramakuwela, Sandiswa Figlan, and Nicolene Cochrane. "Antifungal Effect of Metabolites from Bacterial Symbionts of Entomopathogenic Nematodes on Fusarium Head Blight of Wheat." Journal of Fungi 10, no. 2 (2024): 148. http://dx.doi.org/10.3390/jof10020148.
Full text