Academic literature on the topic 'Antimicrobial peptide resistance'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Antimicrobial peptide resistance.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Antimicrobial peptide resistance"

1

Browne, Katrina, Sudip Chakraborty, Renxun Chen, Mark DP Willcox, David StClair Black, William R. Walsh, and Naresh Kumar. "A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides." International Journal of Molecular Sciences 21, no. 19 (September 24, 2020): 7047. http://dx.doi.org/10.3390/ijms21197047.

Full text
Abstract:
Antimicrobial resistance is a multifaceted crisis, imposing a serious threat to global health. The traditional antibiotic pipeline has been exhausted, prompting research into alternate antimicrobial strategies. Inspired by nature, antimicrobial peptides are rapidly gaining attention for their clinical potential as they present distinct advantages over traditional antibiotics. Antimicrobial peptides are found in all forms of life and demonstrate a pivotal role in the innate immune system. Many antimicrobial peptides are evolutionarily conserved, with limited propensity for resistance. Additionally, chemical modifications to the peptide backbone can be used to improve biological activity and stability and reduce toxicity. This review details the therapeutic potential of peptide-based antimicrobials, as well as the challenges needed to overcome in order for clinical translation. We explore the proposed mechanisms of activity, design of synthetic biomimics, and how this novel class of antimicrobial compound may address the need for effective antibiotics. Finally, we discuss commercially available peptide-based antimicrobials and antimicrobial peptides in clinical trials.
APA, Harvard, Vancouver, ISO, and other styles
2

Jung, Sook-In, Jonathan S. Finkel, Norma V. Solis, Siyang Chaili, Aaron P. Mitchell, Michael R. Yeaman, and Scott G. Filler. "Bcr1 Functions Downstream of Ssd1 To Mediate Antimicrobial Peptide Resistance in Candida albicans." Eukaryotic Cell 12, no. 3 (January 11, 2013): 411–19. http://dx.doi.org/10.1128/ec.00285-12.

Full text
Abstract:
ABSTRACTIn order to colonize the host and cause disease,Candida albicansmust avoid being killed by host defense peptides. Previously, we determined that the regulatory protein Ssd1 governs antimicrobial peptide resistance inC. albicans. Here, we sought to identify additional genes whose products govern susceptibility to antimicrobial peptides. We discovered that abcr1Δ/Δ mutant, like thessd1Δ/Δ mutant, had increased susceptibility to the antimicrobial peptides, protamine, RP-1, and human β defensin-2. Homozygous deletion ofBCR1in thessd1Δ/Δ mutant did not result in a further increase in antimicrobial peptide susceptibility. Exposure of thebcr1Δ/Δ andssd1Δ/Δ mutants to RP-1 induced greater loss of mitochondrial membrane potential and increased plasma membrane permeability than with the control strains. Therefore, Bcr1 and Ssd1 govern antimicrobial peptide susceptibility and likely function in the same pathway. Furthermore,BCR1mRNA expression was downregulated in thessd1Δ/Δ mutant, and the forced expression ofBCR1in thessd1Δ/Δ mutant partially restored antimicrobial peptide resistance. These results suggest that Bcr1 functions downstream of Ssd1. Interestingly, overexpression of 11 known Bcr1 target genes in thebcr1Δ/Δ mutant failed to restore antimicrobial peptide resistance, suggesting that other Bcr1 target genes are likely responsible for antimicrobial peptide resistance. Collectively, these results demonstrate that Bcr1 functions downstream of Ssd1 to govern antimicrobial peptide resistance by maintaining mitochondrial energetics and reducing membrane permeabilization.
APA, Harvard, Vancouver, ISO, and other styles
3

Bachrach, Gilad, Hamutal Altman, Paul E. Kolenbrander, Natalia I. Chalmers, Michal Gabai-Gutner, Amram Mor, Michael Friedman, and Doron Steinberg. "Resistance of Porphyromonas gingivalis ATCC 33277 to Direct Killing by Antimicrobial Peptides Is Protease Independent." Antimicrobial Agents and Chemotherapy 52, no. 2 (December 17, 2007): 638–42. http://dx.doi.org/10.1128/aac.01271-07.

Full text
Abstract:
ABSTRACT Antimicrobial peptides are short, positively charged, amphipathic peptides that possess a wide spectrum of antimicrobial activity and have an important role in the host's innate immunity. Lack of, or dysfunctions in, antimicrobial peptides have been correlated with infectious diseases, including periodontitis. Porphyromonas gingivalis, a gram-negative anaerobe and a major pathogen associated with periodontal diseases, is resistant to antimicrobial peptides of human and nonhuman origin, a feature that likely contributes to its virulence. Expressing a robust proteolytic activity, P. gingivalis hydrolyzes antimicrobial peptides. In this study, P. gingivalis inactivated three antimicrobial peptides, while a d-enantiomer was resistant to degradation. P. gingivalis was resistant to the protease-resistant d-enantiomer peptide, and importantly, a protease-deficient P. gingivalis mutant was also resistant to the antimicrobial peptide. Finally, the binding of a fluorescently labeled antimicrobial peptide to protease-deficient P. gingivalis was much weaker than the binding of susceptible Escherichia coli. Our results suggest that the resistance of P. gingivalis ATCC 33277 to direct killing by antimicrobial peptides is protease independent and results (at least partially) from the low affinity of antimicrobial peptides to P. gingivalis.
APA, Harvard, Vancouver, ISO, and other styles
4

Fernández, Lucía, W. James Gooderham, Manjeet Bains, Joseph B. McPhee, Irith Wiegand, and Robert E. W. Hancock. "Adaptive Resistance to the “Last Hope” Antibiotics Polymyxin B and Colistin in Pseudomonas aeruginosa Is Mediated by the Novel Two-Component Regulatory System ParR-ParS." Antimicrobial Agents and Chemotherapy 54, no. 8 (June 14, 2010): 3372–82. http://dx.doi.org/10.1128/aac.00242-10.

Full text
Abstract:
ABSTRACT As multidrug resistance increases alarmingly, polymyxin B and colistin are increasingly being used in the clinic to treat serious Pseudomonas aeruginosa infections. In this opportunistic pathogen, subinhibitory levels of polymyxins and certain antimicrobial peptides induce resistance toward higher, otherwise lethal, levels of these antimicrobial agents. It is known that the modification of lipid A of lipopolysaccharide (LPS) is a key component of this adaptive peptide resistance, but to date, the regulatory mechanism underlying peptide regulation in P. aeruginosa has remained elusive. The PhoP-PhoQ and PmrA-PmrB two-component systems, which control this modification under low-Mg2+ conditions, do not appear to play a major role in peptide-mediated adaptive resistance, unlike in Salmonella where PhoQ is a peptide sensor. Here we describe the identification and characterization of a novel P. aeruginosa two-component regulator affecting p olymyxin- a daptive r esistance, ParR-ParS (PA1799-PA1798). This system was required for activation of the arnBCADTEF LPS modification operon in the presence of subinhibitory concentrations of polymyxin, colistin, or the bovine peptide indolicidin, leading to increased resistance to various polycationic antibiotics, including aminoglycosides. This study highlights the complexity of the regulatory network controlling resistance to cationic antibiotics and host peptides in P. aeruginosa, which has major relevance in the development and deployment of cationic antimicrobials.
APA, Harvard, Vancouver, ISO, and other styles
5

Bechinger, B., and S. U. Gorr. "Antimicrobial Peptides: Mechanisms of Action and Resistance." Journal of Dental Research 96, no. 3 (November 25, 2016): 254–60. http://dx.doi.org/10.1177/0022034516679973.

Full text
Abstract:
More than 40 antimicrobial peptides and proteins (AMPs) are expressed in the oral cavity. These AMPs have been organized into 6 functional groups, 1 of which, cationic AMPs, has received extensive attention in recent years for their promise as potential antibiotics. The goal of this review is to describe recent advances in our understanding of the diverse mechanisms of action of cationic AMPs and the bacterial resistance against these peptides. The recently developed peptide GL13K is used as an example to illustrate many of the discussed concepts. Cationic AMPs typically exhibit an amphipathic conformation, which allows increased interaction with negatively charged bacterial membranes. Peptides undergo changes in conformation and aggregation state in the presence of membranes; conversely, lipid conformation and packing can adapt to the presence of peptides. As a consequence, a single peptide can act through several mechanisms depending on the peptide’s structure, the peptide:lipid ratio, and the properties of the lipid membrane. Accumulating evidence shows that in addition to acting at the cell membrane, AMPs may act on the cell wall, inhibit protein folding or enzyme activity, or act intracellularly. Therefore, once a peptide has reached the cell wall, cell membrane, or its internal target, the difference in mechanism of action on gram-negative and gram-positive bacteria may be less pronounced than formerly assumed. While AMPs should not cause widespread resistance due to their preferential attack on the cell membrane, in cases where specific protein targets are involved, the possibility exists for genetic mutations and bacterial resistance. Indeed, the potential clinical use of AMPs has raised the concern that resistance to therapeutic AMPs could be associated with resistance to endogenous host-defense peptides. Current evidence suggests that this is a rare event that can be overcome by subtle structural modifications of an AMP.
APA, Harvard, Vancouver, ISO, and other styles
6

Gank, Kimberly D., Michael R. Yeaman, Satoshi Kojima, Nannette Y. Yount, Hyunsook Park, John E. Edwards, Scott G. Filler, and Yue Fu. "SSD1 Is Integral to Host Defense Peptide Resistance in Candida albicans." Eukaryotic Cell 7, no. 8 (May 30, 2008): 1318–27. http://dx.doi.org/10.1128/ec.00402-07.

Full text
Abstract:
ABSTRACT Candida albicans is usually a harmless human commensal. Because inflammatory responses are not normally induced by colonization, antimicrobial peptides are likely integral to first-line host defense against invasive candidiasis. Thus, C. albicans must have mechanisms to tolerate or circumvent molecular effectors of innate immunity and thereby colonize human tissues. Prior studies demonstrated that an antimicrobial peptide-resistant strain of C. albicans, 36082R, is hypervirulent in animal models versus its susceptible counterpart (36082S). The current study aimed to identify a genetic basis for antimicrobial peptide resistance in C. albicans. Screening of a C. albicans genomic library identified SSD1 as capable of conferring peptide resistance to a susceptible surrogate, Saccharomyces cerevisiae. Sequencing confirmed that the predicted translation products of 36082S and 36082R SSD1 genes were identical. However, Northern analyses corroborated that SSD1 is expressed at higher levels in 36082R than in 36082S. In isogenic backgrounds, ssd1Δ/ssd1Δ null mutants were significantly more susceptible to antimicrobial peptides than parental strains but had equivalent susceptibilities to nonpeptide stressors. Moreover, SSD1 complementation of ssd1Δ/ssd1Δ mutants restored parental antimicrobial peptide resistance phenotypes, and overexpression of SSD1 conferred enhanced peptide resistance. Consistent with these in vitro findings, ssd1 null mutants were significantly less virulent in a murine model of disseminated candidiasis than were their parental or complemented strains. Collectively, these results indicate that SSD1 is integral to C. albicans resistance to host defense peptides, a phenotype that appears to enhance the virulence of this organism in vivo.
APA, Harvard, Vancouver, ISO, and other styles
7

Chu, Hung-Lun, Hui-Yuan Yu, Bak-Sau Yip, Ya-Han Chih, Chong-Wen Liang, Hsi-Tsung Cheng, and Jya-Wei Cheng. "Boosting Salt Resistance of Short Antimicrobial Peptides." Antimicrobial Agents and Chemotherapy 57, no. 8 (May 28, 2013): 4050–52. http://dx.doi.org/10.1128/aac.00252-13.

Full text
Abstract:
ABSTRACTThe efficacies of many antimicrobial peptides are greatly reduced under high salt concentrations, therefore limiting their use as pharmaceutical agents. Here, we describe a strategy to boost salt resistance and serum stability of short antimicrobial peptides by adding the nonnatural bulky amino acid β-naphthylalanine to their termini. The activities of the short salt-sensitive tryptophan-rich peptide S1 were diminished at high salt concentrations, whereas the activities of its β-naphthylalanine end-tagged variants were less affected.
APA, Harvard, Vancouver, ISO, and other styles
8

Rivas-Santiago, Bruno, Carmen J. Serrano, and J. Antonio Enciso-Moreno. "Susceptibility to Infectious Diseases Based on Antimicrobial Peptide Production." Infection and Immunity 77, no. 11 (August 24, 2009): 4690–95. http://dx.doi.org/10.1128/iai.01515-08.

Full text
Abstract:
ABSTRACT In the last few years, the great impact of antimicrobial peptides on infectious disease susceptibility and natural resistance has been reported. In some cases, susceptibility to diseases is related to antimicrobial peptide polymorphisms and gene copy numbers, but for the vast majority of infectious diseases, these phenomena need to be elucidated. This review is focused on the current knowledge about susceptibility and resistance conferred by genetic variations in antimicrobial peptide expression in infectious diseases.
APA, Harvard, Vancouver, ISO, and other styles
9

Chu, Hung-Lun, Ya-Han Chih, Kuang-Li Peng, Chih-Lung Wu, Hui-Yuan Yu, Doris Cheng, Yu-Ting Chou, and Jya-Wei Cheng. "Antimicrobial Peptides with Enhanced Salt Resistance and Antiendotoxin Properties." International Journal of Molecular Sciences 21, no. 18 (September 16, 2020): 6810. http://dx.doi.org/10.3390/ijms21186810.

Full text
Abstract:
A strategy was described to design antimicrobial peptides (AMPs) with enhanced salt resistance and antiendotoxin activities by linking two helical AMPs with the Ala-Gly-Pro (AGP) hinge. Among the designed peptides, KR12AGPWR6 demonstrated the best antimicrobial activities even in high salt conditions (NaCl ~300 mM) and possessed the strongest antiendotoxin activities. These activities may be related to hydrophobicity, membrane-permeability, and α-helical content of the peptide. Amino acids of the C-terminal helices were found to affect the peptide-induced permeabilization of LUVs, the α-helicity of the designed peptides under various LUVs, and the LPS aggregation and size alternation. A possible model was proposed to explain the mechanism of LPS neutralization by the designed peptides. These findings could provide a new approach for designing AMPs with enhanced salt resistance and antiendotoxin activities for potential therapeutic applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Ribeiro, Ana R. M., Helena P. Felgueiras, Susana P. G. Costa, and Sílvia M. M. A. Pereira-Lima. "Synthesis of Peptaibolin, an Antimicrobial Peptide." Proceedings 78, no. 1 (December 1, 2020): 47. http://dx.doi.org/10.3390/iecp2020-08654.

Full text
Abstract:
To tackle one of the biggest global health problems, the resistance of microorganisms to antibiotics, a collective effort in the search for more effective agents against bacteria was required. Peptides with antimicrobial activity have been raising much attention as a promising alternative for antibiotics. Peptaibols, for instance, are a family of antimicrobial peptides (AMPs) with great biomedical potential, in which the Peptaibolin can be highlighted. This peptide has gained relevance due to its small amino acids content, only four, and its acetyl group and a phenylalaninol residue (Phol) at the N-terminal and C-terminal, respectively. Here, we report the synthesis of Peptaibolin through Solid Phase Peptide Synthesis assisted by Microwave heating (MW-SPPS) in a pre-loaded Phe-Wang resin. Starting from a loading of 0.51 mmol/g, two syntheses were made, using two different combinations of coupling reagents. The best option was DIC/Oxima, achieving a yield of 50.0%. Proton Nuclear Magnetic Resonance (1H-NMR) studies confirmed the peptide structure, while High Performance Liquid Chromatography (HPLC) verified the peptide purity. The peptide solubility was examined against several combinations of solvents. Peptaibolin was not soluble in water, only in organic solvents or in the combination of both. Antimicrobial testing was conducted using Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. Minimum inhibitory concentration studies demonstrated the resistance of bacteria to the peptide action and the peptide instability in bacterial growth conditions.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Antimicrobial peptide resistance"

1

Vila, Farrés Xavier. "Development of new antimicrobial peptides and peptidomimetics and mechanism of resistance to peptide antibiotics." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/285375.

Full text
Abstract:
Nowadays in the world there is a very big problem associated with two factors related to each other. The first factor is the increase in the resistant of certain bacteria, especially the bacteria from the ESKPAE group. The second factor is the dramatically decrease of new antibiotics approved by the FDA. These two problems show that there is an urgent need to find new antibiotics active against these resistant bacteria. In this thesis, we have tackled two different topics closely related in the race to find new antimicrobials. The first topic tackled was the knowledge of the mechanism of resistance of Gram-negative (A. nosocomialis) and Gram-positive (S. mitis) bacteria. The two antibiotics studied were peptides, colistin and daptomicin, these two peptides are resistant to A. nosocomialis and S. mitis, respectively. Both peptides had a similar mechanism of action related to the membrane of bacteria, therefore we are going to focus just in the modifications in the membrane of the strains resistant to the antibiotic peptides. In S. mitis it was observed, using proteomic techniques, that two proteins related with the membrane were observed. These two proteins has some homologue domains to several proteins involved in daptomycin resistant in S. aureus and Enterococci. In A. nosocomialis, the bacteria showed a high tolerance to colistin, and at 8 mg/L an inflexion point is observed. In this inflexion point, the MIC of colistin, against bacteria increase from <0.1 mg/L to 128 mg/L. These bacteria with high resistance to colistin showed no production of LPS due to the fact that mutations and a stop codon in lpxD gene were observed. This gene is involved in the synthetic pathway of the LPS. Apart from the understanding of the mechanism of action of peptide antibiotics, we have proposed several peptides and peptidomimetics against Acinetobacter species. We have used two different approaches. The first approach is the normal approach, testing several peptides or peptidomimetics against the desired bacteria. The first peptides tested were commercially available, and we found mastoparan that was active against both colistin-susceptible and colistin-resistant A. baumannii. This peptide was optimized specially in terms of stability in human serum. After several in vivo trials we did not observe any activity of the peptides tested, however we found a very strong bindoing with some proteins present in the human serum. Frog skin secretions peptides were also tested against colistin-susceptible and colistin-resistant Acinetobacter species, the results obtained were really interesting specially in two peptides. The last peptides tested were peptidomimetics. These peptidomimetics act as an antimicrobial peptide, with two different faces, one face with a cation charge and the other very amphipathic. These peptidomimetics are analogues from the original structure of cholic acid, the structure was modified in order to have antibacterial activity that was found in colistin-susceptible and colistin-resistant A. baumannii, K. pneumonia and P. aeruginosa. The second approach was completely different, in this case the idea was to block the virulence of bacteria caused by OmpA. This protein is involved in the adherence between bacteria and host cells, therefore several hexacylcic peptides were synthesized in order to inhibit the action of this protein. The results obtained were satisfactory, obtaining good activity in both in vitro and in vivo.
Actualment al mon hi ha un greu problema derivat de dos factors relacionats, el primer factor es el increment de la resistència, especialment del bacteris del grup ESKAPE. El segon factor es la disminució dràstica en el nombre d’antibiòtics aprovats per la FDA. Aquests dos problemes fan que hi hagi una urgència per trobar nous antimicrobians efectius en front d’aquestes soques resistents. En aquesta tesi hem abordat dos temes diferents però que estan relacionats a la hora de trobar nous antibiòtics. El primer tema abordat es el de conèixer a fons els mecanismes de resistència de certs antibiòtics, en aquest cas peptídics, en front diferents tipus de soques tant Gram-positives (S. mitis) com Gram-negatives (A. nosocomialis). Els dos antibiòtics peptídics pels que s’ha estudiat la resistència son daptomicina i colistina, en front de S. mitis i A. nosocomialis respectivament. Ambdós pèptids actuen a nivell de membrana, per tant ens centrarem en veure les modificacions produïdes en els soques resistents. Per part de S. mitis resistent a daptomicina, es pot veure una sobreexpressió de dues proteïnes que tenen dominis homòlegs amb altres proteïnes involucrades en la resistència a daptomicina en altres bacteris. En la resistència a colistina es pot apreciar com les soques resistents d’A. nosocomialis presenten una deficiència del LPS. També hem proposat diferents alternatives com a nous antibiòtics, en aquest cas en front de soques A. baumannii. Dos tipus d’aproximacions van ser utilitzades, la primera, i mes clàssica es la de trobar nous antimicrobians, vàrem trobar mastoparan i va diferents paràmetres van ser optimitzat però sense obtindré bons resultats in vivo. També es van provar diferents pèptids provinents de les secrecions de les granotes, presentant bona activitat en front soques d’Acinetobacter, i per últim, les ceragenines, anàlegs del àcid cólic, que tenen bona activitat en front de totes les soques tant colistina sensibles com colistina resistents en Gram-negatius. La segona aproximació es buscant pèptids capaços d’inhibir l’adherència entre el bacteri i la cèl•lula del hoste bloquejant l’acció de la proteïna OmpA. S’ha trobat un pèptid amb bona activitat fins i tot in vivo.
APA, Harvard, Vancouver, ISO, and other styles
2

Gooderham, William James. "Regulation of virulence and antimicrobial peptide resistance in Pseudomonas aeruginosa." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/1014.

Full text
Abstract:
Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium that is also a major opportunistic human pathogen in nosocomial infections and cystic fibrosis chronic lung infections. These P. aeruginosa infections can be extremely difficult to treat due to the high intrinsic antibiotic resistance and broad repertoire of virulence factors, both of which are highly regulated. It was demonstrated here that the psrA gene, encoding a transcriptional regulator, was up-regulated in response to sub-inhibitory concentrations of antimicrobial peptides. Compared to wild-type and the complemented mutant, a P. aeruginosa PAO1 psrA::Tn5 mutant displayed intrinsic super-susceptibility to polymyxin B, a last resort antimicrobial used against multi-drug resistant infections, and indolicidin, a bovine neutrophil antimicrobial peptide; this super-susceptibility phenotype correlated with increased outer membrane permeability. The psrA mutant was also defective in simple biofilm formation, rapid attachment, and normal swarming motility, phenotypes that could be complemented by the cloned psrA gene. The role of PsrA in global gene regulation was studied by comparing the psrA mutant to wild-type by microarray analysis, demonstrating that 178 genes were up or down-regulated by greater than 2-fold (P ≤0.05). Dysregulated genes included those encoding known PsrA targets, the type III secretion apparatus and effectors, adhesion and motility genes and a variety of metabolic, energy metabolism and outer membrane permeability genes. This indicates that PsrA is a central regulator of antimicrobial peptide resistance and virulence. P. aeruginosa containing a mutation in the PhoQ sensor kinase-encoding gene was highly attenuated for persistence in a rat chronic lung infection model. In addition, the polymyxin B hyper-resistant phoQ mutant displayed reduced type IV pili-dependent twitching motility and was less cytotoxic towards human bronchial epithelial cells, indicating that the virulence defect observed could be due at least in part to these phenotypes. Using microarrays it was further demonstrated that PhoQ regulates a large number of genes that are PhoP-independent and that the phoQ mutation leads to up-regulation of PhoP- and PmrA regulated genes as well as other genes consistent with its virulence phenotypes.
APA, Harvard, Vancouver, ISO, and other styles
3

thew, Francis Matthew Francis. "Investigating antimicrobial resistance mechanisms in Neisseria gonorrhoeae using peptide probes." Thesis, Durham University, 2009. http://etheses.dur.ac.uk/185/.

Full text
Abstract:
The continuing evolution of antibiotic resistance strains of Neisseria gonorrhoeae coupled with the paucity of new antimicrobial agents makes the treatment of gonococcal infections challenging. A major cause of resistance is the expression of a multidrug efflux pump termed MtrCDE, which exports a wide range of antimicrobial agents. Efflux pumps are membrane-bound systems and consequently challenging to study and target with drugs. The transcriptional regulator (MtrR) of the efflux pump, however, is a soluble protein and therefore more amenable to study and drug target validation investigations. This thesis serves to investigate the hypothesis that substrates for the MtrCDE efflux pump are also ligands for the regulator MtrR. Isothermal titration calorimetry (ITC) was used to show that MtrR binds commercial antibiotics and antimicrobial peptides. -lactam antibiotics not only bind MtrR but are hydrolysed by the multidrug protein. Evidence for this novel enzymatic activity is provided by ITC, mass spectrometric and microbiological techniques. A series of peptides derived from LL-37 were synthesised and screened for binding to MtrR. A key region of LL-37 with a higher affinity to MtrR than the natural product was then identified. The peptide binding site in MtrR was elucidated via a photoactivated peptide binding study. Electrophoresis mobility shift assays indicated that the peptides do not induce derepression of the genes controlled by MtrR, although the peptide derivatives of LL-37 were shown to be substrates for the MtrCDE efflux pump.
APA, Harvard, Vancouver, ISO, and other styles
4

Dintner, Sebastian. "Characterization of a sensory complex involved in antimicrobial peptide resistance." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-176173.

Full text
Abstract:
In their habitats, microorganisms are often in competition for limited nutrients. In order to succeed, many Gram-positive bacteria resort to production of peptide antibiotics. Therefore, resistance mechanisms against these compounds are essential. The first step of ensuring survival is the perception of the harmful drugs and mediation of resistance against it. In recent years, a group of ABC-transporters have been recognized as important resistance determinate against antimicrobial peptides. The expression of these transporters is generally regulated by a two-component system, which in most cases is encoded next to the transporter. Together they are described as detoxification modules. The permeases of the transporters are characterized by a large extracellular domain, while the histidine kinases lack an obvious input domain. One of the best understood examples is the BceRS-BceAB system of Bacillus subtilis, which mediates resistance against bacitracin, mersacidin and actagardine. For this system it was shown that the histidine kinase is not able to detect the substrate directly and instead has an absolute requirement for the transporter in stimulus perception. This describes a novel mode of signal transduction in which the transporter is the actual sensor and therefore regulates its own expression. To date, mechanistic details for this unique mode of signal transduction remain unknown. Several other examples have been described for transport proteins that have acquired additional sensing or regulatory functions beyond solute transport, and these have been designated trigger transporters. For these bifunctional transporters a direct protein-protein interaction with membrane-integrated or soluble components of signal transduction relays has been postulated. However, for most sensor/co-sensor pairs, conclusive proof of such an interaction is lacking, and so far little is known about the sites that might mediate contacts between the putative protein interfaces and how communication is achieved. Based on sequence and architectural similarities, we identified over 250 BceAB-like transporters in the protein database, which occurred almost exclusively in Firmicutes bacteria. To whether the regulatory interplay between the ABC transporter and the two-component system was a common theme in these antimicrobial peptide resistance modules, we carried out a phylogenetic study of these identified systems. We identified a clear coevolutionary relationship between transport permeases and histidine kinases. Furthermore, we identified conserved putative response regulator binding sites in the promoter regions of the transporter operons. Additionally, we were able to provide a tool to identify TCSs for transporters lacking a regulatory system in their genomic neighbourhood, which was based on the coclustering of histidine kinases and transporter permeases. These findings also suggested the existence of a sensory complex between BceAB-like transporters and BceS-like histidine kinases. To further investigate the signaling mechanism, we performed a random mutagenesis of the transport permease BceB with the aim to identify regions or residues within the transporter that are involved in signaling and/or resistance. With this approach we were able to identify mutations that affected either the ability for signaling or mediation of resistance. This showed a partial genetic separation of the two qualities, which could be achieved by single amino acid replacements. These results provide first insights into the signaling mechanism of the Bce system. In order to analyse the proposed communication between two-component system and ABC transporter, we further characterized their interactions by in vivo and in vitro approaches. We could demonstrate that the transporter BceAB is indeed able to interact directly with the histidine kinase. Because it was unknown how the signal perception by BceAB-type transporters occurs, we next analyzed substrate binding by the transporter permease BceB and could show direct binding of bacitracin by BceB. Finally, in vitro signal transduction assays indicated that complex formation with the transporter influenced the activity of the histidine kinase. In summary this thesis clearly shows the existence of a sensory complex comprised of BceRS-like two-component systems and BceAB-like ABC transporters and provides first functional insights into the mechanism of stimulus perception, signal transduction and antimicrobial resistance mechanism employed by these wide spread detoxification systems against antimicrobial peptides.
Um sich in solch hart umkämpften Habitaten wie dem Boden zu behaupten sind Bakterien dazu übergegangen Antibiotika zu produzieren, um das Wachstum der Konkurrenz einzudämmen. Eine Gruppe solcher Substanzen sind antimikrobielle Peptide, die von Gram-positiven Bakterien produziert werden. Zum Schutz vor Peptidantibiotika haben Gram-positive Bakterien eine Vielzahl verschiedener Resistenzmechanismen entwickelt. Den effizientesten Resistenzmechanismus gegen Peptidantibiotika stellt eine Gruppe ATP-abhängiger ABC-Transporter dar. Diese Transporter weisen einen besonderen Transmembranaufbau auf. Sie bestehen aus zehn Transmembranhelices und einer großen extrazellulären Domäne. Die Expression dieser Transportergruppe wird durch ein Zweikomponentensystem reguliert. Die Histidinkinase besitzt ebenfalls einen ungewöhnlichen Transmembranaufbau, da sie keine offensichtliche Bindedomäne besitzt. Zusammen bilden der Transporter und die Histidinkinase ein Resistenzmodul gegen Peptidantibiotika, das in Firmicutes weit verbreitet ist. Eines der am besten verstandenen Systeme ist das BceRS-BceAB System in Bacillus subtilis. Dieses System vermittelt Resistenz gegen Bacitracin, Actagardin und Mersacidin. Für dieses System konnte gezeigt werden, dass die Histidinkinase BceS alleine nicht in der Lage ist, auf Bacitracin zu reagieren, sondern stattdessen für die Reizwahrnehmung und die Vermittlung der Resistenz auf den Transporter BceAB angewiesen ist. Der Transporter reguliert somit eine eigene Produktion. Wie der Resistenzmechanismus in diesem System genau funktioniert konnte bisher aber noch nicht hinreichend geklärt werden. Dass Transporter neben ihrer Funktion Substrate über eine Zellmembran zu transportieren auch an der Reizwahrnehmung und der Antwortregulation beteiligt sein können, ist in unterschiedlichsten Beispielen beschrieben worden. Um die Signalweiterleitung an membranständige oder zytoplasmatische Komponenten des Signalwegs gewährleisten zu können, müssen diese miteinander interagieren, zum Beispiel durch direkte Protein-Protein Interaktionen. Bisher konnte jedoch für viele solcher Sensorkomplexe keine endgültige Erklärung für solch eine Interaktion dargestellt werden. Basierend auf einer Datenbankanalyse konnten über 250 BceAB-artige Transporter identifiziert und ein Großteil davon einer BceS-artigen Histidinkinase zugeordnet werden. Durch eine phylogenetische Studie konnte weiterhin gezeigte werden, dass BceRS-artige Zweikomponentensysteme und BceAB-artige Transporter in Firmicutes Bakterien weit verbreitet sind und sich über Ko-Evolution gemeinsam zu Resistenzmodulen gegen Peptidantibiotika entwickelt haben. Dazu konnte eine konservierte Antwortregulator-Bindestelle in den Promoter Regionen der Transporteroperons bestimmt werden. Zudem war es möglich aufgrund dieser Klassifizierung für diejenigen Permeasen ohne ein benachbartes Zweikomponentensystem anhand der Genomsequenz ein mögliches Regulationssystem zuzuordnen. Diese Erkenntnisse unterstützten die Vermutung über einen sensorischen Komplex zwischen BceS-ähnlichen Histidinkinasen und BceAB-ähnlichen ABC Transportern. In einer weiteren Studie konnten mittels zufälliger Mutagenese der Transporterpermease BceB Aminosäurereste identifizierte werden, die an der Signalweiterleitung und/oder Resistenzvermittlung beteiligt waren. Durch einige der eingefügten Mutationen wurde nur die Signalweiterleitung bzw. nur die Resistenz beeinträchtigt. Dies spricht dafür, dass eine partielle genetische Trennung der Aufgaben des Transporters möglich ist. Hierdurch konnten erste wichtige Einblicke in den Signalweiterleitungsmechanismus des Bce-Systems gewonnen werden. Um die vorgeschlagene Kommunikation zwischen Zweikomponentensystem und ABCTransporter weiterführend zu untersuchen, wurden Interaktionsstudien durchgeführt. Die auf in vitro und in vivo Studien basierenden Ergebnisse konnten eine direkte Interaktion zwischen BceS und BceAB darstellen. Darüber hinaus konnten wir in dieser Arbeit durch eine Oberflächenresonanz- Spektroskopie zum ersten Mal zeigen, dass die Transporterpermease Bacitracin direkt und spezifisch bindet. Außerdem konnte durch eine in vitro Rekonstruktion des Signalwegs im Bce-System gezeigt werden, dass die Aktivität der Histidinkinase durch die Anwesenheit des Transporters beeinflusst wird. Zusammenfassend zeigt die vorliegende Arbeit direkte Hinweise, dass BceRS-artige Zweikomponentensysteme und BceAB-artige ABC-Transporter zusammen einen sensorischen Komplex für Peptidantibiotika bilden. Dies wird unterstützt durch erste funktionelle Einblicke in die Mechanismen der Reizwahrnehmung und Signalweiterleitung in diesen in Firmicutes Bakterien weit verbreiteten Resistenzsystemen.
APA, Harvard, Vancouver, ISO, and other styles
5

Thomassin, Jenny-Lee. "Antimicrobial peptide resistance mechanisms used by Enteropathogenic and Enterohemorrhagic «Escherichia coli»." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121462.

Full text
Abstract:
Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are Gram-negative pathogens that cause diarrheal disease in the developed and developing world. To cause infection, these pathogens must overcome innate host defenses, such as secreted cationic antimicrobial peptides (AMPs). There are two groups of human AMPs: cathelicidins (LL-37) and defensins (α-defensin 5). AMPs are expressed in specific locations of the human body. In the small intestine, the infectious niche for EPEC, human α-defensins 5 and 6 (HD-5 and HD-6) are abundant and there are low levels of LL-37. Conversely in the colon, the infectious niche for EHEC, HD-5 and HD-6 are not expressed and LL-37 is abundant. Pathogens can overcome AMP-killing using several mechanisms, including proteolytic inactivation, producing shielding structures and modifying their lipopolysaccharide (LPS). We hypothesized that EPEC and EHEC use AMP-resistance mechanisms to resist killing by secreted AMPs during infection. Previously, CroP the omptin protease in Citrobacter rodentium, a murine pathogen used to model EPEC and EHEC infections, was shown to degrade murine cathelicidin. Both EPEC and EHEC have a CroP-homologue: OmpT. The contribution of OmpT to LL-37 resistance was analyzed in both pathogens. Peptide cleavage assays showed that EHEC OmpT cleaves and inactivates LL-37 more rapidly than EPEC OmpT. Higher ompT-expression and protein levels in EHEC than EPEC are responsible for the differences observed in LL-37 inactivation rates. Additional studies showed that OmpT was unable to cleave folded α-defensins. These data suggest that EPEC uses other mechanisms to resist killing by the AMPs in its infectious niche. To assess this possibility, surface structures that may shield the bacterial membrane from AMPs were identified. High transcript levels of gfcA, a gene required for group 4 capsule (G4C) secretion, were observed in EPEC but not EHEC. The unencapsulated EPEC ΔgfcA and EHEC wild-type strains were more susceptible to HD-5 killing than EPEC wild-type. Since the G4C is composed of the same sugar repeats as the LPS O-antigen, an O-antigen ligase (waaL) deletion mutant was generated to assess the role of the O-antigen in HD-5 resistance. The EPEC ΔwaaL strain was more susceptible to HD-5 than both the wild-type and ΔgfcA strains. Addition of exogenous polysaccharide increased survival of the ΔgfcAΔwaaL strain in the presence of HD-5, suggesting that HD-5 binds the polysaccharides present on the surface of EPEC. These data show that EPEC relies on both the G4C and O-antigen to resist the bactericidal activity of HD-5. Altogether, these data indicate that EHEC and EPEC differentially regulate AMP-specific resistance mechanisms as an adaptation to their specific infectious niches.
Les Escherichia coli entéropathogènes et entérohémorrhagiques (EPEC et EHEC) sont des bactéries à coloration Gram-négative qui causent des diarrhées dans les pays développés et en développement. Pour causer une infection, ces pathogènes doivent surmonter les défenses de l'immunité innée de l'hôte, tel que les peptides antimicrobiens sécrétés (PAMs). Chez l'humain, les PAMs sont divisés en deux groupes, les cathélicidines (ex. LL-37) et les défensines (ex. α-défensine humaine 5). L'expression des PAMs varie selon les tissus. Dans l'intestin grêle, la niche infectieuse des EPEC, les α-défensines humaines 5 et 6 (HD-5 et HD-6) sont abondantes et le niveau de LL-37 est bas. Inversement, HD-5 et HD-6 ne sont pas exprimées dans le côlon, la niche infectieuse des EHEC, et LL-37 est très abondant. Les pathogènes peuvent résister aux PAMs en utilisant différent mécanismes comme l'inactivation protéolytique, la production de structures recouvrant la cellule bactérienne et la modification du lipopolysaccharide (LPS). Notre hypothèse est que les EPEC et EHEC utilisent des mécanismes de résistance aux PAMs pour établir une infection. Précédemment, il a été démontré que la protéase de type omptin, CroP, de Citrobacter rodentium, un pathogène murin utilisé comme modèle pour les infections des EPEC et EHEC, dégrade la cathélicidine murine. Les EPEC et EHEC possèdent un homologue de CroP, OmpT. La contribution de OmpT à la résistance au LL-37 a été examinée chez ces deux pathogènes. Nos tests de clivage de peptide ont démontré que EHEC OmpT clive et inactive LL-37 plus rapidement que EPEC OmpT. La différence observée a été associée à une plus forte expression et production de OmpT chez les EHEC que chez les EPEC. Des tests supplémentaires ont démontré que OmpT ne peut pas cliver les α-défensines repliées. Ces données suggèrent qu'EPEC utilise d'autres mécanismes de résistance pour surmonter l'activité des PAMs présents dans sa niche infectieuse. Pour tester cette possibilité, les structures recouvrant la cellule ont été identifiées. Un haut niveau de transcription de gfcA, un gène requit pour la sécrétion de la capsule du groupe 4 (G4C), a été observé chez EPEC mais pas chez EHEC. Le mutant EPEC non-encapsulé ΔgfcA et la souche sauvage EHEC sont plus susceptible à l'effet du HD-5 que la souche sauvage EPEC. Étant donné que la G4C est composée des mêmes sucres que l'antigène O, la ligase de l'antigène O, waaL, a été délétée pour déterminer le rôle de l'antigène O dans la résistance au HD-5. La souche EPEC ΔwaaL est plus susceptible au HD-5 que la souche sauvage EPEC et le mutant EPEC ΔgfcA. L'addition de polysaccharide exogène augmente la survie du mutant ΔwaaLΔgfcA en présence de HD-5. Ceci indique que HD-5 se lie aux polysaccharides présents à la surface des EPEC. Ces données démontrent que la résistance à HD-5 chez EPEC repose sur la présence de la G4C et de l'antigène O. Toutes ces données indiquent que EHEC et EPEC utilisent des mécanismes de résistance différents aux PAMs, ce qui démontre une adaptation à leurs niches infectieuses respectives.
APA, Harvard, Vancouver, ISO, and other styles
6

Smith, Ryan Douglas. "Investigating the antimicrobial peptide resistance and mechanism of RosB and the Sap system." Thesis, University of Aberdeen, 2016. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=230775.

Full text
Abstract:
Bacteria have adapted to CAMP insult in many ways, this study has focused on two resistance mechanism for CAMPs, firstly the putatative potassium proton antiporter RosB has been shown not to efflux potassium with treatment of polymyxin B. The mechanism of resistance of RosB in Yersinia enterococcus was proposed to be a lowering of internal pH from a potassium efflux and a proton influx. The RosB homologue from Vibrio paraheamolyticus is able to efflux potassium with electrophile treatment, but unlike the potassium proton antiporter KefKC this potassium transport is not associated with CAMP resistance. The lack of resistance is likely to be due to an absence of intracellular pH regulation seen with the Vibrio RosB. The RosB homologue from E. coli YbaL has been shown to increase resistance to the electrophile NEM in high potassium media, but YbaL does not transport potassium when NEM is present. This suggests that YbaL is transporting another ion. The mechanism of ion transport for RosB is based on the sodium antiporter NhaA and NapA, this is due to similarities in the ion selection motif. There are differences between the Vibrio and Yersina homologue which would suggest that the Yersinia homologue is not transporting potassium. This second CAMP resistance mechanism studied was the ABC transporter Sap, with the focus of work done on the periplasmic substrate binding protein SapA. SapA binds the peptide within the periplasm and delivers it to the membrane domain for uptake in to the cell. It was not possible to detect any peptide binding to the SapA homologues from Klebsiella pneumonia or E. coli. Finally CAMPs purification was attempted under taken through Ni-NTA and chitin chromatography to produce human antimicrobial peptides. It was possible to 12 produce the human antimicrobial peptide HBD2 with thioredoxin fusion complex via Ni-NTA chromatography.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, P. "Identification of staphylococcal genes involved in resistance to the human antimicrobial peptide LL-37." Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1380282/.

Full text
Abstract:
Staphylococcus aureus is well-known for its ability to acquire resistance to a broad range of antimicrobial agents and a limited number of commercially available antibiotics exist that are active against multidrug resistant strains. Antimicrobial peptides have been suggested as promising alternatives to current antimicrobials due to their potent antimicrobial activity against a broad range of microorganisms including multidrug resistant bacteria, and a membrane-lytic mode of action that is thought to have low possibility of inducing bacterial resistance. This study describes the identification of S. aureus genes involved in resistance to the human cationic antimicrobial peptide LL-37, with a particular interest in the effects of a physiological concentration of bicarbonate on the resistance mechanism. Transposon mutagenesis and recombinase-based in vivo expression technology systems were designed to enable genome-wide screening. A S. aureus transposon mutant library was screened for increased resistance to LL-37 in the presence of bicarbonate. Mutants with insertions in yycH and yycI, demonstrated bicarbonate-dependent resistance to LL-37. Both yycH and yycI form part of a predicted operon yycFGHI in S. aureus, and have been shown to be suppressors of an essential two component system YycFG in B. subtilis that regulates cell wall metabolism. The resistance of S. aureus small colony variants (SCVs) to LL-37 was also investigated. SCVs defective in hemB, menD or aroD, demonstrated bicarbonate-dependent resistance to LL-37. Furthermore, SigB (a global regulator) and TcaR (an activator of protein A) were found to exert opposite effects on resistance to LL-37 in the presence of bicarbonate. Strains defective in TcaR showed bicarbonate-dependent resistance to LL-37, interestingly, this resistance was abolished by either deleting sigB or repairing tcaR in these strains. These data suggest that YycFG, SigB, TcaR and the SCV phenotype may play important roles in resistance to LL-37 under in vivo conditions where bicarbonate is present.
APA, Harvard, Vancouver, ISO, and other styles
8

Ackroyd, Bryony Kate. "Structural and biochemical analysis of E. coli ABC transporters implicated in antimicrobial peptide resistance." Thesis, University of York, 2018. http://etheses.whiterose.ac.uk/22751/.

Full text
Abstract:
Cationic antimicrobial peptides (CAMPs) are a key component of the innate immune system of many organisms, including humans. They target invading pathogens in a variety of ways often integrating into, and permeabilising, bacterial cell membranes and causing cell death. In response, bacteria have developed a variety of CAMP resistance mechanisms, including those based on ATP-binding cassette (ABC) transporters such as Sap and Yej, which are the subject of studies described herein. ABC importers use an extracellular substrate binding protein (SBP) to recognise substrates and deliver them to a cognate membrane complex for uptake into the cell. A primary aim of this study was to unravel the structural basis of CAMP binding by the SBPs, SapA and YejA. CAMPs are larger than conventional peptides handled by ABC transporters and usually contain secondary structure.
APA, Harvard, Vancouver, ISO, and other styles
9

Linde, Charlotte M. A. "Defense peptides against Mycobacteria /." Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-480-5/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jacob, Rebecca. "Lipid bilayers and their interactions with the antimicrobial peptide LL37: a TIR Raman study." Thesis, KTH, Skolan för kemivetenskap (CHE), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-207018.

Full text
Abstract:
As a direct consequence of the misuse of antibiotics since its first discovery, bacteria have developed extensive resistance mechanisms making them once again potential lethal threats. This eventuality has triggered a vast research effort from scientists worldwide to find solutions to mitigate antimicrobial resistance. One such option is the identification of new potential antimicrobial agents, like for example antimicrobial peptides (AMPs). Various methods have been applied to evaluate the properties and determine the complex mechanism of AMPs. However, the details of the mechanism remain unknown and hence the work in this project seeks to examine the suitability of using TIR Raman, a vibrational spectroscopy technique which is sufficiently surface sensitive to study the interaction of AMPs in contact with lipid bilayers, which are just a few nanometres thick. In order to evaluate the information that could be extracted from TIR Raman, measurement of solid supported lipid bilayers in the absence of peptides were first carried out. In particular, the lipid DMPC with a phase transition close to room temperature, was measured at various temperatures to determine spectral changes associated with the transition. For the peptide-membrane interactions, the AMP LL37 was put into contact with solid supported lipid bilayers modelling the cell membranes of bacteria (DOPE, DOPG) or humans (DOPC) respectively. The data clearly indicates that the membrane composition, and specifically the lipid head group charge, play an important role in the peptide-membrane interactions. In the bilayers mimicking bacteria cell membranes, the peptide either absorbed onto or inserted into the bilayer. In contrast, for the bilayer modelling a human cell membrane, no significant variations were detected, indicating no interaction with LL37. The findings presented in this work generally coincide with similar research of LL37 using other techniques. At hand of the herein presented data, TIR Raman has proven suitable and effective in detecting effects of antimicrobial peptides in contact with model lipid bilayers, and hence can be recommended for further studies.
Som en direkt följd av missbruket av antibiotika sedan det först upptäcktes, har bakterier utvecklat omfattande resistensmekanismer vilket föranlett dem att återigen utgöra potentiellt dödlig hot. Denna situation har manat fram en väsentlig forskningsinsats från forskare världen över att hitta lösningar för att minska antimikrobiell resistens. Ett sådant alternativ har varit identifieringen av nya potentiella antimikrobiella substanser, så som till exempel antimikrobiella peptider. Ett flertal metoder har använts för att både evaluera peptiders egenskaper och fastställa deras komplexa mekanism. Detta till trots förblir de exakta detaljerna i mekanismen okända, vilket föranlett arbetet i detta projekt att undersöka lämpligheten i att använda TIR Raman, en vibrational-spektroskopisk metod som är tillräckligt ytkänslig för att studera interaktionen hos antimikrobiella peptider i kontakt med lipidmembran, vilka endast är några få nanometer tjocka. För att evaluera informationen som kan utvinnas med TIR Raman, utfördes först mätningar av lipidmembran, skapade på ett solitt underlag, utan tillägg av peptider. Mer noggrant, har lipiden DMPC med en fasövergång nära vid rumstemperatur, mätts vid olika temperaturer för att fastställa spektrala variationer associerade till övergången. För peptid-membran interaktionerna, sattes den antimikrobiella peptiden LL37 i kontakt med lipidmembran som modellerar cellmembranet hos bakterier (DOPE, DOPG) respektive människor (DOPC). Mätdatan indikerar tydligt att membrankompositionen, och där specifikt laddningen av lipidens huvudgrupp, spelar en viktig roll i membran-peptid interaktionerna. För lipidmembranen som imiterar bakteriella cellmembran, adsorberade peptiden till membranet eller integrerades in i det. Till skillnad från detta, kunde inga signifikanta variationer detekteras för lipidmembranet som modellerade ett mänskligt membran vilket indikerar att det inte interagerar med peptiden LL37. Upptäckterna som presenteras i detta arbete sammanfaller generellt med andra, liknande studier där andra instrument använts för att undersöka LL37. Det kan ur materialet som presenterats här utläsas att TIR Raman visat sig lämpligt och effektivt i detekteringen av antimikrobiella peptider i kontakt med modeller av lipidmembran, och kan därav rekommenderas för fortsatta studier.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Antimicrobial peptide resistance"

1

Antimicrobial Peptides and Human Disease (Current Topics in Microbiology and Immunology). Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Antimicrobial peptides: Powerful weapons against resistant bacteria. Englewood, NJ: Technical Insights, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parachin, Nádia S., and Octavio L. Franco, eds. New edge of antibiotic development: antimicrobial peptides and corresponding resistance. Frontiers Media SA, 2014. http://dx.doi.org/10.3389/978-2-88919-301-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Antimicrobial peptide resistance"

1

Kintz, Erica N., Daniel A. Powell, Lauren E. Hittle, Joanna B. Goldberg, and Robert K. Ernst. "Regulation of Lipopolysaccharide Modifications and Antimicrobial Peptide Resistance." In Regulation of Bacterial Virulence, 209–38. Washington, DC, USA: ASM Press, 2016. http://dx.doi.org/10.1128/9781555818524.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Severinov, Konstantin, Ekaterina Semenova, and Teymur Kazakov. "Class I Microcins: Their Structures, Activities, and Mechanisms of Resistance." In Prokaryotic Antimicrobial Peptides, 289–308. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7692-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goytia, Maira, Justin L. Kandler, and William M. Shafer. "Mechanisms and Significance of Bacterial Resistance to Human Cationic Antimicrobial Peptides." In Antimicrobial Peptides and Innate Immunity, 219–54. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0541-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Weeks, Richard, Ammar Algburi, and Michael Chikindas. "Antimicrobial Peptides and Peptidomimetics for the Control of Antimicrobial Resistance." In Sustainable Agriculture Reviews, 205–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58259-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nandi, Ashis Kumar. "Application of Antimicrobial Proteins and Peptides in Developing Disease-Resistant Plants." In Plant Pathogen Resistance Biotechnology, 51–70. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118867716.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Robey, Marianne, William O'Connell, and Nicholas P. Cianciotto. "Resistance of Legionella pneumophila to Cationic Antimicrobial Peptides." In Legionella, 38–42. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817985.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Loch, Gerrit, Eva Jentgens, Margret Bülow, Ingo Zinke, Tetsushi Mori, Sayaka Suzuki, Haruko Takeyama, and Michael Hoch. "Metabolism and Innate Immunity: FOXO Regulation of Antimicrobial Peptides inDrosophila." In Innate Immunity: Resistance and Disease-Promoting Principles, 103–11. Basel: S. KARGER AG, 2013. http://dx.doi.org/10.1159/000346516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Velkov, Tony, Chongyu Zhu, David M. Haddleton, and Jian Li. "Novel Antimicrobial Peptides: Targeting Wound Infections Caused by ‘Superbugs’ Resistant to All Current Antibiotics." In Burns, Infections and Wound Management, 203–11. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/15695_2017_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Knappe, Daniel, Christin Stegemann, Ariane Nimptsch, Alexander Jr Kolobov, Ekaterina Korableva, Olga Shamova, Vladimir N. Kokryakov, and Ralf Hoffmann. "Chemical modifications of short antimicrobial peptides from insects and vertebrates to fight multi-drug resistant bacteria." In Advances in Experimental Medicine and Biology, 395–96. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-73657-0_172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yevtushenko, Dmytro P., and Santosh Misra. "Transgenic Expression of Antimicrobial Peptides in Plants: Strategies for Enhanced Disease Resistance, Improved Productivity, and Production of Therapeutics." In ACS Symposium Series, 445–58. Washington, DC: American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1095.ch021.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Antimicrobial peptide resistance"

1

Mukkisa, Hareesh, Lauren Crisman, Sarah Davis, Stacie Wood, and Deborah Heyl. "Fighting Bacterial Resistance: Modifying the Antimicrobial Peptide Tachyplesin." In The Twenty-Third American and the Sixth International Peptide Symposium. Prompt Scientific Publishing, 2013. http://dx.doi.org/10.17952/23aps.2013.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zakharchenko, N. S., S. V. Pigoleva, O. V. Furs, A. A. Kosobryukhov, V. D. Kreslavski, O. V. Dyachenko, Ya I. Buryanov, and T. V. Shevchuk. "ENHANCED RESISTANCE TO BIOTIC AND ABIOTIC STRESS OF TRANSGENIC RAPESEED WITH GENE OF ANTIMICROBIAL PEPTIDE CECROPIN P1." In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-346-349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bobde, Shravani, Fahad Alsaab, Guangshun Wang, and Monique L. van Hoek. "Designing novel antimicrobial peptides against multi-drug resistant bacteria." In BCB '21: 12th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3459930.3469507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Teng, Qiu-Xu, Zi-Ning Lei, Xiaofang Luo, Jing-Quan Wang, Zuodong Qin, John N. Wurpel, and Zhe-Sheng Chen. "Abstract 3006: Anticancer and multidrug resistance-reversing activities of novel antimicrobial peptides." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-3006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tretyakova, I. N., M. E. Park, I. A. Liseckaya, A. A. Baranova, E. A. Rogozhin, and V. S. Sadykova. "APPLICATION OF PLANT ANTIMICROBIAL PEPTIDES AND FUNGIMICROMYCETES OF THE GENUS TRICHODERMA PEPTIDES TO PRODUCTION EMBRYOGENIC CULTURES OF LARIX SIBIRICA." In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-1392-1396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography