Journal articles on the topic 'Antimicrobial chemokine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Antimicrobial chemokine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chensue, Stephen W. "Molecular Machinations: Chemokine Signals in Host-Pathogen Interactions." Clinical Microbiology Reviews 14, no. 4 (October 1, 2001): 821–35. http://dx.doi.org/10.1128/cmr.14.4.821-835.2001.
Full textCrawford, Matthew A., Yinghua Zhu, Candace S. Green, Marie D. Burdick, Patrick Sanz, Farhang Alem, Alison D. O'Brien, Borna Mehrad, Robert M. Strieter, and Molly A. Hughes. "Antimicrobial Effects of Interferon-Inducible CXC Chemokines against Bacillus anthracis Spores and Bacilli." Infection and Immunity 77, no. 4 (January 29, 2009): 1664–78. http://dx.doi.org/10.1128/iai.01208-08.
Full textBoink, Mireille A., Sanne Roffel, Kamran Nazmi, Jan G. M. Bolscher, Enno C. I. Veerman, and Susan Gibbs. "Saliva-Derived Host Defense Peptides Histatin1 and LL-37 Increase Secretion of Antimicrobial Skin and Oral Mucosa Chemokine CCL20 in an IL-1α-Independent Manner." Journal of Immunology Research 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/3078194.
Full textDishman, Acacia F., Jie He, Brian F. Volkman, and Anna R. Huppler. "Metamorphic Protein Folding Encodes Multiple Anti-Candida Mechanisms in XCL1." Pathogens 10, no. 6 (June 17, 2021): 762. http://dx.doi.org/10.3390/pathogens10060762.
Full textLucero, Carissa M., Beth Fallert Junecko, Cynthia R. Klamar, Lauren A. Sciullo, Stella J. Berendam, Anthony R. Cillo, Shulin Qin, et al. "Macaque Paneth Cells Express Lymphoid Chemokine CXCL13 and Other Antimicrobial Peptides Not Previously Described as Expressed in Intestinal Crypts." Clinical and Vaccine Immunology 20, no. 8 (June 26, 2013): 1320–28. http://dx.doi.org/10.1128/cvi.00651-12.
Full textXiao, Xun, Yanqi Zhang, Zhiwei Liao, and Jianguo Su. "Characterization and Antimicrobial Activity of the Teleost Chemokine CXCL20b." Antibiotics 9, no. 2 (February 12, 2020): 78. http://dx.doi.org/10.3390/antibiotics9020078.
Full textValdivia-Silva, Julio, Jaciel Medina-Tamayo, and Eduardo Garcia-Zepeda. "Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents." International Journal of Molecular Sciences 16, no. 12 (June 8, 2015): 12958–85. http://dx.doi.org/10.3390/ijms160612958.
Full textSchutte, Kirsten M., Debra J. Fisher, Marie D. Burdick, Borna Mehrad, Amy J. Mathers, Barbara J. Mann, Robert K. Nakamoto, and Molly A. Hughes. "Escherichia coli Pyruvate Dehydrogenase Complex Is an Important Component of CXCL10-Mediated Antimicrobial Activity." Infection and Immunity 84, no. 1 (November 9, 2015): 320–28. http://dx.doi.org/10.1128/iai.00552-15.
Full textMuñoz-Atienza, Estefanía, Carolina Aquilino, Khairul Syahputra, Azmi Al-Jubury, Carlos Araújo, Jakob Skov, Per W. Kania, et al. "CK11, a Teleost Chemokine with a Potent Antimicrobial Activity." Journal of Immunology 202, no. 3 (January 4, 2019): 857–70. http://dx.doi.org/10.4049/jimmunol.1800568.
Full textRajasekaran, Ganesan, S. Dinesh Kumar, Jiyoung Nam, Dasom Jeon, Yangmee Kim, Chul Won Lee, Il-Seon Park, and Song Yub Shin. "Antimicrobial and anti-inflammatory activities of chemokine CXCL14-derived antimicrobial peptide and its analogs." Biochimica et Biophysica Acta (BBA) - Biomembranes 1861, no. 1 (January 2019): 256–67. http://dx.doi.org/10.1016/j.bbamem.2018.06.016.
Full textNagaoka, Isao, Kaori Suzuki, François Niyonsaba, Hiroshi Tamura, and Michimasa Hirata. "Modulation of Neutrophil Apoptosis by Antimicrobial Peptides." ISRN Microbiology 2012 (March 27, 2012): 1–12. http://dx.doi.org/10.5402/2012/345791.
Full textHoldren, Grant, David Rosenthal, Jianyi Yang, Amber Bates, Carol Fischer, Yang Zhang, Nicole Brogden, and Kim Brogden. "Antimicrobial Activity of Chemokine CXCL10 for Dermal and Oral Microorganisms." Antibiotics 3, no. 4 (October 23, 2014): 527–39. http://dx.doi.org/10.3390/antibiotics3040527.
Full textNguyen, Leonard T., David I. Chan, Laura Boszhard, Sebastian A. J. Zaat, and Hans J. Vogel. "Structure–function studies of chemokine-derived carboxy-terminal antimicrobial peptides." Biochimica et Biophysica Acta (BBA) - Biomembranes 1798, no. 6 (June 2010): 1062–72. http://dx.doi.org/10.1016/j.bbamem.2009.11.021.
Full textThammasit, Patcharin, Jirapas Sripetchwandee, Joshua D. Nosanchuk, Siriporn C. Chattipakorn, Nipon Chattipakorn, and Sirida Youngchim. "Cytokine and Chemokine Responses in Invasive Aspergillosis following Hematopoietic Stem Cell Transplantation: Past Evidence for Future Therapy of Aspergillosis." Journal of Fungi 7, no. 9 (September 13, 2021): 753. http://dx.doi.org/10.3390/jof7090753.
Full textBailer, Peter, Amanda E. Ward, Matthew Crawford, Debra Fisher, Lukas K. Tamm, and Molly Hughes. "Toxicity and Structure of Antimicrobial Peptides Derived from the Chemokine, CXCL10." Biophysical Journal 116, no. 3 (February 2019): 83a. http://dx.doi.org/10.1016/j.bpj.2018.11.492.
Full textKina, Shinichiro, Toshiyuki Nakasone, Hiroyuki Takemoto, Akira Matayoshi, Shoko Makishi, Nao Sunagawa, Feixin Liang, Thongsavanh Phonaphonh, and Hajime Sunakawa. "Regulation of Chemokine Production via Oxidative Pathway in HeLa Cells." Mediators of Inflammation 2009 (2009): 1–5. http://dx.doi.org/10.1155/2009/183760.
Full textChan, David I., Howard N. Hunter, Brian F. Tack, and Hans J. Vogel. "Human Macrophage Inflammatory Protein 3α: Protein and Peptide Nuclear Magnetic Resonance Solution Structures, Dimerization, Dynamics, and Anti-Infective Properties." Antimicrobial Agents and Chemotherapy 52, no. 3 (December 17, 2007): 883–94. http://dx.doi.org/10.1128/aac.00805-07.
Full textNevins, Amanda M., Akshay Subramanian, Jazma L. Tapia, David P. Delgado, Robert C. Tyler, Davin R. Jensen, André J. Ouellette, and Brian F. Volkman. "A Requirement for Metamorphic Interconversion in the Antimicrobial Activity of Chemokine XCL1." Biochemistry 55, no. 27 (June 28, 2016): 3784–93. http://dx.doi.org/10.1021/acs.biochem.6b00353.
Full textLaneri, Sonia, Mariarita Brancaccio, Cristina Mennitti, Margherita G. De Biasi, Maria Elena Pero, Giuseppe Pisanelli, Olga Scudiero, and Raffaela Pero. "Antimicrobial Peptides and Physical Activity: A Great Hope against COVID 19." Microorganisms 9, no. 7 (June 30, 2021): 1415. http://dx.doi.org/10.3390/microorganisms9071415.
Full textMajumdar, Shamik, and Philip Murphy. "Adaptive Immunodeficiency in WHIM Syndrome." International Journal of Molecular Sciences 20, no. 1 (December 20, 2018): 3. http://dx.doi.org/10.3390/ijms20010003.
Full textBrogden, Kim A., Georgia K. Johnson, Steven D. Vincent, Taher Abbasi, and Shireen Vali. "Oral inflammation, a role for antimicrobial peptide modulation of cytokine and chemokine responses." Expert Review of Anti-infective Therapy 11, no. 10 (October 2013): 1097–113. http://dx.doi.org/10.1586/14787210.2013.836059.
Full textRamamourthy, Gopal, Mauricio Arias, Leonard T. Nguyen, Hiroaki Ishida, and Hans J. Vogel. "Expression and Purification of Chemokine MIP-3α (CCL20) through a Calmodulin-Fusion Protein System." Microorganisms 7, no. 1 (January 8, 2019): 8. http://dx.doi.org/10.3390/microorganisms7010008.
Full textWilliams, Andrew E., and Rachel C. Chambers. "The mercurial nature of neutrophils: still an enigma in ARDS?" American Journal of Physiology-Lung Cellular and Molecular Physiology 306, no. 3 (February 1, 2014): L217—L230. http://dx.doi.org/10.1152/ajplung.00311.2013.
Full textBjörstad, Åse, Huamei Fu, Anna Karlsson, Claes Dahlgren, and Johan Bylund. "Interleukin-8-Derived Peptide Has Antibacterial Activity." Antimicrobial Agents and Chemotherapy 49, no. 9 (September 2005): 3889–95. http://dx.doi.org/10.1128/aac.49.9.3889-3895.2005.
Full textSun, Baiming, Yang Lei, Zhenjie Cao, Yongcan Zhou, Yun Sun, Ying Wu, Shifeng Wang, Weiliang Guo, and Chunsheng Liu. "TroCCL4, a CC chemokine of Trachinotus ovatus, is involved in the antimicrobial immune response." Fish & Shellfish Immunology 86 (March 2019): 525–35. http://dx.doi.org/10.1016/j.fsi.2018.11.080.
Full textNguyen, Leonard T., Paulus H. S. Kwakman, David I. Chan, Zhihong Liu, Leonie de Boer, Sebastian A. J. Zaat, and Hans J. Vogel. "Exploring Platelet Chemokine Antimicrobial Activity: Nuclear Magnetic Resonance Backbone Dynamics of NAP-2 and TC-1." Antimicrobial Agents and Chemotherapy 55, no. 5 (February 14, 2011): 2074–83. http://dx.doi.org/10.1128/aac.01351-10.
Full textBurkhardt, Amanda M., Kenneth P. Tai, Juan P. Flores-Guiterrez, Natalia Vilches-Cisneros, Karishma Kamdar, Oralia Barbosa-Quintana, Ricardo Valle-Rios, et al. "CXCL17 Is a Mucosal Chemokine Elevated in Idiopathic Pulmonary Fibrosis That Exhibits Broad Antimicrobial Activity." Journal of Immunology 188, no. 12 (May 18, 2012): 6399–406. http://dx.doi.org/10.4049/jimmunol.1102903.
Full textPark, Jong-Hwan, Yun-Gi Kim, Michael Shaw, Thirumala-Devi Kanneganti, Yukari Fujimoto, Koichi Fukase, Naohiro Inohara, and Gabriel Núñez. "Nod1/RICK and TLR Signaling Regulate Chemokine and Antimicrobial Innate Immune Responses in Mesothelial Cells." Journal of Immunology 179, no. 1 (June 19, 2007): 514–21. http://dx.doi.org/10.4049/jimmunol.179.1.514.
Full textHieshima, Kunio, Haruo Ohtani, Michiko Shibano, Dai Izawa, Takashi Nakayama, Yuri Kawasaki, Fumio Shiba, et al. "CCL28 Has Dual Roles in Mucosal Immunity as a Chemokine with Broad-Spectrum Antimicrobial Activity." Journal of Immunology 170, no. 3 (February 1, 2003): 1452–61. http://dx.doi.org/10.4049/jimmunol.170.3.1452.
Full textMartínez-Becerra, Francisco, Daniel-Adriano Silva, Lenin Domínguez-Ramírez, Guillermo Mendoza-Hernández, Yolanda López-Vidal, Gloria Soldevila, and Eduardo A. García-Zepeda. "Analysis of the antimicrobial activities of a chemokine-derived peptide (CDAP-4) on Pseudomonas aeruginosa." Biochemical and Biophysical Research Communications 355, no. 2 (April 2007): 352–58. http://dx.doi.org/10.1016/j.bbrc.2007.01.188.
Full textValore, Erika V., Dorothy J. Wiley, and Tomas Ganz. "Reversible Deficiency of Antimicrobial Polypeptides in Bacterial Vaginosis." Infection and Immunity 74, no. 10 (October 2006): 5693–702. http://dx.doi.org/10.1128/iai.00524-06.
Full textDi Liberto, Diana, Massimo Locati, Nadia Caccamo, Annunciata Vecchi, Serena Meraviglia, Alfredo Salerno, Guido Sireci, et al. "Role of the chemokine decoy receptor D6 in balancing inflammation, immune activation, and antimicrobial resistance in Mycobacterium tuberculosis infection." Journal of Experimental Medicine 205, no. 9 (August 11, 2008): 2075–84. http://dx.doi.org/10.1084/jem.20070608.
Full textGhosh, Santosh K., Sanhita Gupta, Bin Jiang, and Aaron Weinberg. "Fusobacterium nucleatum and Human Beta-Defensins Modulate the Release of Antimicrobial Chemokine CCL20/Macrophage Inflammatory Protein 3α." Infection and Immunity 79, no. 11 (September 12, 2011): 4578–87. http://dx.doi.org/10.1128/iai.05586-11.
Full textChen, Lanlin, Zhimin Zhang, Kathryn E. Barletta, Marie D. Burdick, and Borna Mehrad. "Heterogeneity of lung mononuclear phagocytes during pneumonia: contribution of chemokine receptors." American Journal of Physiology-Lung Cellular and Molecular Physiology 305, no. 10 (November 15, 2013): L702—L711. http://dx.doi.org/10.1152/ajplung.00194.2013.
Full textHosokawa, Yoshitaka, Ikuko Hosokawa, and Kazumi Ozaki. "Nobiletin Decreases Inflammatory Mediator Expression in Tumor Necrosis Factor-Stimulated Human Periodontal Ligament Cells." Mediators of Inflammation 2021 (July 10, 2021): 1–7. http://dx.doi.org/10.1155/2021/5535844.
Full textOgawa, Hiroyuki, Mitsutoshi Iimura, Lars Eckmann, and Martin F. Kagnoff. "Regulated production of the chemokine CCL28 in human colon epithelium." American Journal of Physiology-Gastrointestinal and Liver Physiology 287, no. 5 (November 2004): G1062—G1069. http://dx.doi.org/10.1152/ajpgi.00162.2004.
Full textOudhoff, Menno J., Marjolein E. Blaauboer, Kamran Nazmi, Nina Scheres, Jan G. M. Bolscher, and Enno C. I. Veerman. "The role of salivary histatin and the human cathelicidin LL-37 in wound healing and innate immunity." Biological Chemistry 391, no. 5 (May 1, 2010): 541–48. http://dx.doi.org/10.1515/bc.2010.057.
Full textBourbigot, Sarah, Liam Fardy, Alan J. Waring, Michael R. Yeaman, and Valerie Booth. "Structure of Chemokine-Derived Antimicrobial Peptide Interleukin-8α and Interaction with Detergent Micelles and Oriented Lipid Bilayers." Biochemistry 48, no. 44 (November 10, 2009): 10509–21. http://dx.doi.org/10.1021/bi901311p.
Full textJin, Ge, Hameem I. Kawsar, Stanley A. Hirsch, Chun Zeng, Xun Jia, Zhimin Feng, Santosh K. Ghosh, et al. "An Antimicrobial Peptide Regulates Tumor-Associated Macrophage Trafficking via the Chemokine Receptor CCR2, a Model for Tumorigenesis." PLoS ONE 5, no. 6 (June 8, 2010): e10993. http://dx.doi.org/10.1371/journal.pone.0010993.
Full textReid-Yu, Sarah A., Brian R. Tuinema, Cherrie N. Small, Lydia Xing, and Brian K. Coombes. "CXCL9 Contributes to Antimicrobial Protection of the Gut during Citrobacter rodentium Infection Independent of Chemokine-Receptor Signaling." PLOS Pathogens 11, no. 2 (February 2, 2015): e1004648. http://dx.doi.org/10.1371/journal.ppat.1004648.
Full textBourbigot, Sarah, and Valerie Booth. "Structure-Activity Relationships in Two Antimicrobial Peptides Based on Chemokine Helical Segments: RP-1 and IL-8α." Biophysical Journal 96, no. 3 (February 2009): 409a—410a. http://dx.doi.org/10.1016/j.bpj.2008.12.2088.
Full textElass, Elisabeth, Maryse Masson, Joël Mazurier, and Dominique Legrand. "Lactoferrin Inhibits the Lipopolysaccharide-Induced Expression and Proteoglycan-Binding Ability of Interleukin-8 in Human Endothelial Cells." Infection and Immunity 70, no. 4 (April 2002): 1860–66. http://dx.doi.org/10.1128/iai.70.4.1860-1866.2002.
Full textYount, Nannette Y., Kimberly D. Gank, Yan Qiong Xiong, Arnold S. Bayer, Thomas Pender, William H. Welch, and Michael R. Yeaman. "Platelet Microbicidal Protein 1: Structural Themes of a Multifunctional Antimicrobial Peptide." Antimicrobial Agents and Chemotherapy 48, no. 11 (November 2004): 4395–404. http://dx.doi.org/10.1128/aac.48.11.4395-4404.2004.
Full textSperandio, Brice, Béatrice Regnault, Jianhua Guo, Zhi Zhang, Samuel L. Stanley, Philippe J. Sansonetti, and Thierry Pédron. "Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression." Journal of Experimental Medicine 205, no. 5 (April 21, 2008): 1121–32. http://dx.doi.org/10.1084/jem.20071698.
Full textCoussens, Anna K., Robert J. Wilkinson, Yasmeen Hanifa, Vladyslav Nikolayevskyy, Paul T. Elkington, Kamrul Islam, Peter M. Timms, et al. "Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment." Proceedings of the National Academy of Sciences 109, no. 38 (September 4, 2012): 15449–54. http://dx.doi.org/10.1073/pnas.1200072109.
Full textSerebryanaya, N. B., S. N. Shanin, E. E. Fomicheva, and P. P. Yakutseni. "BLOOD PLATELETS AS ACTIVATORS AND REGULATORS OF INFLAMMATORY AND IMMUNE REACTIONS. PART 2. THROMBOCYTES AS PARTICIPANTS OF IMMUNE REACTIONS." Medical Immunology (Russia) 21, no. 1 (January 24, 2019): 9–20. http://dx.doi.org/10.15789/1563-0625-2019-1-9-20.
Full textMarth, Christina D., Simon M. Firestone, Dave Hanlon, Lisa Y. Glenton, Glenn F. Browning, Neil D. Young, and Natali Krekeler. "Innate immune genes in persistent mating-induced endometritis in horses." Reproduction, Fertility and Development 30, no. 3 (2018): 533. http://dx.doi.org/10.1071/rd17157.
Full textKumar, Manish, Vanessa Kissoon-Singh, Aralia Leon Coria, France Moreau, and Kris Chadee. "Probiotic mixture VSL#3 reduces colonic inflammation and improves intestinal barrier function in Muc2 mucin-deficient mice." American Journal of Physiology-Gastrointestinal and Liver Physiology 312, no. 1 (January 1, 2017): G34—G45. http://dx.doi.org/10.1152/ajpgi.00298.2016.
Full textCrawford, M. A., D. E. Lowe, D. J. Fisher, S. Stibitz, R. D. Plaut, J. W. Beaber, J. Zemansky, et al. "Identification of the bacterial protein FtsX as a unique target of chemokine-mediated antimicrobial activity against Bacillus anthracis." Proceedings of the National Academy of Sciences 108, no. 41 (September 26, 2011): 17159–64. http://dx.doi.org/10.1073/pnas.1108495108.
Full textCross, A. L., J. Hawkes, H. L. Wright, R. J. Moots, and S. W. Edwards. "APPA (apocynin and paeonol) modulates pathological aspects of human neutrophil function, without supressing antimicrobial ability, and inhibits TNFα expression and signalling." Inflammopharmacology 28, no. 5 (May 7, 2020): 1223–35. http://dx.doi.org/10.1007/s10787-020-00715-5.
Full text