Academic literature on the topic 'Antihydrogene'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Antihydrogene.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Antihydrogene"

1

Baker, C. J., W. Bertsche, A. Capra, et al. "Laser cooling of antihydrogen atoms." Nature 592, no. 7852 (2021): 35–42. http://dx.doi.org/10.1038/s41586-021-03289-6.

Full text
Abstract:
AbstractThe photon—the quantum excitation of the electromagnetic field—is massless but carries momentum. A photon can therefore exert a force on an object upon collision1. Slowing the translational motion of atoms and ions by application of such a force2,3, known as laser cooling, was first demonstrated 40 years ago4,5. It revolutionized atomic physics over the following decades6–8, and it is now a workhorse in many fields, including studies on quantum degenerate gases, quantum information, atomic clocks and tests of fundamental physics. However, this technique has not yet been applied to anti
APA, Harvard, Vancouver, ISO, and other styles
2

Ahmadi, M., B. X. R. Alves, C. J. Baker, et al. "Observation of the hyperfine spectrum of antihydrogen." Nature 548, no. 7665 (2017): 66–69. http://dx.doi.org/10.1038/nature23446.

Full text
Abstract:
Abstract The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers1,2,3 and the measurement4 of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron5,6,7,8, inspired Schwinger’s relativistic theory of quantum electrodynamics9,10 and gave rise to the hydrogen maser11, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometr
APA, Harvard, Vancouver, ISO, and other styles
3

Olin, Art. "Measurements of Properties of Antihydrogen." International Journal of Modern Physics: Conference Series 46 (January 2018): 1860069. http://dx.doi.org/10.1142/s2010194518600698.

Full text
Abstract:
The ALPHA project at the CERN AD is testing fundamental symmetries between matter and antimatter using trapped antihydrogen atoms. The spectrum of the antihydrogen atom may be compared to ordinary hydrogen where it has been measured very precisely. CPT conservation, which underpins our current theoretical framework, requires equality of the masses and charges of matter and its antimatter partners, so antihydrogen spectroscopy presents a path to precision CPT tests. I will discuss the techniques used by ALPHA to trap more than 8000 antihydrogen atoms in 2016, and interrogate them for 600s. The
APA, Harvard, Vancouver, ISO, and other styles
4

Eriksson, S. "Precision measurements on trapped antihydrogen in the ALPHA experiment." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2116 (2018): 20170268. http://dx.doi.org/10.1098/rsta.2017.0268.

Full text
Abstract:
Both the 1S–2S transition and the ground state hyperfine spectrum have been observed in trapped antihydrogen. The former constitutes the first observation of resonant interaction of light with an anti-atom, and the latter is the first detailed measurement of a spectral feature in antihydrogen. Owing to the narrow intrinsic linewidth of the 1S–2S transition and use of two-photon laser excitation, the transition energy can be precisely determined in both hydrogen and antihydrogen, allowing a direct comparison as a test of fundamental symmetry. The result is consistent with CPT invariance at a re
APA, Harvard, Vancouver, ISO, and other styles
5

Kolbinger, B., C. Amsler, H. Breuker, et al. "Recent Developments from ASACUSA on Antihydrogen Detection." EPJ Web of Conferences 181 (2018): 01003. http://dx.doi.org/10.1051/epjconf/201818101003.

Full text
Abstract:
The ASACUSA Collaboration at CERNs Antiproton Decelerator aims to measure the ground state hyperfine splitting of antihydrogen with high precision to test the fundamental symmetry of CPT (combination of charge conjugation, parity transformation, and time reversal). For this purpose an antihydrogen detector has been developed. Its task is to count the arriving antihydrogen atoms and therefore distinguish backgroundevents (mainly cosmics) from antiproton annihilations originating from antihydrogen atoms which are produced only in small amounts. A central BGO crystal disk with position sensitive
APA, Harvard, Vancouver, ISO, and other styles
6

Doser, M., S. Aghion, C. Amsler, et al. "AEgIS at ELENA: outlook for physics with a pulsed cold antihydrogen beam." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2116 (2018): 20170274. http://dx.doi.org/10.1098/rsta.2017.0274.

Full text
Abstract:
The efficient production of cold antihydrogen atoms in particle traps at CERN’s Antiproton Decelerator has opened up the possibility of performing direct measurements of the Earth’s gravitational acceleration on purely antimatter bodies. The goal of the AEgIS collaboration is to measure the value of g for antimatter using a pulsed source of cold antihydrogen and a Moiré deflectometer/Talbot–Lau interferometer. The same antihydrogen beam is also very well suited to measuring precisely the ground-state hyperfine splitting of the anti-atom. The antihydrogen formation mechanism chosen by AEgIS is
APA, Harvard, Vancouver, ISO, and other styles
7

Malbrunot, C., C. Amsler, S. Arguedas Cuendis, et al. "The ASACUSA antihydrogen and hydrogen program: results and prospects." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2116 (2018): 20170273. http://dx.doi.org/10.1098/rsta.2017.0273.

Full text
Abstract:
The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of ‘cold’ antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10 −9 which constitutes
APA, Harvard, Vancouver, ISO, and other styles
8

Madsen, N., G. B. Andresen, M. D. Ashkezari, et al. "Search for trapped antihydrogen in ALPHAThis paper was presented at the International Conference on Precision Physics of Simple Atomic Systems, held at École de Physique, les Houches, France, 30 May – 4 June, 2010." Canadian Journal of Physics 89, no. 1 (2011): 7–16. http://dx.doi.org/10.1139/p10-085.

Full text
Abstract:
Antihydrogen spectroscopy promises precise tests of the symmetry of matter and antimatter, and can possibly offer new insights into the baryon asymmetry of the universe. Antihydrogen is, however, difficult to synthesize and is produced only in small quantities. The ALPHA collaboration is therefore pursuing a path towards trapping cold antihydrogen to permit the use of precision atomic physics tools to carry out comparisons of antihydrogen and hydrogen. ALPHA has addressed these challenges. Control of the plasma sizes has helped to lower the influence of the multipole field used in the neutral
APA, Harvard, Vancouver, ISO, and other styles
9

Dufour, G., D. B. Cassidy, P. Crivelli, et al. "Prospects for Studies of the Free Fall and Gravitational Quantum States of Antimatter." Advances in High Energy Physics 2015 (2015): 1–16. http://dx.doi.org/10.1155/2015/379642.

Full text
Abstract:
Different experiments are ongoing to measure the effect of gravity on cold neutral antimatter atoms such as positronium, muonium, and antihydrogen. Among those, the project GBAR at CERN aims to measure precisely the gravitational fall of ultracold antihydrogen atoms. In the ultracold regime, the interaction of antihydrogen atoms with a surface is governed by the phenomenon of quantum reflection which results in bouncing of antihydrogen atoms on matter surfaces. This allows the application of a filtering scheme to increase the precision of the free fall measurement. In the ultimate limit of sma
APA, Harvard, Vancouver, ISO, and other styles
10

Yu. Voronin, A., V. V. Nesvizhevsky, G. Dufour, et al. "A spectroscopy approach to measure the gravitational mass of antihydrogen." International Journal of Modern Physics: Conference Series 30 (January 2014): 1460266. http://dx.doi.org/10.1142/s201019451460266x.

Full text
Abstract:
We study a method to induce resonant transitions between antihydrogen [Formula: see text] quantum states above a material surface in the gravitational field of the Earth. The method consists of applying a gradient of magnetic field, which is temporally oscillating with the frequency equal to a frequency of transition between gravitational states of antihydrogen. A corresponding resonant change in the spatial density of antihydrogen atoms could be measured as a function of the frequency of applied field. We estimate an accuracy of measuring antihydrogen gravitational states spacing and show how
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Antihydrogene"

1

Comini, Pauline. "Étude de la formation d'antihydrogène neutre et ionisé dans les collisions antiproton-positronium." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066639/document.

Full text
Abstract:
L’expérience GBAR propose de mesurer, au CERN, l’accélération de la pesanteur terrestre sur l’antimatière grâce à des atomes froids (neV) d’antihydrogène soumis à une chute libre. Ceux-ci sont obtenus en refroidissant d’abord des ions positifs d’antihydrogène, obtenus grâce à deux réactions consécutives se produisant lors de la collision d’un faisceau d’antiprotons avec un nuage dense de positronium.Le travail de thèse porte sur l'étude de ces réactions dans le but d’optimiser la production des ions d’antihydrogène. Pour cela, les sections efficaces des deux réactions ont été calculées dans le
APA, Harvard, Vancouver, ISO, and other styles
2

Comparat, Daniel. "EXPERIENCES AVEC DES ATOMES DE RYDBERG ET DES MOLECULES ULTRA-FROIDS." Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2008. http://tel.archives-ouvertes.fr/tel-00343528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chamberlain, Charles William. "Hydrogen-antihydrogen interactions." Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Todd, Allan. "Helium-Antihydrogen Interactions." Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vieille, Grosjean Mélissa. "Atomes de Rydberg : Étude pour la production d'une source d'électrons monocinétique. Désexcitation par radiation THz pour l'antihydrogène." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS349/document.

Full text
Abstract:
Depuis les années 1975, les atomes de Rydberg sont étudiés et maintenant utilisés en information quantique pour leurs propriétés particulières d’interaction. Cependant, ces objets physiques peuvent se retrouver impliqués dans différentes autres applications, où leurs caractéristiques remarquables en font de parfaits outils. Dans ce mémoire, nous nous intéresserons à deux applications distinctes faisant intervenir des atomes de Rydberg de césium. Tout d’abord, nous verrons comment utiliser de tels atomes pour produire une source d’électrons monocinétiques, grâce au mécanisme d’ionisation singul
APA, Harvard, Vancouver, ISO, and other styles
6

Maia, Leite Amélia Mafalda. "Development of a buffer gas trap for the confinement of positrons and study of positronium production in the GBAR experiment." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS380/document.

Full text
Abstract:
L’expérience GBAR repose sur la production d’ions antihydrogène positifs dans le but de mesurer l’accélération gravitationnelle à laquelle est soumise l’antimatière au repos. Le projet ANTION, sous-projet de GBAR, a pour but la production de ces ions d’antimatière. Il vise également à mesurer la section efficace de production d’antihydrogène dans les collisions d’antiprotons sur des atomes de positronium, ainsi que les sections efficaces correspondantes avec la matière, de production d’hydrogène et de l’ion hydrogène négatif. Ces expériences reposent sur la formation d’un nuage très dense de p
APA, Harvard, Vancouver, ISO, and other styles
7

Kalra, Rita Rani. "An Improved Antihydrogen Trap." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:14226066.

Full text
Abstract:
The recent demonstration of trapped atomic antihydrogen for 15 to 1000 seconds is a milestone towards precise spectroscopy for tests of CPT invariance. The confinement of a total of 105±21 atoms in a quadrupole magnetic trap was made possible by several improved methods. Improved accumulation techniques give us the largest numbers of constituent particles yet: up to 10 million antiprotons and several billion positrons. A novel cooling protocol leads to 3.5 K antiprotons, the coldest ever observed. Characterizing and controlling the geometry and density of these confined antimatter plasmas allo
APA, Harvard, Vancouver, ISO, and other styles
8

Latacz, Barbara Maria. "Study of the antihydrogen atom and ion production via charge exchange reaction on positronium." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS266/document.

Full text
Abstract:
Le but principal de la collaboration GBAR est de mesurer le comportement d'atomes d'antihydrogène sous l'effet de la gravité terrestre. Ceci est fait en mesurant la chute libre classique d'atomes d'antihydrogène, qui est un test direct du principe d'équivalence faible pour l'antimatière. La première étape de l'expérience est de produire des ions d'antihydrogène et de les amener dans un piège de Paul, où ils peuvent être refroidis à une température de l'ordre du μK en utilisant la technique du refroidissement sympathique avec des ions Be⁺ eux-mêmes mis dans leur état fondamental par la techniqu
APA, Harvard, Vancouver, ISO, and other styles
9

Butler, Eoin. "Antihydrogen formation, dynamics and trapping." Thesis, Swansea University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yzombard, Pauline. "Laser cooling and manipulation of antimatter in the AEgIS experiment." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS272/document.

Full text
Abstract:
Ma thèse s’est déroulée dans le cadre de la collaboration AEgIS, une des expériences étudiant l’antimatière au CERN. L’objectif final est de mesurer l’effet de la gravité sur un faisceau froid d’antihydrogène (Hbar). AEgIS se propose de créer les Hbar froids par échange de charges entre un atome de Positronium (Ps) excité (état de Rydberg) et un antiproton piégé : 〖Ps〗^*+ pbar → (H^*)⁻ + e⁻. L’étude de la physique du Ps est cruciale pour AEgIS, et demande des systèmes lasers adaptés. Pendant ma thèse, ma première tâche a été de veiller au bon fonctionnement des systèmes lasers de l’expérience.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Antihydrogene"

1

Charlton, Michael, Stefan Eriksson, and Graham M. Shore. Antihydrogen and Fundamental Physics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51713-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hydomako, Richard. Detection of Trapped Antihydrogen. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34484-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hydomako, Richard. Detection of Trapped Antihydrogen. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hydomako, Richard. Detection of Trapped Antihydrogen. Springer, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Eriksson, Stefan, Michael Charlton, and Graham M. Shore. Antihydrogen and Fundamental Physics: Testing Fundamental Physics. Springer, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Antihydrogene"

1

Charlton, Michael, Stefan Eriksson, and Graham M. Shore. "Antihydrogen." In Antihydrogen and Fundamental Physics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51713-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gabrielse, G., L. Haarsma, S. L. Rolston, and W. Kells. "Antihydrogen Production." In Laser Spectroscopy VIII. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-540-47973-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Butler, E., G. B. Andresen, M. D. Ashkezari, et al. "Trapped antihydrogen." In LEAP 2011. Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-5530-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Charlton, Michael, Stefan Eriksson, and Graham M. Shore. "Introduction." In Antihydrogen and Fundamental Physics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51713-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Charlton, Michael, Stefan Eriksson, and Graham M. Shore. "Fundamental Principles." In Antihydrogen and Fundamental Physics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51713-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Charlton, Michael, Stefan Eriksson, and Graham M. Shore. "Other Antimatter Species." In Antihydrogen and Fundamental Physics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51713-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Charlton, Michael, Stefan Eriksson, and Graham M. Shore. "Summary and Outlook." In Antihydrogen and Fundamental Physics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51713-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fujiwara, M. C., D. R. Gill, L. Kurchaninov, et al. "Towards antihydrogen confinement with the ALPHA antihydrogen trap." In TCP 2006. Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73466-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Poth, H. "Synthesis of Antihydrogen." In Atomic Physics with Positrons. Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-0963-5_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jacobsen, F. M., L. H. Andersen, B. I. Deutch, et al. "On Antihydrogen Production." In Atomic Physics with Positrons. Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-0963-5_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Antihydrogene"

1

Walz, Jochen. "Antihydrogen." In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5192011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schmidt, Iván. "Antihydrogen." In First Latin American symposium on high energy physics and The VII Mexican School of Particles and Fields. AIP, 1997. http://dx.doi.org/10.1063/1.53213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gabrielse, G. "Slow Antihydrogen." In ATOMIC PROCESSES IN PLASMAS: 14th APS Topical Conference on Atomic Processes in Plasmas. AIP, 2004. http://dx.doi.org/10.1063/1.1824851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rizzini, Evandro Lodi, Luca Venturelli, Nicola Zurlo, Yasuyuki Kanai, and Yasunori Yamazaki. "Antihydrogen production." In PROCEEDINGS OF THE WORKSHOP ON COLD ANTIMATTER PLASMAS AND APPLICATION TO FUNDAMENTAL PHYSICS. AIP, 2008. http://dx.doi.org/10.1063/1.2977847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Poth, H. "Physics with antihydrogen." In AIP Conference Proceedings Volume 150. AIP, 1986. http://dx.doi.org/10.1063/1.36118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

FUJIWARA, M. C., G. B. ANDRESEN, M. D. ASHKEZARI, et al. "ALPHA ANTIHYDROGEN EXPERIMENT." In Proceedings of the Fifth Meeting. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814327688_0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brian, J., and A. Mitchell. "Antihydrogen production schemes." In 3rd Conference on the Intersections Between Particle and Nuclear Physics. American Institute of Physics, 1988. http://dx.doi.org/10.1063/1.37751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gabrielse, Gerald. "Observation of cold antihydrogen." In Frontiers in Optics. OSA, 2003. http://dx.doi.org/10.1364/fio.2003.tua3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

GABRIELSE, G., J. N. TAN, N. S. BOWDEN, et al. "COLD ANTIHYDROGEN AND CPT." In Proceedings of the Second Meeting. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778123_0025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

AMSLER, Claude. "The ATHENA antihydrogen detector." In International Europhysics Conference on High Energy Physics. Sissa Medialab, 2001. http://dx.doi.org/10.22323/1.007.0270.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Antihydrogene"

1

Blanford, Glenn DelFosse. Observation of relativistic antihydrogen atoms. Office of Scientific and Technical Information (OSTI), 1998. http://dx.doi.org/10.2172/16551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cabrielse, Gerald. Antiprotons, Antihydrogen and Mass Spectroscopy. Defense Technical Information Center, 2001. http://dx.doi.org/10.21236/ada388318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Keating, Christopher. Using Strong Laser Fields to Produce Antihydrogen Ions. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.6403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gabrielse, Gerald. The Production and Study of Antiprotons and Cold Antihydrogen. Defense Technical Information Center, 2010. http://dx.doi.org/10.21236/ada563600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gabrielse, Gerald. The Production and Study of Antiprotons and Cold Antihydrogen. Defense Technical Information Center, 2006. http://dx.doi.org/10.21236/ada461017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gabrielse, Gerald. The Production and Study of Cold Antiprotons and Antihydrogen. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ada626745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wurtele, Jonathan, and Joel Fajans. Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1504778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Robicheaux, Francis. Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1072055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Robicheaux, Francis. Experimental and theoretical study of the plasma physics of antihydrogen generation and trapping. Final Scientific Report. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1573060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ordonez, Carlos. Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping. Final Technical Report. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1561529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!